	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

14th Meeting: Santa Barbara, CA, USA, 24-27 Sep., 2001
	Document VCEG-N71
Filename: VCEG-N71.doc

Generated: 25 September ’01

	Question:
	Q.6/SG16 (VCEG)

	Source:
	José Roberto Alvarez
Broadcom Corporation
3151 Zanker Road
San José, CA 95134
	
Tel:
Fax:
Email:
	
(408) 501-8347
(408) 501-7836
jalvarez@broadcom.com

	Title:
	Discrepancies in Documentation and Implementation of Sub-pel Interpolation in TML-8 (Draft 0)

	Purpose:
	Information

1. Introduction

The purpose of this report is to outline the differences between the TML-8 encoder/decoder implementation and the algorithmic details stated in Reference [1] with regards to the sub-pel interpolation process.

2. Quarter-pel Interpolation

2.1 Encoder Summary

The description for ¼-pel interpolation in section 3.7.1.1 of [1] matches what is implemented in the TML-8 encoder software with a few exceptions. The software keeps the accuracy to full-integer precision for all the horizontal ½-pels (a 6-tap filter is used to arrive at the ½-pel positions), then creates both horizontal and vertical positions (using the same 6-tap filter), storing the final result rounded to the nearest integer and clipped to the range 0 to 255.

For the generation of the ¼ -pel positions, the software uses linear interpolation as stated in the document, however, the results are not truncated but rounded and clipped (0,255) and then stored in an array for future reference.

The last interpolated position in the lower right-hand corner (position m in [1]) is interpolated and rounded as stated in document [1] and labeled “Funny Position” in the software.

2.2 Decoder Summary

The decoder software uses a different approach than what is stated in the document. It implicitly performs direct mode interpolation by the use of two-dimensional 6x6 filters for some intermediate positions. These two-dimensional kernels are the result of convolving the individual horizontal and vertical 6-tap filters, using 13-bits to express the resulting coefficient kernels. During computation of each sub-pel, all accuracy is preserved to full-integer precision; rounding and clipping are done only once per interpolated sub-pel to obtain the final result.

2.3 Quarter-pel Detailed Description

2.3.1 Documented Algorithm Description

Two interpolation filters are used. The first filter interpolates the reference data to ½-pel positions using a 6-tap structure. The second filter interpolates to ¼-pel positions using linear interpolation. Both filters are used in the horizontal and vertical directions. There is one exception for the ¼-pel interpolated location along the diagonal in the lower right corner of the block, where the resulting interpolated value is a rounded average of the full-pel samples.

Figure 1A depicts the full-pel positions (dark squares) and the horizontal ½-pel positions (green dots) derived using the filter [1, -5, 20, 20, -5, 1]/32. The resulting filtered value for each position derived from the horizontal filter is rounded to the nearest integer and clipped within the range 0 to 255.

[image: image1.wmf]4x4 Block

Figure 1A

Figure 1B depicts the full-pel positions and the vertical ½-pel positions (yellow dots) derived using the same 6-tap filter as above, namely, [1, -5, 20, 20, -5, 1]/32 in the vertical direction. Notice that some vertical interpolated positions (bold yellow dots) are the result of processing values already interpolated in the horizontal direction. Results of this vertical 6-tap filter are rounded to the nearest integer and clipped within the range 0 to 255.

[image: image2.wmf]Figure 1B

After the ½-pel interpolation described above, if the required interpolated value is at one of the two-dimensional ¼-pel positions, linear interpolation is performed on the already calculated values. The already computed ½-pel positions are shown in green and yellow dots in Figure 2. The bold locations are the result of horizontal filter and then vertical filter as was the case described in Figure 1.

The lower right-hand corner interpolated location (purple dot) indicated in Figure 2 is calculated by a different method. For this position, the full-pel samples are used instead of the intermediate interpolated values. The resulting filtered value for this location is an average of the original full-pels, rounded to the nearest integer. Referring to Figure 2, this value is (X1 + X2 + X3 + X4)/4 rounded to the nearest integer. TML refers to this position as the ‘funny position’.

[image: image3.wmf]X1

X2

X3

X4

Q2

Q2

Q2'

Q2'

Q3

Q3

Q5'

Q6

Q6'

Q6'

Q7

Q7

Q7'

Q7'

Figure 2

Full-pel

2.3.2 TML Decoder Implementation

The software implementation uses explicitly defined two-dimensional 6x6 coefficient kernels, which are the result of convolving the individual one-dimensional filters to obtain a two-dimensional structure. The resulting two-dimensional kernels reflect the use of 6-tap and 2-tap filter combinations. Direct Mode interpolation defines the computation of both ½ and ¼ pel positions with the same filter structure.

