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Summary

In video coding standards, a compliant bit stream must be decoded by a hypothetical decoder that is conceptually connected to the output of an encoder and consists of a decoder buffer, a decoder, and a display unit. This virtual decoder is known as the hypothetical reference decoder (HRD) in H.263 [1] and the video buffering verifier (VBV) in MPEG [2]. The encoder must create a bit stream so that the hypothetical decoder buffer does not overflow or underflow.

These previous decoder models assume that a given bit stream will be transmitted through a channel of a given constant bit rate and will be decoded (after a given buffering delay) by a device of some given buffer size. Therefore, these models are quite inflexible and do not address the requirements of many of today’s important video applications such as broadcasting live video or streaming pre-encoded video on demand over network paths with various peak bit rates to devices with various buffer sizes. 

In this contribution, we present a new hypothetical reference decoder for H.26L that is more general and flexible than those defined in prior standards and provides significant additional benefits. 

1. Introduction

In previous hypothetical reference decoders, the video bit stream is received at a given constant bit rate (usually the average rate in bits/sec of the stream) and is stored into the decoder buffer until the buffer fullness reaches a desired level. Such level is denoted as the initial decoder buffer fullness and is directly proportional to the transmission or start-up (buffer) delay. At that point, the decoder instantaneously removes the bits for the first video frame of the sequence, decodes the bits, and displays the frame. The bits for the following frames are also removed, decoded, and displayed instantaneously at subsequent time intervals. 

The hypothetical decoder operates at a fixed bit rate, buffer size, and initial delay. However, in many of today’s video applications (e.g., video streaming through the internet or ATM networks) the peak bandwidth varies according to the network path (e.g., how the user connects to the network: by modem, ISDN, DSL, cable, etc.) and also fluctuates in time according to network conditions (e.g., congestion, the number of users connected, etc.).  In addition, the video bit streams are delivered to a variety of devices with different buffer capabilities (e.g., hand-sets, PDAs, PCs, Set-top-boxes, DVD-like players, etc.) and are created for scenarios with different delay requirements (e.g., low-delay streaming, progressive download, etc.). As a result, these applications require a more flexible hypothetical reference decoder that can decode a bit stream at different peak bit rates, and with different buffer sizes and start-up delays.

We propose a new hypothetical decoder that operates according to N sets of rate and buffer parameters for a given bit stream. Each set characterizes what is known as a leaky bucket model and contains three values (R, B, F), where R is the transmission bit rate, B is the buffer size, and F is the initial decoder buffer fullness (F/R is the start-up or initial buffer delay). An encoder can create a video bit stream that is contained by some desired N leaky buckets, or can simply compute the N sets of parameters after the bit stream has been generated. Our new hypothetical reference decoder smartly interpolates among the leaky bucket parameters and can operate at any desired peak bit rate, buffer size or delay. To be more concrete, given a desired peak transmission rate R’, our reference decoder will select the smallest buffer size and delay (according to the available leaky bucket data) that will be able to decode the bit stream without suffering from buffer underflow or overflow. Conversely, for a given buffer size B’, the hypothetical decoder will select and operate at the minimum required peak transmission rate. 

There are multiple benefits of this generalized hypothetical reference decoder. For example, a content provider can create a bit stream once, and a server can deliver it to multiple devices of different capabilities, using a variety of channels of different peak transmission rates. Or a server and a terminal can negotiate the best leaky bucket for the given networking conditions – e.g., the one that will produce the lowest start-up (buffer) delay, or the one that will require the lowest peak transmission rate for the given buffer size of the device.   In Section 3.2 we quantify these benefits for the standard MPEG test sequences encoded with TML4 (version 4.3) of H.26L.  We find that in realistic scenarios, the buffer size and the delay for some terminals can be reduced by an order of magnitude, or the peak transmission rate can be reduced by a factor of four, or the SNR can increase perhaps by several dB without increasing the average bit rate, except by a few bytes in the stream header.
In the next section, we define previous work on hypothetical reference decoders. We describe a leaky bucket model and its associated parameters in more detail, review the reference decoders used in H.263 (HRD) [1] and MPEG (VBV) [2] in that context, and discuss the limitations of these buffer models. Next, we propose our improved reference decoder for H.26L, which uses N leaky buckets, and present specific examples of the benefits over previous reference decoders using H.26L bit streams. We also recommend some syntax changes for implementing the generalized hypothetical reference decoder in H.26L.

