	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

2nd Meeting: Geneva, CH, Jan. 29 - Feb. 1, 2002
	Document:  JVT-B050
Filename: JVT-B050.doc

Generated: 2002-01-18


	Title:
	Video Complexity Verifier (VCV) for HRD

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Shankar L. Regunathan

Phil A. Chou

Jordi Ribas-Corbera
One Microsoft Way
Microsoft Corporation
Redmond, WA 98052
USA
	
Tel:
Email:
	
+1(425)7076509

shanre@microsoft.com


	Source:
	Microsoft Corporation


_____________________________
1 Video Complexity Verifier for HRD
Summary
The objective of this document is to describe a new video complexity verifier (VCV). This verifier, when used as a part of the Hypothetical Reference Decoder (HRD), characterizes the amount of delay and buffer-size that is needed to decode and present a given bit stream at a certain level of computational capacity at the decoder. The VCV model proposed by Nokia is extended and integrated with the Video Buffer Verifier (VBV) specified by the current HRD. In addition to reducing the level of computational capacity required at the receiver to decode the bit stream, the new VCV model allows the bit stream to be decoded at multiple decoding speeds. These advantages are achieved at the cost of introducing further delay, while additional memory may often be unnecessary. Simulation results illustrate these gains. 
Background

The need to decode and display frames in real-time introduces constraints on the minimum level of computational capacity and memory available to the decoder. A video complexity verifier (VCV) is a reference model that is used to check if a decoder meets these constraints. 

In this context, Nokia contributions VCEG-N48, VCEG-N68 and VCEG-O45 have proposed to address computational limitations in the HRD by a novel VCV model. The Nokia model represents a significant advance over prior VCV models.

First, the Nokia VCV model uses the number of bits per second as a measure of decoding complexity, in addition to the traditional metric of number of macro-blocks per second. This improves the metric of decoding complexity. Nevertheless, further research may be needed on the contribution of factors such as macro-block type and prediction mode on decoding complexity. Note that an accurate metric of decoding complexity is crucial to the design of an efficient VCV model. 

Another important contribution of the Nokia VCV model is based on the observation that the decoding complexity of individual frames in a sequence can vary widely.  While the average decoding complexity of a sequence may be small, some frames may require relatively larger period of time for their decoding. To prevent jitter in the presentation of frames, traditional VCV models require that every frame be decoded within a fixed amount of time. Thus, the ability to decode is restricted to only those receivers that have sufficient computational capacity to handle these “high complexity” frames.  In contrast, the Nokia VCV model proposes a framework to allow decoders with limited computational capacity to decode these sequences without jitter in their presentation times. This goal is accomplished by introducing additional delay, and using a post-decoder buffer to store the frames before their presentation. Integration of the post-decoder buffer with reference frame memory helps limit the need for additional memory. In applications where higher latency is permitted, this framework allows a wider class of receivers to decode the sequence.  Further, this model allows the receivers to choose the appropriate trade-off between decoding speed and delay. For example, hand-held devices may choose to operate at lower decoding speeds and extend battery-life, at the expense of higher delay and memory requirements.

However, some important questions remain. First, it is an open problem to determine the minimum amount of delay and post-decoder memory that is needed to decode a particular sequence at a given level of computational capacity at the decoder. Second, it is necessary to integrate the proposed VCV model within the current HRD model that functions as the video buffer verifier (VBV), and thus governs the status of the input buffer. We address these two problems in this proposal. 

First, we review the operation of the current HRD model which governs the video buffer verifier (VBV).

Operation of the VBV in current HRD
The current HRD is a mathematical model for video buffer verifier: the decoder, its input (pre-decoder) buffer, and the channel.  The VBV is characterized by the channel’s peak rate R (in bits per second), the initial start-up delay δ (in seconds), and the pre-decoder buffer size B (in bits). δ can be also be represented by the initial decoder buffer fullness F (in bits), since δ = F/R .  These parameters represent levels of resources (transmission capacity, buffer capacity, and delay) used to decode a bit stream.

The VBV input (pre-decoder) buffer has capacity B bits.  Initially, the buffer begins empty.  At time tstart it begins to receive bits, such that it receives S(t) bits through time t.  S(t) can be regarded as the integral of the instantaneous bit rate through time t.  At the time instant t0 at which S(t) reaches the initial decoder buffer fullness F, the bits of the first frame are transferred from the pre-decoder buffer to the decoder buffer, and decoding begins. Note that this pre-decoding delay is given by δ=t0-tstart. F corresponds to a specific value of δ, and vice versa.