TML uses the filters described below in the positions depicted in Figure 2. The filters in the non-shaded ¼-pel locations (Q filters) are accessed from left-to-right and top-to-bottom in the arrays described below. The shaded positions (Q’ filters) in Figure 2 denote the same base filter kernels except that each coefficient is addressed from a different direction. This addressing is equivalent to flipping the filter kernel along the horizontal or vertical axis.

Q2: {64,-320,3328,1280,-320,64};

Q3: {128,-640,2560,2560,-640,128};

Q5: {{4,-20,80,80,-20,4},

 {-20,100,-400,-400,100,-20},

 {80,-400,1600,1600,-400,80},

 {80,-400,1600,1600,-400,80},

 {-20,100,-400,-400,100,-20},

 {4,-20,80,80,-20,4}

 };

Q6: {{1,-5,52,20,-5,1},

 {-5,25,-260,-100,25,-5},

 {52,-260,2704,1040,-260,52},

 {20,-100,1040,400,-100,20},

 {-5,25,-260,-100,25,-5},

 {1,-5,52,20,-5,1}

 };

Q7: {{2,-10,40,40,-10,2},

 {-10,50,-200,-200,50,-10},

 {104,-520,2080,2080,-520,104},

 {40,-200,800,800,-200,40},

 {-10,50,-200,-200,50,-10},

 {2,-10,40,40,-10,2}

 };

Example:

Q2’ = Q2 accessed from right-to-left, {64, -320, 1280, 3328, -320, 64}

Q3’ = Q3 accessed from right-to-left
2.3.3 Chroma Interpolation

The documentation in Reference [1] has little information on chroma interpolation. This section describes the approach used in TML-8 for all sub-pel interpolation cases.

Chroma motion vector displacements in both horizontal and vertical directions are derived from the luma motion vectors. The vectors are scaled by a factor of two in both directions to reflect the difference in resolution between luma and chroma. Since the chroma vectors are scaled down, the effective resolution is 1/8 for the quarter-pel case and 1/16 for eighth-pel case. This implies that when an original luma motion vector for a block of 4x4 luma pixels is converted to a chroma motion vector, the latter applies to a block of 2x2 chroma pixels.

Linear interpolation between adjacent integer location pixels is always used. The coefficients used in this 4-tap interpolation are determined by the relative sub-pel position of the desired chroma value. If we denote the chroma full-pel positions as A, B, C, D (Figure 3), the total number of positions (including full-pel) as N, and the fractional position n from 0 to N-1, where nx is the horizontal fractional position and ny is the vertical fractional position; then, we have the following formula

ChromaSubPel = [(N-nx)(N-ny)A + (nx)(N-ny)B + (N-nx)(ny)C + (nx)(ny)D + N2/2] / N2
Where N*N/2 is used for rounding to the nearest integer value.

For example, let’s assume N=8 for the case of 8 sub-pel positions and further let’s assume that nx=5 and ny=6; then the interpolated value would be:

Ch = [(3)(2)A + (5)(2)B + (3)(6)C + (5)(6)D + 32] / 64

Ch = [6A + 10B + 18C + 30D + 32] / 64

Notice that the pixel that gets the largest coefficient is the one which is closest to the desired sub-pel position, which is D in the example above. Further notice that in the case where nx=4 and ny=4 in the example above, the formula reverts to the familiar interpolation for a center sub-pel location, namely, [16A + 16B + 16C + 16D + 32]/64. Likewise, when nx=0 and ny=0, the equation converges to the full-pel position A.

[image: image4.wmf]B

A

C

D

2x2 Block

Figure 3 - Chroma Interpolation

Full-Pel

Chroma

Samples

N

N

nx

ny

nx: 0, 1, 2, ... (N-1)

ny: 0, 1, 2, ... (N-1)

3. Eighth-pel Interpolation

3.1 Encoder Summary

The document states that two-dimensional interpolation is performed in a separable manner in the horizontal and vertical directions for each sub-pel position (no indication as to rounding is given). The encoder software generates the ¼-pel positions in the horizontal direction first (using 8-tap filters) and then rounds and clips (0,255) before storing in temporary array. These rounded values are used to compute the rest of the ¼-pel positions in the vertical direction. All ¼-pel interpolated samples are stored in a two-dimensional array for further use.

The 1/8-pel interpolated samples are computed on-the-fly using linear interpolation (final results are rounded and clipped). The process is mathematically equivalent to the coefficients stated in the document, but the process of computing and rounding does not necessarily yield equivalent results if direct mode interpolation were used at all stages.