2. Previous Work

We first define a leaky bucket model, since it is the basis of all the hypothetical reference decoders that we will discuss later.

2.1 Leaky bucket model

A leaky bucket is a model for the state (or fullness) of an encoder or decoder buffer as a function of time. We focus on the decoder buffer without loss of generality, because one can show that the fullness of the encoder and decoder buffer are complements of each other (see Appendix A, or [3]). A leaky bucket model is characterized by three parameters (R, B, F), where:

· R is the peak bit rate (in bits per second) at which bits enter the decoder buffer.  In constant bit rate scenarios, R is often the channel bit rate and the average bit rate of the video clip.

· B is the size of the bucket or decoder buffer (in bits) which smoothes the video bit rate fluctuations. This buffer size cannot be larger than the physical buffer of the decoding device.

· F is the initial decoder buffer fullness (also in bits) before the decoder starts removing bits from the buffer. F and R determine the initial or start-up delay D, where D = F/R seconds.

In a leaky bucket model, the bits enter the buffer at rate R until the level of fullness is F (i.e., for D seconds), and then b0 bits for the first frame are instantaneously removed. The bits keep entering the buffer at rate R and the decoder removes b1, b2, …, bn-1 bits for the following frames at some given time instants, typically (but not necessarily) every 1/M seconds, where M is the frame rate of the video. Figure 1 illustrates the decoder buffer fullness along time of a bit stream that is contained in a leaky bucket of parameters (R, B, F).


[image: image1]
Figure 1.  The plot illustrates the decoder buffer fullness when decoding a generic video bit stream that is contained in a leaky bucket of parameters (R, B, F). R is the peak incoming (or channel) bit rate in bits/sec, B is the buffer size in bits, and F is the initial decoder buffer fullness. D = F/R is the initial or start-up (buffer) delay in seconds. The number of bits for the ith frame is bi. The coded video frames are removed from the buffer (typically according to the video frame rate), as shown by the drops in buffer fullness.

Let Bi be the decoder buffer fullness immediately before removing bi bits at time ti. A generic leaky bucket model operates according to the following equations:




B0 =  F



B i+1 =  min (B, Bi – bi + R( ti+1-ti)),     i = 0, 1, 2, …



(1)

Typically,  ti+1-ti = 1/M seconds, where M is the frame rate (in frames/sec) for the bit stream.

A leaky bucket model with parameters (R, B, F) contains a bit stream if there is no underflow of the decoder buffer. Because the encoder and decoder buffer fullness are complements of each other (see Appendix A, or [3]), this is equivalent to no overflow of the encoder buffer.  However, the encoder buffer (the leaky bucket) is allowed to become empty, or equivalently the decoder buffer may become full, at which point no further bits are transmitted from the encoder buffer to the decoder buffer.  Thus, the decoder buffer stops receiving bits when it is full, which is why we add the min operator in the second equation in (1).  A full decoder buffer simply means that the encoder buffer is empty. The latter will be revisited in more detail when we discuss VBR bit streams in the next section. 

We make the following observations:

· A given video stream can be contained in many leaky buckets. For example, if a video stream is contained in a leaky bucket with parameters (R, B, F), it will also be contained in a leaky bucket with a larger buffer (R, B’, F), B’ > B, or in a leaky bucket with a higher peak transmission rate (R’, B, F), R’ > R. 

· For any bit rate R’, we can always find a buffer size that will contain the (time-limited) video bit stream. In the worst case (R’ approaches 0), the buffer size will need to be as large as the bit stream itself.  Put another way, a video bit stream can be transmitted at any rate (regardless of the average bit rate of the clip) as long as the buffer size is large enough.

Assume that we fix F = aB for all leaky buckets, where a is some desired fraction of initial buffer fullness. For each value of the peak bit rate R, we can find the minimum buffer size Bmin that will contain the bit stream using equation (1). We can then plot a curve of R-B values such as the one in Figure 2
.
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Figure 2.  Illustration of peak bit rate Rmin and buffer size Bmin values for a given bit stream. This curve indicates that in order to transmit the stream at a peak bit rate r, the decoder needs to buffer at least Bmin(r) bits. Observe that higher peak rates require smaller buffer sizes, and hence shorter start-up buffer delays. Alternatively, if the size of the decoder buffer is b, the minimum peak rate required for transmitting the bit stream is the associated Rmin(b).