At each decoding time ti, the VBV instantaneously removes all di bits associated with picture i, thereby reducing the pre-decoder buffer fullness from bi bits to bi – di bits.  If M frames are transmitted per second, ti = ti-1 + 1/M. Between time ti and ti+1, the pre-decoder buffer fullness increases from bi – di bits to bi – di + [S(ti+1) – S(ti)] bits.  That is, for i ≥ 0,


b0 = F

bi+1= bi – di + [S(ti+1) – S(ti)].
The channel connected to the VBV buffer has peak rate R.  This means that unless the channel is idle (whereupon the instantaneous rate is zero), the channel delivers bits into the VBV buffer at instantaneous rate R bits per second. To guarantee decoding without stalling, the pre-decoder buffer must not underflow, i.e., bi ≥ 0.

There are a number of interesting facts concerning the HRD model of VBV:

(i) For each R, there is a minimum value δmin = δmin(R) of the pre-decoder start-up delay δ. For delays δ above δmin, decoding is possible if the peak rate is R. For delays δ below δmin, decoding is impossible if the peak rate is R, i.e., the input buffer will underflow with consequent stalls in the decoding process. 

(ii) For each R, there is a minimum value Bmin= Bmin(R) of the pre-decoder buffer size B, needed to store all the bits. For buffer sizes B above Bmin, decoding is possible. For buffer sizes B below Bmin, decoding is impossible, as the input buffer will underflow.

(iii) There is no trade-off between δmin and Bmin, i.e., increasing the value of δ above δmin does not lead to lower values of Bmin and vice versa.

(iv) δmin and Bmin are convex functions of R.

Note that this model does not represent the events that happen after the bits are removed from the pre-decoder buffer. In particular, this model implicitly assumes that

(i) the decoder has sufficient (decoding) buffer size to store the bits that are removed from the pre-decoder buffer until decoding is complete,

(ii) Sufficient computational power to decode the bits of each frame before its presentation time,

(iii) Sufficient frame memory to store the decoded frame until its presentation time.

These assumptions are formalized in the next section, where we propose a video complexity verifier (VCV) to represent this decoding operation.
Proposed Video Complexity Verifier 

Definitions:

The actual presentation time of a frame is defined as the instant that the frame is actually displayed. The actual presentation time of any frame is obtained by adding a constant offset to the nominal presentation time of that frame. The nominal presentation time of the frame is encoded in the temporal reference field of the picture header. The offset accounts for the buffering and decoding delays at the decoder. In the rest of this document, the term “presentation time” refers to the actual presentation time of a frame. The presentation time of the first picture is denoted by 0. The presentation times of subsequent pictures in bit stream order are 1,2,3,…. If there are no B-frames in the sequence, typically i = i-1+ 1/M, where M is the frame rate.
The expiration time Ei of a frame is defined as the earliest instant that the frame can be discarded after its decoding. A frame can be discarded only after it has been presented, and after all the frames that are predicted from this frame are decoded.

The bits of any frame are available for decoding the instant that they are removed from the input (pre-decoder) buffer and placed in the decoder buffer. At time t0, the bits of the first frame are available for decoding. At subsequent time instants, ti, the bits associated with picture i are transferred from the pre-decoder buffer to the decoder buffer.  If there are no B-frames in the sequence, ti = ti-1 + 1/M. Note that the VBV ensures that these bits are available at the required time instants. 

The presentation delay is defined as δ’ = i – ti. Note that the presentation delay is identical for all the frames. 
The VCV is characterized by the computational power of the decoder C (in operations per second), the presentation start-up delay δ’ (in seconds), the size of the decoder buffer B’ (in bits), and size of the post-decoder buffer X (in frames). 
Operation of the VCV:

The VCV begins decoding at time instant t0. After picture i is decoded, the VCV checks if the bits of picture i+1 are available at the decoder buffer. If these bits are available, it begins to decode that frame immediately. Otherwise, it waits until time instant ti+1 for these bits to arrive in the decoder buffer.
When the decoder is in operation, it performs C computations per second. When it waits, it performs zero computations per second. Let picture i require ai computations for its decoding. For picture i, the actual start-decode and end-decode time instants are denoted by si and ei.
Let di bits be associated with picture i. The decoder buffer is defined to hold the bits of picture i from time instant ti, when these bits are loaded, until ei, when the decoding is complete. 
The post-decoder buffer is defined to hold the pixels of picture i from time instant si, when decoding begins, until i, its expiration time.

