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Summary
This document proposes an alternative 4(4 transform that has significantly lower computational complexity than that in the current draft standard. While the transform in the draft calls for 32-bit arithmetic, the transform presented here can be computed in 16-bit arithmetic, for 9-bit pixel data. Quantization at the encoder is computed with 32-bit arithmetic, but de-quantization at the decoder can be computed with 16-bit arithmetic.

1. Review of the Discrete Cosine Transform

The DCT is commonly used in block transform coding of images and video, e.g. JPEG and MPEG [1], because it is a close approximation to the statistically-optimal Karhunen-Loève transform, for a wide class of signals [2], [3]. The DCT maps a length-N vector x into a new vector X of transform coefficients by a linear transformation X = H x, where the element in the kth row and nth column of H is defined by
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for k = 0, 1, …, N-1, and n = 0, 1, …, N-1, with 
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 for k > 1. The DCT matrix is orthogonal, so its inverse equals its transpose, that is x = H–1 X = HT X.
One disadvantage of the DCT is that the entries H(k, n) are irrational numbers, and so integer input data x(n) will map to irrational transform coefficients X(k). Thus, in a digital computer, when we compute the direct and inverse transform in cascade, we do not get exactly the same data back. In other words, if we compute X = H x and u = round(HT X), then it is not true that u(n) = x(n) for all n. If we introduce appropriate scale factors , , e.g. in X =  H x and u = round( HT X), then we can make u(n) = G x(n) , where G is an integer, for almost all n by choosing  large enough and  appropriately. Nevertheless, we cannot guarantee an exact result.

In a motion-compensated video encoder, past decoded frames are used as reference information for prediction of the current frame. Therefore, the encoder has to generate such decoded frames, and for that it needs to compute inverse transforms. If the formula u = round( HT X) is used, than different floating-point formats and rounding strategies in different processors will lead to different results. That will result in a drift between the decoded data at the decoder and encoder.

One solution to the data drift problem is to approximate the matrix H by a matrix containing only integers. If the rows of H are orthogonal and have the same norm, then it follows that u can be computed exactly in integer arithmetic for all integer x. In other words, when we compute the direct transform by X = H x and the inverse transform by u = HT X, then we will have u = G x, where G is an integer equal to the squared norm of any of the rows in H.
1.1. Integer Approximations to the DCT

Integer approximations to the DCT can be generated by trial-and-error, by approximating a scaled DCT matrix H by integers [1], [4]. Such approximations should preserve the symmetries in the rows of H [5]. Clearly, a simple way to generate integer approximations to the DCT is by using the general formula
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where  is a scaling parameter. Let’s consider N = 4 (since that is the transform size in H.26L), for which the DCT matrix is given by
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The transform matrix in the current H.26L draft [6] is obtained by setting  = 26, that is
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Note that the rows and columns of Q0 are orthogonal to each other (the inner product of any two columns is zero), and all have norm equal to 26. In fact, for  < 100 we can only get orthogonal matrices with equal-norm rows by setting  = 2 or  = 26. The solution for  = 2 is not useful, since it’s a Hadamard matrix [2], which does not lead to nearly as good compression as the DCT. Large values for  are not attractive because of the increase in the word length require to compute the results of the direct transform X = Q0 x. We define the inverse transform by x’ = Q0 X, so it can also be computed with integer arithmetic. From the definition above, it is easy to see that x’ = 676 x, i.e. the reconstructed data x’ is equal to the original data x amplified by an integer gain of 676 (which is the norm of any of the rows in Q0).
2. Review of the Integer Transform in H.26L

Figure 1 shows a simplified block diagram of the transform coding portion of H.26L, which is typical of block transform coders for images or video [1], [2]. We transform each block of N(N pixels via a separable 2-D transform, i.e. first we transform all rows of pixels within the block, and then we transform the resulting columns. We then quantize the transformed block by scaling the values and rounding them to nearest integers. Those integers are then encoded via an entropy coder. The quantization process introduces errors, and the entropy coding process reduces the number of bits needed to encode the block.
The quantization parameter QP controls the scaling factors used by the quantizer and reconstructor (de-quantizer). In practice we can consider only a small number of different scaling factors. For example, in H.26L QP is an integer between 0 and 31, that is, there are two tables of 32 scaling factors, one for quantization at the encoder, and the other for reconstruction (de-quantization) at the decoder.

