
ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

Fourteenth Meeting: Santa Barbara, Ca, USA, September, 2001
Document VCEG-N036

Filename: VCEG-N36.doc

Generated: 10 Sept. ’01

Question:
Q.6/SG16 (VCEG)

Source:
Minhua Zhou
Texas Instruments Incorporated
12500 TI Boulevard, MS 8649

 Dallas, Txeas 75243, USA

Tel:
Fax:
Email:

+1 214 480-3816
+1 972 761-6969
zhou@ti.com

Title:
Modified Universal Variable Length Coding

Purpose:
Proposal

1. Introduction

In H.26L a single UVLC table is used for all kinds of symbol coding (Macroblock overheads, vector, coefficient, etc). The UVLC codewords are generated by an interleaving of prefix code with the INFO codes. This kind of interleaving leads to high implementation complexity of VLC and VLD for software solutions.

In this document, we will briefly describe the UVLC table used in H.26L, then propose a new UVLC table aimed to reduce the VLCD complexity.
2. Universal Variable Length Coding (UVLC) in H.26L

In the default entropy coding mode of H.26L, a universal VLC is used to code all syntax. The table of codewords is written in the following compressed form.

1

0 x0 1

0 x1 0 x0 1

0 x2 0 x1 0 x0 1

0 x3 0 x2 0 x1 0 x0 1

.................

where xn take values 0 or 1. We will sometimes refer to a codeword with its length in bits (L = 2N-1, N = 1, 2, 3) and INFO = xN-2 .. x1 x0 . The codewords are numbered from 0 and upwards. The definition of the numbering is:

Code_number = 2N-1 + INFO -1 (INFO = 0 when N = 1)

Some of the first code numbers and codewords are written explicitly in the table below. As an example, for the code number 5, N = 3 and INFO = 10 (binary) = 2 (decimal)

Code number
Codewords in explicit form

0
 1

1
 0 0 1

2
 0 1 1

3
 0 0 0 0 1

4
 0 0 0 1 1

5
 0 1 0 0 1

6
 0 1 0 1 1

7
0 0 0 0 0 0 1

8
0 0 0 0 0 1 1

9
0 0 0 1 0 0 1

10
0 0 0 1 0 1 1

11
0 1 0 0 0 0 1

......
.

3. Problems with Universal Variable Length Coding (UVLC) in H.26L

The codewords of the above UVLC table are actually generated by an interleaving of prefix (N bits) and INFO (N –1 bits) as shown in the table below.

N
Prefix (N bits)
INFO (N –1 bits)
H.26L UVLC Table (codeword)

(Prefix + INFO after interleaving)

1
1

1

2
01
x0
0 x0 1

3
001
x1 x0
0 x1 0 x0 1

4
0001
x2 x1 x0
0 x2 0 x1 0 x0 1

5
00001
x3 x2 x1 x0
0 x3 0 x2 0 x1 0 x0 1

…
… …
… …
… …

Table 1. Construction of UVLC table in H.26L

For DSP implementation of H.26L, this interleaved UVLC table form is expensive for the implementation.

On the encoder side, the H.26L UVLC table size is very big. Considering the H.26L coefficient (RUN, LEVEL) coding (see Table 34 of [1]), RUN is in the range of [0, 15], LEVEL takes value in the range of [-1632, +1632], this results in a UVLC table of about 16x1632x2 +1 = 52225 entries (N = 16, L = 31). Obviously, it is too expensive to store this encoding table in an embedded system because of its huge size. Therefore, the table entry has to be generated on-fly during encoding, meaning that a codeword has to be produced each time for a given code number. Therefore, the VLC task is to obtain (N, INFO) from a given Code_number, then to generate the codeword by interleaving Prefix with INFO and finally append the codeword to the bitstream. The following steps are used for encoding a given code_number (where [(] denotes integer truncation)

[image: image1.wmf]>

<

ï

ï

î

ï

ï

í

ì

=

+

=

+

+

=

1

/

*

bitstream

 to

codeword

append

*

 /

stream)

codeword,

1,

-

(2N

put_bits

/

*

codeword

form

 to

interleave

*

 /

INFO)

,

(Prefix[N]

ing

_interleav

bit_by_bit

codeword

/

*

INFO

obtain

*

 /

2

-

1

r

Code_numbe

INFO

/

*

N

compute

*

 /

1

1)]

_number

[Log2(Code

N

1

-

N

The problem lies in the construction of the codeword from N and INFO, there is no other efficient way but to create the codeword bit by bit, which is expensive on DSPs.