A key observation (proved in Appendix A) is that the curve of (Rmin, Bmin) pairs for any bit stream (such as the one in Figure 2) is piecewise linear and convex. Hence, if N points of the curve are provided, the decoder can linearly interpolate the values to arrive at some points (Rinterp, Binterp) that are slightly but safely larger than (Rmin, Bmin).  In this way, as we quantify in Section 3.2, one is able to safely reduce the buffer size, and consequently also the delay, by an order of magnitude, relative to a single leaky bucket containing the bit stream at its average rate.  Alternatively, for the same delay, one is able to reduce the peak transmission rate by a factor of four, or possibly even improve the SNR by several dB.
We next explain the hypothetical reference decoders in MPEG and H.263 in the context of leaky bucket models.

2.2 MPEG’s VBV (Video Buffering Verifier) 

The VBV[2] can operate in two modes: constant bit rate (CBR) and variable bit rate (VBR). MPEG-1 only supports the CBR mode, while MPEG-2 supports both modes. 

The VBV operates in CBR mode when the bit stream is contained in a leaky bucket model of parameters (R, B, F) and:

· R = Rmax = the average bit rate of the stream.
· The value of B is stored in the syntax parameter vbv_buffer_size using a special size unit (i.e., 16×1024 bit units). 

· The value of F/R is stored in the syntax element vbv_delay associated to the first video frame in the sequence using a special time unit (i.e., number of periods of a 90 KHz clock). 

· The decoder buffer fullness follows the following equations: 



          

B0  =  F
   



B i+1  =  Bi – bi + Rmax/M,     i = 0, 1, 2, …



         (2)

The encoder must ensure that Bi – bi is always greater than or equal to zero while Bi is always less than or equal to B. In other words, the encoder must ensure that the decoder buffer does not underflow or overflow.

The VBV operates in VBR mode when the bit stream is contained in a leaky bucket model of parameters (R, B, F) and:

· R = Rmax = the peak or maximum rate. Rmax is higher than the average rate of the bit stream.

· F = B, i.e., the buffer fills up initially. 

· The value of B is represented in the syntax parameter vbv_buffer_size, as in the CBR case. 

· The value of F is not stored and vbv_delay is set to FFFF (in hex).

· The decoder buffer fullness follows the following equations: 




B0  =  B
Bi+1 =  min (B, Bi – bi + Rmax/M),     i = 0, 1, 2, …



 (3)

The encoder must ensure that Bi – bi is always greater than or equal to zero. That is, the encoder must ensure that the decoder buffer does not underflow.  However, in this VBR case the encoder does not need to ensure that the decoder buffer does not overflow.  If the decoder buffer becomes full, then it is assumed that the encoder buffer is empty and hence no further bits are transmitted from the encoder buffer to the decoder buffer.

The VBR mode is useful for devices that can read data up to the peak rate Rmax. For example, a DVD includes VBR clips where Rmax is about 10 Mbits/sec, which corresponds to the maximum reading speed of the disk drive, even though the average rate of the DVD video stream is only about 4 Mbits/sec.

Figure 3 illustrates plots of decoder buffer fullness for some bit streams operating in CBR and VBR mode, respectively.
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Figure 3. Examples of typical plots of decoder buffer fullness for CBR (a) and VBR (b) for MPEG-2’s VBV model. 

Broadly speaking, observe that the CBR mode can be considered a special case of VBR where Rmax happens to be the average rate of the clip.  

There are some aspects of VBV that we do not address here, because they are either not relevant with respect to this contribution, or are simply special cases of the leaky bucket model. For example, the VBV includes a low-delay mode that tolerates frame skipping, which can also be modeled with (1). 
2.3  H.263’s HRD (Hypothetical Reference Decoder)

The HRD model for H.263 [1] is very similar to the CBR mode of MPEG’s VBV that we explained above, except for the following:

· The decoder inspects the buffer fullness at some time intervals and decodes a frame as soon as all the bits for the frame are available. This approach results in a couple of benefits:  a) the delay is minimized because F is usually just slightly larger than the number of bits for the first frame, and b) if frame skipping is common, the decoder simply waits until the next available frame. As mentioned above, the latter is enabled in the low-delay mode of MPEG’s VBV as well.

· The check for buffer overflow is done after the bits for a frame are removed from the buffer. This relaxes the constraint for sending large I frames once in a while, but there is a maximum value for the largest frame.

H.263’s HRD can essentially be mapped to a type of low-delay leaky bucket model. Just as with the CBR and VBR modes of MPEG, the ideas in this proposal are a generalization of H.263’s.