2.1. Transform and Quantization in H.26L

We now review the transform and quantization procedures in H.26L, in the latest draft TML 8 [6]:

· Start with a 4(4 matrix of pixels. Calling [a b c d] a particular row or column to be transformed, compute the corresponding transform coefficients [A B C D] by:
Figure 1. Simplified diagram of a block transform encoder (top) and decoder (bottom).

A = 13a + 13b + 13c + 13d
B = 17a +  7b -  7c - 17d
C = 13a - 13b – 13c + 13d
D =  7a - 17b + 17c -  7d

· After row and column transforms, for each transform coefficient with value K, we generate a quantized coefficient L by

L = [K(A(QP) + fX 220] / 220, where  “fX is in the range [0-0.5] and fX has the same sign as K”
 
The scaling factor A(QP) depends on the quantization parameter QP according to the following table:

A(QP=0,..,31) = {620,553,492,439,391,348,310,276,246,219,195,174,155,138,123,110,98,87,78,69,62,55,
49,44,39,35,31,27,24,22,19,17}.
Note that the transform matrix has a gain of 676 after row and column transforms. If the input data are signed 9-bit values, whose magnitude is < 255, then the transform coefficients will be bounded in magnitude by 255(522 = 689520. Therefore, they need at least 21 bits for exact representation, and thus they will be usually computed with 32-bit arithmetic. The maximum magnitude of L is 255(522(max(A)/220 = 408, so L fits within a 10-bit word; usually a 16-bit word will be used.

The entries in the table above are integer approximations to a logarithmic scale of quantization step sizes, such that for every increase of 6 in QP the step size doubles.
2.2. Reconstruction and Inverse Transform in H.26L
· Each integer reconstructed level L is converted to a reconstructed (de-quantized) value K’ by

K' = L(B(QP)

where the scaling factor B depends on QP via the following table:

B(QP=0,..,31) = {3881,4351,4890,5481,6154,6914,7761,8718,9781,10987,12339,13828,15523,17435,19561,
21873,24552,27656,30847,34870,38807,43747,49103,54683,61694,68745,77615,89113,100253,109366,
126635,141533}

· Given the matrix of 4(4 matrix of reconstructed transform coefficients, we generate the reconstructed pixels via a sequence of column and row inverse transforms. Calling [A B C D] a particular row or column to be inverse transformed, compute we the corresponding inverse transformed values [a’ b’ c’ d’] by:

a' = 13A + 17B + 13C +  7D
b' = 13A +  7B - 13C – 17D
c' = 13A –  7B – 13C + 17D
d' = 13A – 17B + 13C -  7D

· Finally, the reconstructed pixel values are scaled by a factor of 2–20 (via 20-bit right-shift operations), because A(QP)(B(QP)(6762 = 240. For example, the final value for the ‘a’ pixel is  ã = sign(a’) [abs(a’) + 219] / 220. 
The reconstructed pixel values prior to the 20-bit shift have a 29-bit range, so the inverse transform must be computed in 32-bit arithmetic. Finally, we note that the A() and B() table entries are 32-bit values, so we need 4(32 = 128 bytes at the encoder and 128 bytes at the decoder to store the quantization tables. Also, we need 16(32 = 512 bytes at the encoder and 512 bytes at the decoder to store the 4(4 pixel block.
3. The Proposed Integer Transform

We propose to use the construction in Section 1, using  = 2.5, for which we generate the matrix
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Note that the rows of QD are orthogonal to each other, but their norms are different: rows 0 and 2 have norm equal to 4, and rows 1 and 3 have norm equal to 10. We can easily accommodate for different norms by modifying the quantization tables, as discussed in Section 4.

The main advantage of the proposed transform is clear: computing the transform via a fast butterfly structure requires only 10 operations: 8 adds and 2 shifts, versus 14 operations (8 adds and 6 multiplies) for the original Q0. In the Section 5 we see that we incur a minimal loss in performance by using the proposed matrix QD instead of the original Q0.