More serious penalty is imposed on the decoder side. The VLD task is to obtain N and INFO from the bitstream, then to form the code_number. Due to the interleaving of the prefix and INFO, a decoder has to read the bitstream bit by bit to get the codeword. The following steps are used in decoding a Code_number:

[image: image2.wmf]>

<

ï

î

ï

í

ì

+

=

=

=

2

/

*

r

code_numbe

compure

*

 /

1

-

INFO

2

r

Code_numbe

/

*

INFO

and

N

obtain

*

 /

word)

aving(code

_deinterle

bit_by_bit

INFO)

(N,

/

*

bit

by

bit

codeword

retrieve

*

 /

stream)

_decoding(

bit_by_bit

codeword

1

-

N

The bit by bit decoding is very expensive on DSPs.

4. Modified Universal Variable Length Coding (UVLC)

To avoid the complexity problems described above, we propose to remove the interleaving in the codewords, so the construction of the UVLC table is shown in the following table.

N
Prefix (N bits)
INFO (N –1 bits)
Proposed UVLC table (codeword)

Prefix + INFO with no interleaving

1
1

1

2
01
x0
0 1 x0

3
001
x1 x0
0 0 1 x1 x0

4
0001
x2 x1 x0
0 0 0 1 x2 x1 x0

5
00001
x3 x2 x1 x0
0 0 0 0 1 x3 x2 x1 x0

…
… …
… …
… …

 Table 2. Construction of the proposed UVLC table

The explicit form of codewords becomes:

Code number
Codewords in explicit form

0
 1

1
 0 1 0

2
 0 1 1

3
 0 0 1 0 0

4
 0 0 1 0 1

5
 0 0 1 1 0

6
 0 0 1 1 1

7
0 0 0 1 0 0 0

8
0 0 0 1 0 0 1

9
0 0 0 1 0 1 0

10
0 0 0 1 0 1 1

11
0 0 0 1 1 0 0

......
.

The relation between Code_number and (N, INFO) remains unchanged, i.e.

Code_number = 2N-1 + INFO -1 (INFO = 0 when N = 1)

5. Advantages of the proposed UVLC

Because Prefix and INFO are separate, VCL and VLD implementation becomes much easier.

On the encoder side, given a code number the corresponding encoding processing can be simplified as:

[image: image3.wmf]>

<

ï

ï

î

ï

ï

í

ì

+

=

-

+

=

+

+

=

3

/

*

bitstream

 to

codeword

append

*

 /

stream)

codeword,

1,

-

(2N

put_bits

/

*

codeword

form

*

 /

INFO

2

codeword

/

*

INFO

obtain

*

 /

2

1

r

Code_numbe

INFO

/

*

N

compute

*

/

1

1)]

_number

[Log2(Code

N

1

-

N

1

-

N

On the decoder side, the following operations retrieve code number from the bitstream:

[image: image4.wmf]>

<

ï

ï

ï

î

ï

ï

ï

í

ì

+

=

=

=

=

=

=

4

/

*

r

code_numbe

compute

*

 /

1

-

INFO

2

r

Code_numbe

/

*

bits

N1

next

of

in value

read

*

 /

1)

N

 when

0

(INFO

stream)

1,

-

get_bits(N

INFO

/

*

bits

N

by

position

decoding

next

 the

move

*

 /

stream)

(N,

Flush_bits

/

*

N

obtain

*

 /

 temp

of

position

MSB

N

/

*

bitstream

in

bit

-

16

next

of

get value

*

 /

stream)

16,

next_bits(

temp

1

-

N

Obviously, by using the proposed UVLC table, both the VLC and VLD can avoid the bit by bit operation.