3.2 Decoder Summary

Although the 8-tap filter coefficients are fully specified in the document, the encoder software does not follow direct mode interpolation for all sub-pel positions as stated in section 3.7.1.2. Instead, only the ¼-pel positions use strict direct mode interpolation using the 8-tap filters. The ¼-pel interpolated positions are rounded, clipped (0,255) and stored in an array for further computation (as required) of the 1/8-pel positions using linear interpolation. The 1/8-pel positions are computed (rounded and clipped) on-the-fly as needed by the decoding process.

3.3 Eighth-pel Detailed Description

3.3.1 Documented Algorithm Description

According to document in Reference [1], interpolation in this mode is performed first horizontally, and then vertically (separable two-dimensional filtering) using 8-tap FIR filters. There are separate sets of coefficients for each fractional position.

Let us define a set of coefficients as follows:

F0: [1] (all-pass filter, i.e. no filter at all)

F1: [-3, 12, -37, 485, 71, -21, 6, -1] / 512

F2: [-3, 12, -37, 229, 71, -21, 6, -1] / 256

F3: [-6, 24, -76, 387, 229, -60, 18, -4] / 512

F4: [-3, 12, -39, 158, 158, -39, 12, -3] / 256

Further, let us define for the purposes of the present document the term ‘coefficient mirror’ to denote a set of coefficients derived by reversing the order of the coefficients in an original set of coefficients. Then, we can define another set of coefficients F’ as the coefficient mirror of F as follows:

F1’: [-1, 6, -21, 71, 485, -37, 12, -2] / 512

Therefore, using the definitions above, we can describe the filters used for the 1/8-pel interpolation process depending on the fractional (sub-pel) position of the desired interpolated sample:

Interpolated Position
 Filter Used
Integer

F0
1/8

F1
2/8

F2
3/8

F3
4/8

F4
5/8

F3’
6/8

F2’
7/8

F1’

3.3.2 TML Decoder Implementation

The basic sets of coefficients used by the decoder software are:

Filter H1: [-3, 12, -37, 229, 71, -21, 6, -1] / 256
 (same as F2)

Filter H2: [-3, 12, -39, 158, 158, -39, 12, -3] / 256
 (same as F4)

Filter H3: [-1, 6, -21, 71, 229, -37, 12, -3] / 256
 (same as F2’)

The rest of the filter coefficients are not explicitly defined in the code, but calculated using interpolation. For this section, when the term full-pel is used alone, it is meant to indicate the top-left integer location.

The application of each filter and combination of filters is depicted in Figure 4. In this figure, four different types of processing are described by geometrical symbols with numbers within. The numbers in the geometrical symbols at each sub-pel position indicate the H-type filter used at that particular position (for instance the sub-pels indicated by clear circles along the top edge use filters H1, H2, H3, respectively). The following subsections describe each class of processing.

[image: image5.wmf]X1

1

1

2

3

3

X2

2

1

3

X3

11

33

32

23

22

13

12

21

31

X4

p1

p2

p3

p4

p5

p6

p7

p0

p8

SubPel

Positions

p0

p1

p2

p3

p4

p5

p6

p7

p8

Top Edge

Left Edge

Figure 4

Processing Class 1

Even numbered positions along the ‘top’ and ‘left’ edges of the block are denoted by circles. The processing at these positions is simply with an 8-tap filter using the coefficients indicated by the number within the circle.

Processing Class 2

Even numbered positions in two-dimensions along the diagonal of the block are denoted by squares. There are 9 positions that fit this criteria. Processing is done first using the same horizontal filter (indicated by the first number inside the square) for 3 rows above and 4 rows below the full-pel position. Then the 8 results of each horizontal filter are further filtered using another set of coefficients (indicated by the second number inside the square), therefore producing a vertical filtered final interpolated pixel.

Processing Class 3

Two special positions next to the full-pel positions along the ‘top’ edge of the block are denoted by diamonds in Figure 4. The interpolated and rounded result at these two locations is the average between the horizontal 8-tap filter (indicated by number inside the diamond) and the nearest full-pel value.

Processing Class 4

The final class of processing is depicted by dots in the figure. At these positions, the interpolated result is the combination of one or two horizontal 8-tap filters for the 3 rows above and the 4 rows below the full-pel position and a linear interpolation depending on the vertical sub-pel position being processed.

4. References

[1] G. Sullivan, T. Wiegand, “Detailed Algorithm Technical Description for ITU-T VCEG Draft H.26L Algorithm in Response to Video and Dcinema CfPs”, July 2001

[2] G. Bjontegaard (editor), T. Wiegand (TML-8 changes), “H.26L Test Model Long Term Number 8 (TML-8) draft0”, July 10, 2001

File:VCEG-Njra.doc
Page: 1
Date Printed: 9/26/2001

_1059758680.vsd

_1059895046.vsd

_1059896516.vsd

_1059761108.vsd

_1059758644.vsd