3.1. Dynamic Range

For a transformation X = Q x, if the elements of x are bound by x(n) < U, then it’s easy to see that the elements of X are bounded by X(k) < U, where  = maxk{(n|Q(k,n)|}. With the transform matrix QD defined above, we have  = 6. So, after a 2-D transform the maximum signal amplification is  = 36. Since log2(36) ( 5.17, the output coefficients after a 2-D transform will span 6 more bits than the input. Therefore, for 9-bit input (U = 255) the output coefficients after a 2-D transform have a dynamic range of 15 bits. Thus, the 2-D direct transform can be computed with 16-bit arithmetic.
3.2. Coding gain

A very important performance metric for a transform to be used in compression is the transform coding gain (CG) [2], [3]. The CG is usually defined as the increase in signal-to-noise ratio (SNR) achieved by scalar quantization of the transform coefficients, as compared to quantization of the original data. If the input data is modeled as a stationary Gauss-Markov random process with inter-sample correlation coefficient  = 0.9, a typical model, then the coding gain of the DCT is 5.39 dB. The H.26L transform Q0has a CG of 5.39 dB and the proposed transform Q1 has a CG of 5.38 dB. The loss of 0.01 dB is negligible in practice. For real-world signals (such as the pixel prediction errors that are to be transformed in H.26L), the inter-pixel correlation coefficient is usually smaller than 0.9, so the CG gap is likely to be lower than the 0.01 dB computed above.

3.3. Inverse transform
Let’s call the inverse transform matrix QI. The first idea that comes to mind is to use QI = QDT, as usual. However, to allow for 16-bit de-quantization and inverse transform computation, we define the inverse transform matrix as
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Note that the columns of QI are orthogonal to each other, but their norms are different. To generate QI, we transpose QD and multiplied columns 1 and 3 by ½. Therefore, QI is a ‘scaled inverse’ of QD, in the sense that
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The different scaling factors needed for the even-symmetric and odd-symmetric basis functions can be easily compensated for during quantization and de-quantization, as specified in the next Section.
With QI defined as above, its maximum gain is  = 4. Therefore, a 2-D transform only expands the dynamic range by 4 bits, thus allowing for computation in 16-bit arithmetic.

The entries equal to ½ are not integers. That can be easily accommodated by implementing them by 1-bit right shifts, which is a division by 2 that can be exactly replicated by any processor. The small amount of noise introduced by such imprecise division has essentially no impact in the rate-distortion performance, as shown in Section 5.

4. Specification for the Proposed Transformation and Quantization Procedures

In the next subsections we present the details of our proposal.
4.1. Proposed Direct Transform and Quantization

· Start with a 4(4 matrix of pixels. Calling [a b c d] a particular row or column to be transformed, compute the corresponding transform coefficients [A B C D] by:

u = a + d;

v = b + c;

y = b - c;

z = a - d;

A = u + v;

C = u - v;

B = y + (z << 1);

D = z - (y << 1);
Where {u, v, y, z} are auxiliary variables, and << 1 means left shift by one bit.
All operations above are performed in 16-bit arithmetic, so {A, B, C, D} can be stored in 16-bit integers.
· After row and column transforms, for each transform coefficient with value K, we generate a quantized coefficient L by the following formula, which should be computed with 32-bit precision:

 L = [K (A(QP, r) + fX] >> 20

where fX is in the range [0–0.5](220  and fX  has the same sign as K. The index r selects which quantization table to use, based on the position of the coefficient K:

· r = 0 if the coefficient came from positions{(0,0),(0,1),(1,0),(1,1)};

· r = 1 if the coefficient came from positions{(0,2),(0,3),(1,2),(1,3),(2,0),(2,1),(3,0),(3,1)}; and

· r = 2 if the coefficient came from positions{(2,2),(2,3),(3,2),(3,3)}. 

After the right shift by 20 bits, each quantized result L fits into a 16-bit integer.