2.4 Limitations of previous models

Observe that all previous hypothetical reference decoders operate at only one point (R, B) of the curve in Figure 2. As a result, these decoders have the following drawbacks:

· If the bit rate available in the channel R’ is lower than R (e.g., this is common for internet streaming and progressive download, or when an MPEG VBR clip needs to be transmitted at a rate lower than the peak), strictly speaking, the hypothetical decoder would not be able to decode the bit stream. 

· In practice, a decoder will not know how large of a buffer is required for this lower rate, and generally  it will run into buffer problems while decoding the bit stream. The best that a smart decoder could do would be to find a tight upper-bound for the buffer size. One can easily show that an almost tight
 upper-bound is B’ = B+(R-R’)T, where T is the time length or duration in seconds of the coded bit stream. Clearly, this bound increases the buffer size and delay requirements very rapidly and may not be very useful in practice (especially if T is large and R’ is significantly lower than R).  

· If the available bandwidth R’ is larger than R (e.g., this is also common for internet streaming, as well as for local playback), the previous hypothetical decoders could operate in the VBR mode and decode the bit stream. However, if more information on the Rate-Buffer curve were available, the buffer size and associated start-up delay required to decode the bit stream could be significantly reduced (as we will see later in the examples). 

· If the physical buffer size in a decoder device is smaller than B, the device will not be able to decode that bit stream.   

· If the buffer size is larger than B, the device will be able to decode the bit stream but the start-up delay will be the same.

· More generally, a bit stream that was generated according to a leaky bucket (R, B, F) will not usually be able to be distributed through different networks of bit rate smaller than R, and to a variety of devices with buffer sizes smaller than B. Also, the start-up delay will not be minimized.
3. A Generalized Hypothetical Reference Decoder

We propose a generalized hypothetical reference decoder (GHRD) that can operate given the information of N leaky bucket models,


(R1, B1, F1), (R2, B2, F2), … , (RN, BN, FN),         

 

(4)

each of which contains the bit stream.  Without loss of generality, let us assume that these leaky buckets are ordered from smallest to largest bit rate, i.e., Ri < Ri+1. Let us also assume that the encoder computes these leaky bucket models correctly and hence Bi > Bi+1. 

The desired value of N can be selected by the encoder.  (If N=1, the GHRD is essentially equivalent to  MPEG’s VBV). The encoder can choose to:  (a) pre-select the leaky bucket values and encode the bit stream with a rate control that makes sure that all of the leaky bucket constraints are met, (b) encode the bit stream and then use equation (1) to compute a set of leaky buckets containing the bit stream at N different values of R, or (c) do both. The first approach (a) can be applied to live or on-demand transmission, while (b) and (c) only apply to on-demand.

The number of leaky buckets N and the leaky bucket parameters (4) are inserted into the bit stream.  In this way, the decoder can determine which leaky bucket it wishes to use, knowing the peak bit rate available to it and/or its physical buffer size.  The leaky bucket models in (4) as well as all the linearly interpolated or extrapolated models are available for use. Figure 4 illustrates a set of N leaky bucket models and their interpolated or extrapolated (R, B) values.
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Figure 4. Example of (R, B) values available for the generalized hypothetical reference decoder (GHRD), all of which are guranteed to contain the bit stream. T is the time length or duration of the clip in seconds.

The interpolated buffer size B  between points k and k+1 follow the straight line:


[image: image5.wmf]1

1

1

1

+

+

+

+

-

-

+

-

-

=

k

k

k

k

k

k

k

k

B

R

R

R

R

B

R

R

R

R

B

,   
       Rk < R < Rk+1.
           
(5) 

Likewise, the initial decoder buffer fullness F can be linearly interpolated:
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The resulting leaky bucket with parameters (R, B, F) is guaranteed to contain the bit stream, because, as we prove in Proposition 1 of Appendix A, the minimum buffer size Bmin is convex in both R and F, that is, the minimum buffer size Bmin corresponding to any convex combination (R,F) = a(Rk,Fk) + (1-a)(Rk+1,Fk+1), 0<a<1, is less than or equal to B = aBk + (1-a)Bk+1.
As discussed earlier, observe that if R is larger than RN, the leaky bucket (R, BN, FN) will also contain the bit stream, and hence BN  and FN  are the buffer size and initial decoder buffer fullness recommended when R ≥ RN. If R is smaller than R1, the upper bound B = B1 + (R1-R)T can be used (and one can set F = B), where T is the time length of the stream in seconds. These (R, B) values outside the range of the N points are also shown in Figure 4.
3.1 Syntax additions

Hence we propose the following syntax elements:

NumberLeakyBuckets

8-bit, unsigned integer

Rate1



30-bit, unsigned integer

Buffer1



18-bit, unsigned integer

Delay1



16-bit, unsigned integer

…

RateN



30-bit, unsigned integer

BufferN



18-bit, unsigned integer

DelayN



16-bit, unsigned integer

Other possibilities:

· At higher bit rates, the content creator may decide to specify different leaky bucket models at different times in the bit stream. This would be useful whenever a connection fails during transmission and is re-started in the middle of a bit stream.