Decoding is feasible for a given level of computational capacity, memory and delay at the decoder if and only if every picture i is decoded before its presentation time i, and there is no overflow of the decoder and post-decoder buffer. 

The VCV model has similarities with the VBV model, which enables us to derive the following results:
(i) For each C, there exists (δ’min, B’min, Xmin) such that decoding is possible if the presentation start-up delay, decoder buffer size, and post-decoder buffer size satisfy the constraints δ’ ≥ δ’min, B’ ≥ B’min, and X ≥ Xmin.

(ii) δ’min is a convex decreasing function of C.
(iii) B’min and Xmin are monotonic non-increasing functions of C. 
(iv) An upper bound for the minimum post-decoder size Xmin  is given by Xbound(δmin ) = max {
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, L+1} where L is the number of reference frames that are used. This upper bound is tight for a wide range of encoding conditions.

Note that this VCV model is independent of the exact implementation of the decoding algorithm. For instance, multiple slices of a frame can be decoded in parallel using multi-threading, and can be modelled by this VCV. 
The VBV and VCV jointly form the HRD by guaranteeing that the bit stream can be decoded, when sent through a channel of a given rate, by a decoder of a given complexity. The overall delay is the sum of the pre-decoder start-up delay in the VBV stage (i.e., the delay in the pre-decoding buffer), and the presentation start-up delay in the VCV stage (i.e., the delay in the decoder and post-decoder buffers).
Requirements for a Compliant Bit Stream

A set of parameters (C, δ’, B’) is said to contain the bit stream if a decoder performing C computations per second, with decoder buffer size B’  bits and post-decoder buffer size of Xbound(δ’) frames, can decode and present the bit stream without overflow at presentation start-up delay δ’.
The header of each bit stream shall specify the parameters of a set of N ≥ 1 levels of decoder complexity, (C1, δ’1, B’1),…,(CN, δ’N, B’N), each of which contains the bit stream.  In the current Test Model, these parameters are specified in the first 1+3N 32-bit integers of the Interim File Format, in network (big-endian) byte order:

N, C1, δ’1, B’1,  …, CN, δ’N , B’N.

The Cn shall be in strictly increasing order, and therefore both Bn and δn shall be in strictly non-increasing order. These parameters shall not exceed the capability limits for particular profiles and levels, which are yet to be defined.

Requirements for a Compliant Decoder
If a bit stream is contained in a set of decoder parameters (C1,δ’1,B’1), …, (CN, δ’N, B’N), then it is decodable by a receiver of capacity C computations/second without overflow provided B’ ≥ B’min(C),  δ’≥ δ’min(C), and X ≥ Xmin(C), where for Cn ( C ( Cn+1,

δ'min(C) = δ’n + (1 – δ’n+1
 = (Cn+1 – C) / (Cn+1 – Cn).

            X’min(C) = max (
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B’min(C) = B’n ,
           L is the number of reference frames.
A compliant decoder shall perform the tests B’ ≥ B’min(C) and X ≥ Xmin(C), and, if these conditions are satisfied, the decoder shall decode the stream with presentation delay δ’≥ δ’min(C).
Appendix A

In this section, we provide illustrative buffer plots.  Although our focus is on the pre-decoder, decoder, and post-decoder buffers, for comprehensiveness we begin by placing these buffers in the context of the following figure.


[image: image3]
In the figure, compressed pictures enter the pre-decoder buffer at point E, where they await decoding.  The compressed pictures enter the decoder at point F.  The decoder processes the pictures, and after a suitable amount of computation emits the reconstructed pictures in processing order.  The reconstructed pictures enter the post-decoder buffer at point G.  After possible re-ordering, the pictures leave the post-decoder buffer at point H, where they are discarded after being presented and ceasing to be a reference for decoding other pictures.

The sequence of times at which units of information cross one of the points A, B, C, D, E, F, G, or H is called a schedule.  Schedules for the points C, D, E, F, G, and H are illustrated in the following figure.
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Schedule C is shown in subplot (a), in units of bits vs. time.  At sequential “encoding” times t’0, t’1, …, the encoder instantaneously inserts into the post-encoder buffer d0, d1, … bits for pictures 0, 1, … (in bit stream order), respectively.  Bits depart the post-encoder buffer on Schedule D, at rate R bits per second, occasionally interrupted by intervals in which no bits depart the post-encoder buffer, because the post-encoder buffer is empty.  The fullness of the post-encoder buffer (in bits) is the vertical distance between Schedules C and D.