The scaling factors A(QP, r) depends on the quantization parameter QP and coefficient position group r according to the following tables:

A(QP=0..31,0) = {104858,93418,83226,74146,66056,58849,52429,46709,41613,37073,33028,29425,26214,
23354,20806,18536, 16514,14712,13107,11677,10403,9268,8257,7356,6554,5839,5202,4634,4129,
3678,3277,2919};


A(QP=0..31,1) = {66318,59082,52636,46894,41778,37220,33159,29541,26318,23447,20889,18610,16579,
14771,13159,11723, 10444,9305,8290,7385,6580,5862,5222,4652,4145,3693,3290,2931,2611,
2326,2072,1846};

A(QP=0..31,2) = {41943,37367,33290,29658,26422,23540,20972,18684,16645,14829,13211,11770,10486,
9342,8323,7415,6606,5885,5243,4671,4161,3707,3303,2942,2621,2335,2081,1854,1651,1471,1311,1168};

After the row and column passes, the transform matrix has a maximum gain of 36, so for 8-bit input the output will fit in 14 bits. Thus, 16-bit arithmetic is enough to compute the transform. The quantization tables above are such that the quantization equations will not overflow when computed in16-bit arithmetic. To store the quantization tables at the encoder, we need 4(32(3 = 384 bytes.
The entries in the table above are integer approximations to a logarithmic scale of quantization step sizes, such that for every increase of 6 in QP the step size doubles. Furthermore, they correspond to scaled quantization step sizes that match closely those of the original H.26L quantization table. Thus, for the same QP this new transform and quantization leads to about the same point in the rate/distortion curve, as verified by the plots in Section 5.

4.2. Proposed Reconstruction

· Each integer reconstructed level L is converted to a reconstructed (de-quantized) value K’ by

K’ = L ( B(QP, r);

where the coefficient position group index r has the same definition as before. The scaling factors B(QP, r) depends on the quantization parameter QP and coefficient position group r according to the following tables:

B(QP=0..31,0) = {80,90,101,113,127,143,160,180,202,226,254,285,320,359,403,453,508,570,640,718,
806,905,1016,1140,1280,1437,1613,1810,2032,2281,2560,2874};

B(QP=0..31,1) = {101,114,127,143,161,180,202,227,255,286,321,361,405,454,510,572,643,721,810,
909,1020,1145,1285,1443,1619,1817,2040,2290,2570,2885,3239,3635};

B(QP=0..31,2) = {128,144,161,181,203,228,256,287,323,362,406,456,512,575,645,724,813,912,1024,
1149,1290,1448,1625,1825,2048,2299,2580,2896,3252,3650,4095,4596};


· Given the 4(4 matrix of reconstructed transform coefficients, we generate the reconstructed pixels via a sequence of column and row inverse transforms. Calling [A B C D] a particular row or column to be inverse transformed, we compute the corresponding inverse transformed values [a’ b’ c’ d’] by:

u = A + C;

v = A – C;

y = (B >> 1) - D;

z = (D >> 1) + B;

a’ = u + z;

b’ = v + y;

c’ = v - y;

d’ = u - z;

· Finally, the reconstructed pixel values are scaled by a factor of 2–7 (a 7-bit right-shift). For example, the final value for the ‘a’ pixel is  ã = sign(a’) [abs(a’) + 26] / 27 = sign(a’) [(abs(a’) + 64) >> 7] .
The reconstructed pixel values after the 7-bit shift have 9-bit range, so the inverse transform can be computed in 16-bit arithmetic. The de-quantization tables above are such that the de-quantization equations will not overflow when computed in16-bit arithmetic. The B(QP,r) de-quantization table entries can be stored in 16-bit words. Thus, we need 2(32(3 = 192 bytes to store the de-quantization tables at the decoder. That’s just 64 more bytes than the space needed for the de-quantization tables in the existing H.26L.
5. Performance of the Proposed Transform