3.2 Benefits of the generalized hypothetical reference decoder

The benefits are probably obvious at this time, but in order to provide a concrete example, we encoded a 130-sec video clip (which contained all the MPEG clips combined, i.e., “Stefan”, “Akiyo”, “Mother and Daughter”, “Fun Fair”, “Foreman”, “Bream”, “News”, “Sean”, “Children”, “Mobile & Calendar”, “Weather”, “Container”, and “Hall” .) with the test model TML4 (version 4.3) of H.26L using a fixed quantizer and typical options (i.e., we set Hadamard= ON, Error robustness= OFF, Search range= 12, Number of reference frames= 1). We set F=B and used the formulas in (1) to provide the (Rmin, Bmin) plot in Figure 5. To be more concrete, we run the simple matlab program in Appendix B which makes use of (1).
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Figure 5.  Plot of leaky bucket parameters (R, B) for an H.26L compressed video clip with QP=16. The points labeled with “*” correspond to the minimum buffer size Bmin needed to contain a bit stream with the associated rate Rmin. These points were computed from the bit stream using the matlab program in Appendix B, which uses the formulae in (1) and scans bit rates from 50 Kbps to 3 Mbps in increments of 50 Kbps . The other points between the “*” are linearly interpolated. In practice, observe that only a subset of those points (e.g., 4 or 5) would already characterize this curve fairly well.
The bit stream in Figure 5 was produced with QP=16 and yielded an average bit rate of 797 Kbps.  As shown in the figure, at a constant transmission rate of 797 Kbps, the decoder would need a buffer size of about 18,000 Kbits.  With an initial decoder buffer fullness equal to 18,000 Kbits, the start-up delay would be about 22.5 seconds.  Thus, this VBR encoding (produced with no rate control) shifts bits by up to 22.5 seconds in order to achieve essentially best possible quality for its overall encoded length.
The figure also shows that at a peak transmission rate of 2,500 Kbps (e.g., the video bit rate portion of a 2x CD), the decoder would need a buffer size of only 2,272 Kbits, sufficiently small for a consumer hardware device.  With an initial buffer fullness equal to 2,272 Kbits, the start-up delay would be only about 0.9 seconds.
Thus for this encoding two leaky bucket models might typically be useful:

1. (R=797 Kbps, B=18,000 Kbits, F=18,000 Kbits).  This leaky bucket would permit transmission of the video over a constant bit rate channel, with a delay of about 22.5 seconds.  While this delay may be too large for many scenarios, it is probably acceptable for internet streaming of movies, for example.