Schedule E, shown in the same subplot, is the time at which the bits eventually arrive in the pre-decoder buffer, after a constant transmission delay.  (If the transmission delay is variable, then the pre-decoder buffer can be enlarged as necessary to buffer the delay jitter.  In this case, Schedule E represents the time at which the bits are guaranteed to arrive in the buffer.  Note however that it is not necessary to enlarge the post-decoder buffer if the jitter is due to packetization.  In this case, Schedule E can be interpreted as giving, for the last bit of every packet, the time at which the last bit, and possibly the entire packet, arrives in the pre-decoder buffer.  Transmission of the first two such packets is illustrated in the subplot.)

Schedule F shows the “decoding” times t0, t1, … at which the decoder instantaneously removes the d0, d1, … bits for pictures 0, 1, …, respectively, from the pre-decoder buffer, and queues them for decoding.  It is assumed that for i = 0,1,… the decoding times ti differ from the encoding times t’i by a constant delay L.

The vertical distance between Schedules E and F is the fullness of the pre-decoder buffer (in bits).  This pre-decoder buffer fullness is represented by the solid blue line in subplot (b).  The pre-decoder buffer capacity B must be equal to or greater than the maximum value of the pre-decoder fullness over time.  The initial pre-decoder buffer fullness F is the value of the pre-decoder fullness just prior to removing the first d0 bits.

To prevent buffer underflow, the buffer fullness must not be allowed to go negative.  Schedule F can be advanced in time (to the left) only so far (until it just touches Schedule E).  Advancing Schedule F as far as possible is required to minimize the pre-decoder startup delay.  The pre-decoder startup delay can be minimized still further by appropriate choice of the initial pre-decoder buffer fullness F.  It can be shown that there is a unique value for F that both minimizes the pre-decoder startup delay and minimizes the required buffer capacity B.  This is the illustrated value of F.

The dotted line to the right of Schedule F is the translation of Schedule D to the right by L, and hence is a lower bound to Schedule F.  The vertical distance between Schedule E and this dotted line is therefore an upper bound on the fullness of the pre-decoder buffer.  To make this upper bound constant, without increasing its maximum, Schedule E can be replaced by Schedule E’, which is the dotted line shifted vertically by R times the pre-decoder startup delay.

Schedule F is shown again in subplot (c), in units of computation instead of bits.  That is, at decoding time ti, the decoder instantaneously queues ai computational units for computation just as it moves the di bits for picture i from the pre-decoder buffer into the decoder buffer.  This effectively adds the computational units to a leaky bucket with leak rate C computations per second (cps).  The decoder processes the computational units in the bucket at C computations per second, and becomes idle when the bucket becomes empty, which occurs on several instances in subplot (c).

Schedule G, according to which information moves from the decoder buffer to the post-decoder buffer, is determined as follows.  At the instant that the last computational unit of picture i leaks out of the bucket, picture i is finished decoding.  At that time, the di encoded bits of picture i are removed from the decoder buffer, and the reconstruction of picture i is inserted uncompressed into the post-decoder buffer.  Schedule G is shown in red both in units of bits (subplot (a)) and in units of pictures (subplot (d)).

The maximum computational delay determines the maximum amount of time that a picture can stay in the decoder buffer.  By itself, this does not guarantee anything about the maximum number of bits in the decoder buffer, since some pictures can be very large in terms of bits di.  However, when the decoder buffer is combined with the pre-decoder buffer, it is clear that an upper bound on the number of bits that the pre-decoder would have to increase in size to accommodate the decoder buffer is R times the maximum computational delay.  Subplot (a) illustrates the fullness of the combined pre-decoder and decoder buffer (red line) as well as its upper bound (dotted).  This bound is quite loose at high rates, however, so that explicitly specifying a bound independent of the maximum delay is sometimes desirable.

The maximum computational delay also determines the delay between the decoding time of the first picture and its actual presentation time, called the presentation startup delay, illustrated in Subplot (d).  This, in turn, determines Schedule H, which then determines the maximum number of pictures in the post-decoder buffer, X, as illustrated in Subplot (e).

Appendix B 
In this section, we provide some simulation results to demonstrate the advantage of the proposed VCV model. For a given sequence, we calculate the minimum delay, and minimum sizes of decoder and post-decoder buffer at different levels of decoder computational power. The upper bound of post-decoder size is also calculated. It is important to note that this bound was tight in all our experiments.

