	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

14th Meeting: Santa Barbara, CA, USA, 24-27 Sep., 2001
	Document VCEG-N47

Filename: VCEG-N47.doc

Generated: 18 September ’01

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Karsten Sühring, Detlev Marpe, and Thomas Wiegand
Heinrich Hertz Institute
Einsteinufer 37, D-10587 Berlin
Germany
	
Tel:
Fax:
Email:
	
+49 30 31 002 617
+49 30 392 72 00
suehring@hhi.de
marpe@hhi.de
wiegand@hhi.de

	Title:
	Proposed Documentation System for H.26L Reference Software

	Purpose:
	Information

1 Problem Description

With a growing number of features the TML software is more and more becoming a large software project. Like in every project it is necessary to write documentation for other developers who have to understand the code and also for the author himself to remember his intentions after some time.

At the moment the documentation is written directly into the source code. This has a main advantage: When changing the code, the author can directly change the comments describing the modified section without keeping track of another documentation file. But we also have to cope with a number of disadvantages. With the growing size it is getting harder to get a complete overview on the software; what functions, global variables and structures exist and how they are connected. Especially developers who start working with the software will need a large amount of time to understand the structure of the project.

Another problem is the variety of styles the documentation is written in. Here only some examples should be given: Some authors mark the beginning of a function with a good visible header (e.g. a line of stars), others use only short comments, and some functions are not documented at all. Function parameters are sometimes listed, seldom described and often ignored. The documentation of header files reaches from naming of all authors and complete copyright statements to no documentation at all. This list could be continued …

2 Proposed Solution

In some TML source files, comments for a freeware documentation system called Doxygen have been used. We took a closer view on that system and we found that Doxygen could solve the above mentioned problems at the least cost.

2.1 General Features of a Documentation System

A documentation system is used to generate a clear and understandable documentation from the project source files. The project structure (functions, global variables, structs, classes and their dependencies) is directly extracted from the source code. This structure is enriched with the comments the author made for the documented items. Therefore, in the source file a special set of documentation tags is used to associate comments and structures correctly.

Examples for such documentation systems are JavaDoc (Sun Microsystems) or Doxygen (Dimitri van Heesch).

2.2 Freeware Doxygen

The freeware documentation system Doxygen offers a lot of useful features (some were taken from the authors feature list):

· Supports C (and other programming languages)

· Requires very little overhead from the writer of the documentation. Plain text will do, but for more fancy or structured output HTML tags and/or some of doxygen's special commands can be used.

· Supports documentation of files, namespaces, classes, structs, unions, templates, variables, functions, typedefs, enums and defines

· Documentation will be automatically cross-linked (e.g. function references, variable types)

· Automatic diagram generation (e.g. includes, class structure)

· Outputs formats: HTML, RTF, LATEX, UNIX man page, Microsoft's HTML Help Workshop (Windows only) and PDF

· User defined output styles possible

· Available for Win32 and UNIX under GPL (GNU General Public License)
Note: Documents produced by doxygen are derivative works derived from the input used in their production; they are not affected by this license.

More features can be found on the authors feature web page http://www.stack.nl/~dimitri/doxygen/features.html#features

2.2.1 Doxygen and TML

The usage of Doxygen can solve the problems mentioned above. Doxygen generates a clear and understandable documentation that can help developers to easily overview the project structure. The use of documentation tags enforces a common documentation style through the whole project. In addition, the advantage of keeping source code and documentation in one file will remain.

The comments in TML 8.4 could be converted into documentation comments with a reasonable effort. An example how the generated documentation would look like can be found at http://bs.hhi.de/~suehring/tml/doc

2.2.2 How to document

A complete reference of the documentation and formatting features of Doxygen and their usage can be found at the Doxygen website at http://www.doxygen.org
In addition to the suggested coding style (see VCEG-N46) here some templates for a common documentation style should be given.

(<text> means “text” should be replaced with actual values)

Generic:

	
/*! A documentation comment (in C style) */

/*! Documenting the following variable */

int i;

char c; /*!< Documenting the variable before */

	/*! Text */
	Documentation comment before documented item

	/*!< Text /*
	Documentation comment behind documented item

File Header:

	/*!

 * \file <filename>
 *
 * \brief
 * <short description>
 *
 * \date
 * <creation date>
 *
 * \author
 * Main contributors (see contributors.h for copyright, address and
 * affiliation details)
 * - <Author name> <email@host.com>

 */

	\file
	Name of source file

	\brief
	Short description

	\date
	Creation date

	\author
	Names of authors

The fields \date and \author are optional.

Function Header:

	/*!

 * \brief
 * <short description>
 *
 * \param <parameter>
 * <parameter description>
 *
 * \return
 * <return values>
 *
 * \note
 * <notes>
 *
 * \para <title>
 * <paragraph>
 *
 * \para
 * <another paragraph>

 */
void myfunction()

	\brief
	Short description

	\param
	Parameter description

	\return
	Description of return values

	\note
	Notes

	\para
	A paragraph with the given title. If no title is given the paragraph is placed under the last given heading.

The fields \param, \return, \note and \para are optional.

File:VCEG-N47.doc
Page: 2
Date Printed: 18.09.2001