2. (R=2,500 Kbps, B=2,272 Kbits, F=2,272 Kbits).  This leaky bucket would permit transmission of the video over a shared network with peak rate 2,500 Kbps, or would permit local playback from a 2x CD, with a delay of about 0.9 seconds.  This sub-second delay is acceptable for random access playback with VCR-like functionality.
If only the first leaky bucket is specified in the bit stream, but not the second, then even when playing back over a channel with peak bit rate 2,500 Kbps, the decoder would use a buffer of size 18,000 Kbits and thus the delay would be F/R = 18,000 Kbits / 2,500 Kbps = 7.2 seconds.  This is too large for random access playback with VCR-like functionality.  However, if the second leaky bucket is specified as well, then at rate 2,500 Kbps the buffer size drops to 2,272 Kbits and the delay drops to 0.9 seconds, as we have seen.
On the other hand, if only the second leaky bucket is specified, but not the first, then at a constant transmission rate of 797 Kbps, even a smart decoder would be forced to use a buffer that is far larger than necessary, to ensure that the buffer will not overflow:  B’ = B + (R – R’)T = 2,272 Kbits + (2,500 Kbps – 797 Kbps) x 130 seconds = 223,662 Kbits.  This corresponds to an initial delay of  281 seconds, or nearly 5 minutes, over twice the length of the original clip, which is typically far from acceptable.  However, if the first leaky bucket is specified as well, then at rate 797 Kbps the buffer size drops to 18,000 Kbits and the delay drops to 22.5 seconds, as we have seen.
Moreover, if both leaky buckets are specified, then the decoder can linearly interpolate between them (using (5) and (6)), for any bit rate R between 797 Kbps and 2,500 Kbps, thereby achieving near-minimal buffer size and delay at that rate.  Extrapolation is also more efficient both below 797 Kbps and above 2,500 Kbps, compared to extrapolation with only a single leaky bucket anywhere between 797 Kbps and 2,500 Kbps, inclusive.
As the above example shows, even just two leaky buckets can provide an order of magnitude reduction in buffer size (e.g.,  223,662 to 18,000 Kbits in one case and 18,000 to 2,272 Kbits in another), and an order of magnitude reduction in delay (e.g., 281 to 22.5 seconds in one case and 7.2 to 0.9 seconds in another) at a given peak transmission rate.
Conversely, it is also possible to reduce the peak transmission rate for a given decoder buffer size.  Indeed, as is clear from Figure 5, if the R-B curve can be obtained by interpolating and/or extrapolating multiple leaky buckets, then it is possible for a decoder with a fixed physical buffer to choose the minimum peak transmission rate needed to safely decode the bit stream without decoder buffer underflow.  For example, we know from the figure that if the decoder has a fixed buffer of size 18,000 Kbits, then the peak transmission rate for the encoding can be as low as 797 Kbps.  However, if only the second leaky bucket is specified, but not the first, then the decoder can reduce the bit rate to no less than R’ = R – (B’ – B )/T = 2,500 Kbps – (18,000 Kbits – 2,272 Kbits) / 130 seconds = 2,379 Kbps.  In this case, compared to using a single leaky bucket, using just two leaky buckets reduces the peak transmission rate by a factor of four, for the same decoder buffer size.
Having multiple leaky buckets can also improve the quality of the reconstructed video, at the same average encoding rate, in the following sense.  Suppose both leaky buckets are available for the encoding described above.  Then as we have seen, it is possible to play back the encoding with a delay of 22.5 seconds if the peak transmission rate is 797 Kbps, and with a delay of 0.9 seconds if the peak transmission rate is 2,500 Kbps.  However, if the second leaky bucket is unavailable, then the delay increases from 0.9 to 7.2 seconds at 2,500 Kbps.  To reduce the delay back to 0.9 seconds without the benefit of the second leaky bucket, it would suffice to re-encode the clip with rate control by reducing the buffer size (of the first leaky bucket) from 18,000 Kbits to (0.9 seconds) x (2,500 Kbps) = 2,250 Kbits.  This would ensure that the delay is only 0.9 seconds if the peak transmission rate is 2,500 Kbps.  As a side effect, the delay at 797 Kbps would also decrease, from 22.5 to 2.8 seconds, and the quality (SNR) would also decrease, probably by several dB, especially for a clip with a large dynamic range.  (Unfortunately we cannot yet evaluate this decrease in SNR with objective tests, because there is no rate control as of yet in the test model.)  In this way, specifying a second leaky bucket can increase the SNR by possibly several dB, with no change in the average bit rate (except for 64 additional bits per clip to specify the second leaky bucket, using the proposed syntax).  This increase in SNR will be visible on playback for every peak transmission rate.
The benefits of specifying multiple leaky buckets in a generalized hypothetical reference decoder appear, of course, only in heterogeneous situations, where a single encoding is transmitted over channels with different peak rates, or to devices with different physical buffer sizes.  However, this is increasingly the case.  Content that is encoded offline and stored on a disk is often played back locally as well as streamed over networks with different peak rates.  Even for local playback, different drives speeds (e.g., 1xCD through 8xDVD) affect the peak transfer rate.  And of course the peak transmission rates through network connections also vary dramatically according to the speed of the limiting link, which is typically near the end user  (e.g., 100 or 10 baseT Ethernet, T1, DSL, ISDN, modems, etc.).  Buffer capacities of playback devices also vary significantly, from desktop computers with gigabytes of buffer space to small consumer electronic devices with buffer space that is smaller by several orders of magnitude.  Typically, content providers spend a significant amount of effort creating a single bit stream (e.g., top studios spend over 80 hours to create a DVD), and they wish to reach the largest audience, with the best user experience.  The multiple leaky buckets in the proposed generalized hypothetical reference decoder make it possible for the same bit stream to be transmitted over a variety of channels with the minimum startup delay, minimum decoder buffer requirements, and maximum possible quality.  This applies not only to video that is encoded off-line, but also to live video that is broadcast simultaneously through different channels to different devices.  In short, the proposed generalized HRD adds significant flexibility to existing bit streams.
Figure 6 shows a further example of an H.26L clip computed with a higher QP.  The benefits of the proposed approach in this case are quantified in the caption of the figure.
Conclusions