The normalized complexity of each frame was set to the time that it took to decode each frame by the H26L decoder. This metric was chosen for its simplicity. Note that the model can also use other complexity metrics such as the one proposed by Nokia. No B-frames were used, and the sequences were encoded as IPPPPP…. 

1.1. Sequence: Bob
The results of coding the sequence bob at 30 frames-per-second, using QP =22 and only one reference frame are presented below. 

Note that the highest complexity frame in this sequence had a normalized complexity of 311. A conventional VCV model, which requires all frames to be encoded within 1/F second, mandates that the decoder have a normalized computational power of at least 311*30=9330. Further, it requires that memory be sufficient to store at least 2 frames (one for reference frame and one for current frame).   

In this case, the proposed VCV model allows even decoders 40% slower to decode this sequence with no additional memory requirements. The trade-off is a small increase in decoder buffer size, and larger delay which may be acceptable in many applications. Further, if there was sufficient memory available to store three additional frames, the decoder can be up to 60% slower!

Further, note that the upper bound for post-decoder memory is tight.

	C
(Normalized computational power/second)
	B’min
(bits)

	δ'min
(seconds)
	X'min
(frames)
	X'bound
(frames)

	3270
	20048
	0.301529
	10
	10

	3540
	20048
	0.16469
	5
	5

	3810
	20048
	0.108137
	4
	4

	4080
	20048
	0.0875
	3
	3

	4890
	19600
	0.071779
	3
	3

	5700
	19600
	0.061579
	2
	2

	6510
	19600
	0.053917
	2
	2

	7320
	19600
	0.047951
	2
	2

	8130
	19600
	0.043174
	2
	2

	8940
	19600
	0.039262
	2
	2

	9750
	19432
	0.036
	2
	2

	10560
	19432
	0.033238
	2
	2

	11370
	19432
	0.03087
	2
	2
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1.2. Sequence: News
The results of coding the sequence “News” at 30 frames-per-second using QP=5 and three reference frame are presented below. 

Note that the highest complexity frame in this sequence had a normalized complexity of 1382. A conventional VCV model would require the decoder to have a normalized computational power of at least 1382*30=41460, and would have required memory sufficient to store four frames (three for reference frames and one for current frame).   

However, the proposed VCV model allows decoders even 73% slower to decode this sequence with no additional memory requirements. Further, if there was sufficient memory available to store one additional frame, the decoder can be up to 79% slower! There is a larger presentation delay, and the minimum size of decoder buffer increases slightly.

	C
(Normalized computational power)
	B’min
(bits)

	δ'min
(seconds)
	X'min
(frames)
	X'bound
(frames)

	6180
	76872
	0.223624
	7
	7

	8880
	76872
	0.155631
	5
	5

	11580
	67080
	0.119344
	4
	4

	14280
	67080
	0.096779
	4
	4

	16980
	67080
	0.081389
	4
	4

	19680
	67080
	0.070224
	4
	4

	22380
	67080
	0.061751
	4
	4

	25080
	67080
	0.055103
	4
	4

	27780
	67080
	0.049748
	4
	4

	33180
	67080
	0.041652
	4
	4

	35880
	67080
	0.038517
	4
	4

	41280
	67080
	0.033479
	4
	4

	43980
	67080
	0.031424
	4
	4
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1.3. Sequence: Container
The results of coding the sequence “Container” at 15 frames-per-second, using QP=15 and three reference frames are presented below. Note that the highest-complexity frame in this sequence had a normalized complexity of 221. Therefore, a conventional VCV model requires the decoder to have a normalized computational power of at least 221*15=3315, and memory sufficient to store at least four frames. However, the proposed VCV model allows even decoders 64% slower to decode this sequence with no additional memory requirements.

	C
(Normalized computational power/second)
	B’min
(bits)

	δ'min
(seconds)
	X'min
(frames)
	X'bound
(frames)

	1035
	31888
	0.283092
	5
	5

	1200
	30464
	0.225833
	4
	4

	1365
	30464
	0.182418
	4
	4

	1530
	30464
	0.148366
	4
	4

	1695
	29680
	0.130383
	4
	4

	1860
	29680
	0.118817
	4
	4

	2025
	29680
	0.109136
	4
	4

	2190
	29680
	0.100913
	4
	4

	2520
	29680
	0.087698
	4
	4

	2685
	29680
	0.082309
	4
	4

	3015
	29680
	0.0733
	4
	4

	3180
	29680
	0.069497
	4
	4

	3345
	29016
	0.066069
	4
	4
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1.4. Sequence: Foreman
The results of coding the sequence “Foreman” at 30 frames-per-second using QP=7 and five reference frames are presented below. 