To test the proposed transform, we modified the VCEG TML 8.0 simulation code according to the specifications above. We processed the CIF sequences “akiyo”, “foreman”, “news,” and “tempete,” and the QCIF sequences “container”, “carphone”, “foreman,” and “news.” We used two modes: in the first we used the normal encoding of the first frame as intra and all subsequent frames as “inter” (i.e. predicted via motion compensation). In the second mode, we forced all frames to be encoded as “intra” (i.e. without motion compensation); in that way we could evaluate the performance of the transforms over inter and intra frames separately. For both modes we varied the quantization parameter QP throughout its full range, i.e. from 0 to 31.
In Appendix we present the rate-distortion curves for all sequences, in both modes. We used a log scale for bit rate because that makes the curves much easier to read. For H.26L, we plotted the {PSNR, bit rate} pairs with Xs, connecting the points through dotted lines. For the proposed transform, we plotted the {PSNR, bit rate} pairs with circles, connecting the points through solid lines. We note that the circles fall essentially on top of the Xs, and the dotted and solid lines are almost identical.
To measure the average PSNR difference between the R-D curves for the current and proposed transforms, we used the technique proposed in document VCEG-M33 [7]. In that method, a third-order polynomial is fit through the PSNR ( log(bit rate), and the average PSNR is computed as the mean value of that polynomial in the range from QP = 16 to QP = 28. In Appendix A we also plot the difference in the R-D curves obtained from third-order polynomial fits over the entire QP range.
Table 1 summarizes the loss in PSNR, defined as the average PSNR difference between the curves for the proposed 16-bit transform and quantization and the transform/quantization in TML 8.0.  We see that |PSNR| < 0.10 dB, with an average close to zero and a standard deviation of less than 0.04 dB. Therefore, it is safe to conclude that the R-D performance pf the proposed transform is essentially the same as the transform in TML 8.0.
	Frame size
	Encoding mode
	Sequence name
	Average PSNR, dB

	CIF


	inter
	akiyo
	–0.009

	
	
	foreman
	–0.001

	
	
	news
	0.035

	
	
	tempete
	0.026

	CIF


	all frames
intra
	akiyo
	–0.006

	
	
	foreman
	–0.005

	
	
	news
	0.013

	
	
	tempete
	0.040

	QCIF


	inter
	carphone
	0.035

	
	
	container
	–0.086

	
	
	foreman
	–0.022

	
	
	news
	–0.015

	QCIF


	all frames
intra
	carphone
	–0.007

	
	
	container
	0.070

	
	
	foreman
	–0.001

	
	
	news
	0.051

	
	Average
	0.007

	
	Std. deviation
	0.036


Table 1. PSNR loss with the proposed transform.
5.1. Computational Complexity

The computational requirements for the proposed transform and quantization procedures are summarized in Table 2, where we present the number of operations per pixel for computing a 2-D transform (i.e. a set of 8 1-D transforms). The savings are more significant for the decoder, which has a much lower total complexity. Such savings are even more important if the decoder is implemented in a 16-bit processor, in which a 32-bit operation will take as much time as many 16-bit ones.
	Transform
	Number of operations per pixel

	
	direct transform
	quantization
	de-quantization
	inverse transform
	final scaling

	TML 8.0
	4 additions and

3 multiplications, 

32-bit arithmetic
	1 multiplication,
32-bit arithmetic
	1 multiplication,
32-bit arithmetic
	4 additions and

3 multiplications,

32-bit arithmetic
	1 addition,
32 bits,
and 1 shift

	Proposed
	4 additions and

1 shift, in 

16-bit arithmetic
	1 multiplication,
32-bit arithmetic
	1 multiplication,
16-bit arithmetic
	4 additions and

1 shift,

16-bit arithmetic
	1 addition,
16 bits,
and 1 shift


Table 2. Computational savings of the proposed transform with respect to TML 8.0.