We have presented a hypothetical reference decoder for H.26L which is a generalization of those in prior standards. This new reference decoder only requires a few syntax elements at the header of the bit stream, and provides much higher flexibility for bit stream delivery through today’s emerging networks where bandwidth is variable and terminals have a variety of bit rate and buffering capabilities. This new reference decoder enables these new scenarios, while reducing the transmission delay to a minimum for the available bandwidth. In addition, it minimizes the channel bit rate requirement for delivery to devices with given physical buffer size limitations.
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Figure 6. Same plot as Figure 5 but when QP=28. Once again, observe that only a subset of those points (e.g., 4 or 5) would already characterize this curve well. In this case, the average bit rate of the clip was 163 Kbps and the related buffer size and delay were 4,400 Kbits and 26 sec, respectively. If the clip were streamed in a LAN or DSL channel with higher bit rate, say 500 Kbps, our new approach would reduce the buffer size requirement to only 725 Kbits, and the new start-up delay would be only 1.4 sec.
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Appendix

A)  Proof that the Rmin-Bmin curve is decreasing and convex

In this appendix we prove that both the minimum decoder buffer size Bmin and the minimum decoder buffer delay Dmin are decreasing, convex functions of the bit rate R.  Therefore, knowing the values of one of these functions at several bit rates, say Bmin(R1),…,Bmin(RN), allows the decoder to linearly interpolate the values to arrive at a value Binterp(R) that is slightly but safely larger than Bmin(R).


[image: image9]
Our first goal is to derive expressions for Bmin and Dmin as functions of the bit rate R and an initial buffer state. The figure above illustrates the decoder buffer state as a function of time, where B is the size of the decoder buffer in bits, R is the rate at which bits arrive into the decoder buffer in bits per second, and Fd is the number of bits that the decoder accumulates before extracting and decoding the first frame.  Define Fe = B – Fd, and let {bn, tn}, n = 0,…,n 1, denote the number of bits bi coded for frame i at time ti (relative to t0 = 0), where n is the number of frames in the sequence.  Then the number of bits 
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 in the decoder buffer immediately after frame i is extracted can be expressed recursively as
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This can be made non-negative for all i = 0,…,n 1 (for fixed Fe and R) by making B sufficiently large. Bmin is the smallest such sufficiently large B.  That is, for any fixed B,

Bmin = 
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The decoder buffer delay is D = Fd/R = (B – Fe)/R.  Hence for fixed Fe and R, the minimum decoder buffer delay is 
Dmin = (Bmin – Fe) / R.

To show that these are convex in R and Fe (and various other properties), it simplifies matters slightly to consider the state of the encoder buffer as a function of time.  The encoder buffer can be considered as a leaky bucket of size B bits that leaks bits at a constant rate R bits per second into the channel (and from there, after a fixed delay, into the decoder buffer).  The encoder inserts bi bits into the bucket at each time ti corresponding to frame i.  The bucket may drain completely before another frame is inserted, in which case no bits are transmitted while the bucket is empty.  The bucket begins with initial fullness Fe bits.  If the bucket size B is sufficiently large, then the number of bits 
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 in the bucket immediately after frame i is inserted can be expressed recursively as
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Note that this expression does not depend on the bucket size B.

Lemma  AUTONUM  \* Arabic   For all n,
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Proof.  By induction, using the formulas for
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For i > 0, assume
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Lemma  AUTONUM  \* Arabic   Bmin = 
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That is, Bmin is the maximum number of bits in the leaky bucket.

Proof.  Using Lemma 1, Bmin = 
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Lemma  AUTONUM  \* Arabic   Bmin is monotonically non-increasing as a function of R, for fixed Fe.