Note that the highest complexity frame in this sequence had a normalized complexity of 711. The conventional VCV model requires the decoder to have a normalized computational power of at least 711*30=21330, and memory sufficient to store at least 6 frames.   

However, the proposed VCV model allows decoders even 63% slower  to decode this sequence with no additional memory requirements. The presentation delay is larger, and the size of decoder buffer is slightly larger. 

	C
(Normalized computational power/second)
	B’min
(bits)

	δ'min
(seconds)
	X'min
(frames)
	X'bound
(frames)

	6930
	342160
	0.614863
	19
	19

	7230
	256040
	0.428907
	13
	13

	7530
	184720
	0.300664
	10
	10

	7950
	113352
	0.169937
	6
	6

	8970
	73616
	0.081828
	6
	6

	9990
	73616
	0.071171
	6
	6

	12030
	73616
	0.059102
	6
	6

	14070
	73616
	0.050533
	6
	6

	16110
	61040
	0.044134
	6
	6

	18150
	61040
	0.039174
	6
	6

	19170
	61040
	0.037089
	6
	6

	21210
	61040
	0.033522
	6
	6

	22230
	61040
	0.031984
	6
	6
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Appendix C
Here we provide an algorithm to calculate the minimum presentation start-up delay and the minimum decoder buffer size for a bit stream at a given level of computational capacity. The bound for post-decoder buffer size is also calculated.
    int DecoderComplexityPerSecond; // Number of computations performed by decoder in one second

    int   FrameRate; // Number of Frames per second

   int DecoderComplexityPerFrame = DecoderComplexityPerSecond/FrameRate; 

   int NumFrames; // Total number of frames in the sequence

   int NumRefFrames; // Number of reference frames used for encoding a frame.

      float DecodingTime;
     DecoderComp[0] = 0; 

      float minDelay = 0.0;

       for(i=0; i<NumFrames; i++) 

         t[i] = (float) i/FrameRate;  //t[i] is time instant when bits are loaded in decoder buffer
        /* Calculating Minimum Delay, encoding and decoding time stamps */        

        for(i=0; i< NumFrames; i++) {

            s[i] =t[i] + (float) DecoderComp[i] / (DecoderComplexityPerFrame * FrameRate); //s[i]  start time of decoding
            DecoderComp[i] += CompOfFrame[i];

            DecodingTime = (float) CompOfFrame[i]/ (float) (DecoderComplexityPerFrame * FrameRate);

            e[i] = s[i] + DecodingTime; //e[i] is end of decoding time
            if((e[i] - t[i]) > minDelay)

                minDelay = (e[i] - t[i]);

            if(e[i] < t[i+1])           //decoder stall for new bits, decoder starts again with zero bits

                DecoderComp[i+1] = 0;

            else
                DecoderComp[i+1] = DecoderComp[i] - DecoderComplexityPerFrame;
        }

// Calculating presentation and expiry time-stamps 

        for(i=0; i < NumFrames; i++) {

            tau[i] = t[i] + minDelay; // tau[i] is the presentation time
            E[i] = tau[i];  //E[i] is expiry time
            if(i < NumFrames-NumRefFrames) {

                if(e[i+NumRefFrames] > E[i]) 

                    E[i] = e[i+NumRefFrames];

            }

            else {

                if(e[NumFrames-1] > E[i]) 

                    E[i] = e[NumFrames-1];

            }

        }               

        // Calculating size of minimum decoder buffer 

        Int minB = 0;
         DecoderBufferSize[0] = 0;

        int CodedFrames = 0;

        for(i=0; i < NumFrames; i++) {

            DecoderBufferSize[i] += BitsOfFrame[i];

            if(DecoderBufferSize[i] > minB)

                minB = DecoderBufferSize[i];

            DecoderBufferSize[i+1] = DecoderBufferSize[i];

            while(e[CodedFrames] < t[i+1]) {

                DecoderBufferSize[i+1] -= BitsOfFrame[CodedFrames];

                CodedFrames++;

            }

        }
        // Calculating upper bound for minimum Post Decoder Buffer

        XBound = ceil(minDelay*FrameRate);

       If( NumRefFrames+1 > XBound)
             XBound = NumRefFrames + 1;
        // Calculating actual size of minimum Post Decoder Buffer

        int X = 1;

        for(i=0; i < NumFrames; i++) {                       

            while((i+PostDecoderBuffer) < NumFrames && (E[i] > s[i+X])) {

                X++;

            }

        }
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