6. Final Considerations

The proposed transforms and quantization procedures can have a significant impact in an H.26L decoder, at a negligible R-D performance hit (typically ±0.04 dB). We have considered other alternatives for the transformation matrix and quantization tables, but settled on the procedures proposed above for the following reasons:
· Using standard lifting structures, a tighter control of the dynamic range can be achieved, as well as the possibility of exact reconstruction of the original pixels (if no quantization is performed) [8]. However, for the oddly-indexed transform coefficients, it is not possible to generate orthogonal basis functions via lifting [9], so that biorthogonal functions are generated. Biorthogonal transforms have the disadvantage that information from basis function # 3 is aliased into basis function # 1, generating a loss in PSNR and, in many cases, visible artifacts.
· It is possible to use 16-bit quantization at the encoder, but at a cost of up to 1% performance loss. Since the encoder is inherently more complex, we believe the savings on just the quantization step doesn’t justify a 1% performance loss, so the quantization should be kept as a 32-bit operation. Still, the direct transform can be computed in 16-bit arithmetic.
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Appendix – Rate-Distortion Curves
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Figure A.1. Top: PSNR vs. average bits/frame for TML 8.0 with the original transform (Xs and dotted line) and the proposed transform (circles and solid line).  Bottom: PSNR(proposed) – PSNR(TML8.0), smoothed via third-order polynomial fitting. Sequence: CIF “akiyo,” frames encoded in inter mode.
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Figure A.2. As in Fig. A.1; sequence: “foreman,” frames encoded in inter mode.
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Figure A.3. As in Fig. A.1; sequence: “news,” frames encoded in inter mode.
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Figure A.4. As in Fig. A.1; sequence: “tempete,” frames encoded in inter mode.
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Figure A.5. Top: PSNR vs. average bits/frame for TML 8.0 with the original transform (Xs and dotted line) and the proposed transform (circles and solid line).  Bottom: PSNR(proposed) – PSNR(TML8.0), smoothed via third-order polynomial fitting. Sequence: CIF “akiyo,” all frames encoded in intra mode.
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Figure A.6. As in Fig. A.5; sequence: “foreman,” all frames encoded in intra mode.
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Figure A.7. As in Fig. A.5; sequence: “news,” all frames encoded in intra mode.
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Figure A.8. As in Fig. A.5; sequence: “tempete,” all frames encoded in intra mode.



[image: image28.emf]10

3

10

4

20

25

30

35

40

45

50

55

average bits/frame

PSNR, dB

R/D curve for sequence "carphone", QCIF (inter coding)


[image: image29.emf]0 5 10 15 20 25 30

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

quantization parameter QP



 PSNR, dB

Avg delta PSNR =     0.035 dB

PSNR loss, "carphone", QCIF (inter coding)


Figure A.9. Top: PSNR vs. average bits/frame for TML 8.0 with the original transform (Xs and dotted line) and the proposed transform (circles and solid line).  Bottom: PSNR(proposed) – PSNR(TML8.0), smoothed via third-order polynomial fitting. Sequence: QCIF “carphone,” frames encoded in inter mode.
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Figure A.10. As in Fig. A.9; sequence: “container,” frames encoded in inter mode.
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Figure A.11. As in Fig. A.9; sequence: “foreman,” frames encoded in inter mode.
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Figure A.12. As in Fig. A.9; sequence: “news,” frames encoded in inter mode.



[image: image36.emf]10

4

10

5

20

25

30

35

40

45

50

55

average bits/frame

PSNR, dB

R/D curve for sequence "carphone", QCIF (intra only coding)


[image: image37.emf]0 5 10 15 20 25 30

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

quantization parameter QP



 PSNR, dB

Avg delta PSNR =    -0.007 dB

PSNR loss, "carphone", QCIF (intra only coding)


Figure A.13. Top: PSNR vs. average bits/frame for TML 8.0 with the original transform (Xs and dotted line) and the proposed transform (circles and solid line).  Bottom: PSNR (proposed) – PSNR(TML8.0), smoothed via third-order polynomial fitting. Sequence: QCIF “carphone,” all frames encoded in intra mode.
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Figure A.14. As in Fig. A.13; sequence: “container,” all frames encoded in intra mode.
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Figure A.15. As in Fig. A.13; sequence: “foreman,” all frames encoded in intra mode.
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Figure A.16. As in Fig. A.13; sequence: “news,” all frames encoded in intra mode.



de-quantize





entropy decode





entropy encode





quantize





transform columns





output


pixels





inverse transform  rows





inverse transform  columns





Index QP





quantized coefficients





transform coefficients





input


bits





output


bits





Index QP





quantized coefficients





transform coefficients





transform rows





input


pixels



























































File: VCEG-N44.doc
Page: 8
Date Printed: 9/19/2001

_1061752743.unknown

_1061756431.unknown

_1061760267.unknown

_1061760485.unknown

_1061760162.unknown

_1061752808.unknown

_1060451915.unknown

_1060454114.unknown

_1061749650.unknown

_1060454092.unknown

_1060451882.unknown