Proof.  Let 
[image: image27.wmf]R

R

>

'

.  We show that Bmin(
[image: image28.wmf]'

R

) 
[image: image29.wmf]£

 Bmin(
[image: image30.wmf]R

) by first showing that
[image: image31.wmf])

(

)

'

(

R

B

R

B

e

i

e

i

£

for each i, then invoking Lemma 2.  By induction:  Clearly,
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, it is easy to see that
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, hence the conclusion follows.  □

Lemma  AUTONUM  \* Arabic   Bmin is continuous as a function of R, for fixed Fe.

Proof.  By induction,
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is continuous in R, for each i.  Apply Lemma 2.  □

Lemma  AUTONUM  \* Arabic   Bmin is piecewise linear as a function of R, for fixed Fe.

Proof.  By induction,
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is piecewise linear in R, for each i.  Apply Lemma 2.  □

Lemma  AUTONUM  \* Arabic   Bmin is convex as a function of R, for fixed Fe.

Proof.  By induction,
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is convex in R, for each i.  Apply Lemma 2.  □

The following lemmas are similarly proved.

Lemma  AUTONUM  \* Arabic   Bmin is monotonically non-decreasing as a function of Fe, for fixed R.
Lemma  AUTONUM  \* Arabic   Bmin is continuous as a function of Fe, for fixed R.

Lemma  AUTONUM  \* Arabic   Bmin is piecewise linear as a function of Fe, for fixed R.
Lemma  AUTONUM  \* Arabic   Bmin is convex as a function of Fe, for fixed R.
A fortiori, the following can be similarly proved.

Proposition.  Bmin is convex as a bi-variate function of R and Fe.
Corollary 1.  Bmin is continuous as a bi-variate function of R and Fe.
We now turn our attention to Dmin = (Bmin – Fe) / R.

Lemma  AUTONUM  \* Arabic   Dmin is monotonically decreasing as a function of R, for fixed Fe.

Proof.  For fixed Fe, the numerator is monotonically non-increasing (by Lemma 3), while the denominator is strictly increasing.  □

Lemma  AUTONUM  \* Arabic   Dmin is continuous as a function of R, for fixed Fe.

Proof.  Follows from the continuity of Bmin (Lemma 4).  □

Lemma  AUTONUM  \* Arabic   Dmin is convex as a function of R, for fixed Fe.

Proof.  Except at the finite number of points where 
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, by the chain rule.  Both terms are negative and increase monotonically to zero, by Lemmas 3 and 6.  □

Lemma  AUTONUM  \* Arabic   Dmin is monotonically non-increasing as a function of Fe, for fixed R.

Proof.  For fixed R, Bmin is increasing (by Lemma 7), while Fe is also increasing.  However, Bmin is increasing more slowly than Fe because (as can be proved by induction), the derivative of Bmin with respect to Fe (except at the finite number of points where it does not exist) is at most 1.  □

Lemma  AUTONUM  \* Arabic   Dmin is continuous as a function of Fe, for fixed R.

Proof.  Follows from the continuity of Bmin (Lemma 8).  □

Lemma  AUTONUM  \* Arabic   Dmin is convex as a function of Fe, for fixed R.

Proof.  Follows from the convexity of Bmin (Lemma 10).  □

B)  Matlab program for computing the Rmin-Bmin curve for a bit stream

clear all;

clf;

% bits(i) is a vector or array with the number of bits per frame 

FrameRate= 30;


% Frame rate in frames/sec of the given stream

N= max(size(bits));

% number of frames

%R-B plot

j=0;

for R=50000:50000:3000000,
% testing bit rates from 50 Kbps to 3 Mbps

   j=j+1;

   B=R*20;



% Assume any initial (dummy) buffer size.






% Later we find the true min buffer size needed

   buff=zeros(1,N+1);

   buff2=zeros(1,N);

   buff(1)=B;


% Assume that initially buffer is full F=B.

   for i=1:1:N,

      buff2(i)= buff(i)-bits(i);

      buff(i+1)= buff2(i)+R/FrameRate;

   
if (buff(i+1) > B) buff(i+1)= B;

   
end

   end

   X(j)=R/1000;

   Y(j)=(B-min(buff2))/1000;
% if min(buff) < 0, buffer required is > R*20
end

hold off;

plot(X,Y,'-*');

ylabel('Bmin (Kbits)')

xlabel('Rmin (Kbits/sec)');

hold

axis([0 max(X) 0 max(Y)]);
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Figure 7. Decoder buffer state as a function of time.
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� This curve is actually computed from a real video bit stream using (1) in the matlab program of Appendix B.


� A tight upper bound, when the initial decoder buffer fullness is unknown, is B’ = B(R’/R)+(R-R’)T. 
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