The following table shows the encoding and decoding cycle count comparison between the H.26L UVLC and the proposed UVLC. The platform is assumed to be TMS320C54X. Compared to the H.26L UVLC table, the proposed UVLC table reduces the VLC complexity by 82% in the worst case (i.e. 1 – 33/ (21+ N*12), assume N = 14), and by 68% in average (assume N =6) for VLC. While for VLD, the proposed UVLC form save cycle count about 88% in the worst case (i.e. 1 – 62/(37*N+3), assume N = 14) and about 72% in average (assume N = 6).

UVLC with interleaving
Proposed UVLC

Encoding (VLC)
Encoding (VLC)

Processing step
Cycle count
Processing step
Cycle count

N= [Log2(Code_number+1)] + 1
4
N= [Log2(Code_number+1)] + 1
4

INFO = Code_number+1 –2N-1
3
INFO = Code_number+1 –2N-1
3

codeword = bit_by_bit_interleaving (Prefix[N], INFO)
(N-1)*12 +1
codeword = 2N-1 + INFO
1

put_bits (2N-1, codeword, stream)
25
put_bits (2N-1, codeword, stream)
25

Total cycle count
21 + N*12
Total cycle count
33

Decoding (VLD)
Decoding (VLD)

Processing step

Processing step

codeword= bit_by_bit_decoding(stream)
N*25
temp = next_bits(16, stream)
20

(N, INFO) = bit_by_bit_deinterleaving(codeword)

N *12
N = MSB position of temp
2

Flush_bits(N, stream)
12

INFO = get_bits(N-1, stream)
25

Code_number = 2N-1 + INFO –1
3
Code_number = 2N-1 + INFO -1
3

Total cycle count
37*N + 3
Total cycle count
62

Table 3. Cycle count comparison between the H.26L UVLC and the proposed UVLC

6. Conclusions

By removing interleaving from the H.26L UVLC table, the proposed UVLC table can dramatically reduce the implementation complexity of the H.26L Vraiable Length Coding (VLC) and Variable Length Decoding (VLD) on programmable DSPs. The H.26L video coding efficiency remains unchanged because the codeword length is the same.
IPR Statement

Texas Instruments Inc. has intellectual property related to this contribution and has chosen to subscribe to sub clause 2.2 of the ITU-T patent policy under the condition of reciprocity.

7. Reference

[1] H.26L Test Model Long Term Number 8 (TML-8) draft0, Q.6/SG16(VCEG), 6/28/01
Annex 1: Proposed new text for the TML document

5. Entropy Coding

5.1 Universal Variable Length Coding (UVLC)

In the default entropy coding mode, a universal VLC is used to code all syntax. The table of codewords are written in the following compressed form.

1

0 1 x0
0 0 1 x1 x0
0 0 0 1 x2 x1 x0
0 0 0 0 1 x3 x2 x1 x0
.................

where xn take values 0 or 1. We will sometimes refer to a codeword with its length in bits (L = 2N-1) and INFO = xn .. x1 x0 . Notice that the number of bits in INFO is N-1 bits. The codewords are numbered from 0 and upwards. The definition of the numbering is:

Code_number = 2L/2 + INFO -1 (L/2 use division with truncation. INFO = 0 when L = 1)

Some of the first code numbers and codewords are written explicitly in the table below. As an example, for the code number 5, L = 5 and INFO = 10 (binary) = 2 (decimal)

Code number
Codewords in explicit form

0
 1

1
 0 1 0

2
 0 1 1

3
 0 0 1 0 0

4
 0 0 1 0 1

5
 0 0 1 1 0

6
 0 0 1 1 1

7
0 0 0 1 0 0 0

8
0 0 0 1 0 0 1

9
0 0 0 1 0 1 0

10
0 0 0 1 0 1 1

11
0 0 0 1 1 0 0

......
.

When L (L = 2N-1) and INFO is known, the regular structure of the table makes it easy to create a codeword. Similarly, a decoder may easily decode a codeword by reading in N bit prefix followed by N-1 INFO. L and INFO is then readily available. For each parameter to be coded, there is a conversion rule from the parameter value to the code number (or L and INFO). Error! Reference source not found. lists the connection between code number and most of the parameters used in the present coding method.

PAGE
6

_1062400792.unknown

_1062400829.unknown

_1062400693.unknown

_1062400740.unknown

