	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

14th Meeting: Santa Barbara, CA, USA, 24-27 Sep., 2001
	Document VCEG-N59

Filename: VCEG-N59.doc

Generated: 18 Sep ’01

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Miska M. Hannuksela
Nokia Mobile Phones
P.O. Box 68
33721 Tampere
Finland
	Tel:
Fax:
Email:
	+358 40 5212845

miska.hannuksela@nokia.com

	Title:
	Picture and Slice Header Structure

	Purpose:
	Proposal

Summary

VCEG-M79 defined a picture header structure for TML-6 and later. Slice header remained unspecified at that time. Since then, TML software has had multiple implementations of the slice header structure, and TML-8.4 simply repeats the picture header in each slice header. As we feel that this is a temporary solution, this contribution proposes new picture and slice header structures. When designing the structures, error resilience aspects have been carefully considered. The main novelties compared to earlier H.26L picture and slice headers are:

· Most codewords of the picture header are moved to the slice header in order allow repetition of crucial picture-level parameters conveniently. The approach is similar to MPEG-4 header extension and picture header repetition in RTP payload structure of H.263 (RFC2429).

· Bad Slice Indicator is introduced in picture headers. It allows signaling of bit-erroneous slices to the decoder. Decoders capable of handling bit errors can decode a bit-erroneous slice, whereas other decoders can continue decoding from the next slice. Bad Slice Indicator is similar to Bad Frame Indicator, which is commonly used in speech codecs.

· Macroblock address is replaced by macroblock row and column addresses in order to decrease the number of coded bits in most cases.

As in VCEG-M74 and VCEG-M79, all header information is coded using UVLC symbols. This has two advantages: First, it is trivial to add additional header information, or additional modes of operation to individual header fields without breaking the previous syntax. Second, the syntax continues to contain only UVLC codewords, which is architecturally cleaner than a mix of FLC/VLC codewords (or, worse, VLC codewords of different tables). Given this, it is considered that the 100%+ overhead of the UVLC coding is acceptable. Furthermore, the absolute header size when not using any of the weirder syntax elements is still comparatively small, especially when considering the non-existent start codes (which are NAL functionality and not necessary on many networks).

Picture Header

Picture headers start at byte-aligned positions.

A note to the pseudo-C Syntax description: fetch() returns the next UVLC codeword’s symbol number. The symbol number is the binary representation of the info part of the UVLC. See section 2.4.1. of VCEG-L45 for a discussion of the UVLC.

The Picture Header contains the following elements:

Timing Indication: variable

A series of up to two UVLC codewords.

TRType = fetch();

If (TRType = 0)

 Absolute TR = fetch();

// modulo set by the sequence layer, default is 256

Else

 Abort();

A slice header shall follow a picture header.

Slice Header

Slice headers start at byte-aligned positions.

Bad Slice Indicator: one UVLC codeword

Signals if the slice contents are correct or if they contain bit-errors. This codeword can be set in any network element in the transmission path, in any element in the receiver's protocol stack implementation, or in the H.26L network adaptation layer of the receiving decoder.

BadSliceIndicator = fetch(); // 0 == no bit errors, 1 == bit errors

Picture-Level Data: one UVLC codeword

Signals if the following three codewords (Picture ID, Picture Type Indication, and Size Information) are present in the bit-stream. The existence of the named codewords shall be signaled at least once per each coded picture. The codewords can be present more than once per picture to improve error resiliency. The value of any of the following three codeword shall be the same within a picture.

PictureLevelData = fetch(); // 0 == no picture-level data follows, 1 == picture-level data follows

Picture ID: one UVLC codeword, optional

Picture identifier. Currently, a repetition of TR.

PictureID = fetch()

Picture Type Indication: one UVLC codeword, optional

This codeword is present if indicated in Picture-Level Data. Picture type is included in every slice to enable independent decoding of slices regardless of whether picture header has been correctly received. Unchanged picture type refers to the picture type signaled in the previous slice.

PicType = fetch();

If (PicType == 0)

 PictureType = P-mult;

Else if (PicType == 1)

 PictureType = P;

Else if (PicType == 2)

 PictureType = I;

Else if (PicType == 3)

 PictureType = B;

Else if (PicType == 4)

 PictureType = B-mult;

Else if (PicType == 5)

 PictureType = SP;

Else if (PicType == 6)

 PictureType = SP-mult;

Else

 Abort();

Size Information: variable, optional

This codeword is present if indicated in Picture-Level Data. A series of up to three UVLC codewords. A repetition of a changed size is allowed within a picture for error resiliency.

SizeType = fetch();

If (SizeType == 0)

 Size = Unchanged;

Else if (SizeType == 1) {

 Size_X_MB = fetch();

 Size_Y_MB = fetch();

Else

 Abort();

Start MB Row: one UVLC codeword

The symbol number is the macroblock row of the first macroblock in the current slice as counted from the top of the picture starting from zero.

StartMBRow = fetch();

Start MB Column: one UVLC codeword.

The symbol number is the macroblock column of the first macroblock in the current slice as counted from the left border of the picture starting from zero.

StartMBColumn = fetch();

QP: one UVLC codeword

Information about the quantizer QUANT to be used for luma for the slice. The symbol number of the codeword contain is the value of 31 - QP, where QPs range from 0 to 31. (QP is not used as such to reduce the signalling overhead in low bit rates, i.e., in high QPs.)

Thirtyone_minus_QP = fetch();

Motion vector resolution: one UVLC codeword.

Indicates the motion vector resolution.

MVResolution = fetch(); // 0 == ¼-pixel motion accuracy, 1 == 1/8-pixel motion accuracy

IPR statement

The contributor(s) are not aware of any issued, pending, or planned patents associated with the technical content of this proposal.

File:VCEG-N59.doc
Page: 3
Date Printed: 19.09.2001

