	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

_________________

Twelfth Meeting: Santa Barbara, USA, 24-27 September, 2001
	Document  VCEG-N31

Filename: VCEG-N31.doc

Generated: 10 September ’01


	Question:
	Q.6/SG16 (VCEG)

	Source:
	Marta Karczewicz, Antti Hallapuro

Nokia Research Center,

Irving, Texas 75039, USA
	Tel:
Fax:
Email:
	+972 894 4188
+972 894 4589
marta.karczewicz@nokia.com

	Title:
	Interpolation solution with low encoder memory requirements and low decoder complexity. 

	Purpose:
	Proposal


_____________________________
1 Introduction

After the VCEG Eibsee meeting new interpolation called direct interpolation was adopted to the H.26L Test Model (TML-6 and later) [1], [2]. Compared to used in TML-5 subsequent interpolation direct interpolation reduces complexity of the decoder but increases either complexity or memory requirements of the encoder. In the current TML-8 software 1/4 precision interpolation is implemented using direct interpolation method and 1/8 precision interpolation is implemented using subsequent interpolation.

In this submission an interpolation method is presented which has same complexity and memory requirements as subsequent interpolation in the encoder and similar decoder complexity as direct interpolation. 

2 1/4 Pel Resolution interpolation   

Description of the proposed interpolation method is given. In the figure below the pixels labeled 'A' represent original pixels at integer positions and other symbols represent the pixels to be interpolated

A
d
b
d
A
e
h
f
h


b
g
c
g
b
e
h
f
i


A

b

A

               Figure 1: Naming convention used for sub-pixels.

1. 1/2 pixel labeled 'b' is obtained by first calculating intermediate value b=(A1–5A2+20A3+20A4-5A5+A6) using six nearest pixels at integer locations in horizontal or vertical direction. Final value of 'b' is calculated as (b+16)/32 and clipped to lie in the range [0, 255].

2. 1/2 pixel labeled 'c' is calculated as (b1–5b2+20b3+20b4-5b5+b6+512)/1024 using intermediate values b of closest 1/2 pixels in the vertical or horizontal direction and clipped to lie in the range [0, 255]. Notice that using intermediate values b in the horizontal direction leads to the same result as using intermediate values b in the vertical direction.

3. 1/4 pixels labeled 'd' are calculated as (A+b)/2 and pixels labeled ‘g’ as (b+c)/2 using two nearest pixels in horizontal direction. 1/4 pixels labeled 'e' are calculated as (A+b)/2 and pixels labeled ‘f’ as (b+c)/2 using two nearest pixels in vertical direction.

4. 1/4 pixels labeled 'h' are calculated as (b1+b2)/2 using two nearest pixels in diagonal direction.

5. Pixel labeled 'i' ("funny" position) is computed as (A1+A2+A3+A4+2)/4 using four nearest original pixels.

2.1 Complexity of the Proposed Interpolation

2.1.1 Encoder Complexity

In the encoder same sub-pixel values have to be calculated multiple times. To decrease its complexity, all sub-pixel values could be pre-calculated and stored in memory. This solution can however increase memory usage by a large margin. When motion vector accuracy is 1/4 pel in both horizontal and vertical dimension, storing pre-calculated sub-pixel values for the whole image requires 16 times the memory of the original, non-interpolated image. 

To reduce memory usage all 1/2 pixels can be interpolated beforehand and 1/4 pixels only when they are needed. In case of the proposed method and subsequent interpolation 1/4 pixels can be calculated as bilinear interpolation of 1/2 pels. 4 times the original picture memory is required to store 1/2 pixels since only 8 bits are necessary to represent them. 

When same strategy of interpolating 1/2 pixels beforehand is used in conjunction with direct interpolation the memory requirements increase to 9 time the original frame memory. In addition complexity of the sub-pixel interpolation during motion estimation is higher since scaling and clipping has to be done for every 1/2 and 1/4 pixel position.

2.1.2 Decoder Complexity

In the decoder only 1 out of 15 sub-pixel positions is needed at a time. Therefore it is recommended that the interpolation of a sub-pixel is performed with minimum number of steps that results in correctly interpolated value. 

[image: image1.emf]Integer 

position pixels

1/2 pixels ‘b’

1/2 pixels ‘c’

A

c

b

Integer 

position pixels

1/2 pixels ‘b’

1/2 pixels ‘c’

A

c

b


Figure 2: Block based interpolation.

When comparing complexity of the proposed interpolation, subsequent and direct interpolation implementations it is assumed that each implementation is block based, i.e., intermediate values common for all the sub-pixels to be interpolated in a given NxM block are calculated just once.  Example is given in Figure 2. To calculate 4x4 block of 1/2 pixels labeled ‘c’ first 1/2 pixels labeled ‘b’ are calculated. 

    (a)




   (b)




    (c)

[image: image2.emf]Integer  position pixels

1/2 pixels ‘b’

1/2 pixels ‘c’

Integer  position pixels

1/2 pixels ‘b’

1/2 pixels ‘c’

Integer  position pixels

1/2 pixels ‘b’

1/2 pixels ‘c’


Figure 3: 1/2 pixels required to be calculated in order to obtain leftmost 1/4 pixel labeled ‘g’ and for subsequent interpolation (a) and proposed method (b). 1/2 pixels required to be calculated in order to obtain upper most 1/4 pixel labeled ‘h’ for subsequent interpolation (a) and proposed method (c)

Reasons for lower decoder complexity of the proposed method comparing to subsequent interpolation:

· Unlike in subsequent interpolation pixel 'c' can be interpolated by filtering either in vertical or horizontal direction. To minimize number of operations 'c' can be interpolated in vertical direction if value of pixel 'f' is needed, and in horizontal direction if value of pixel 'g' is needed. As an example all the 1/2 pixels required to be calculated in order to obtain 1/4 pixels labeled ‘g’ for 4x4 block using subsequent interpolation and using proposed method are indicated, respectively, in Figure 3 (a) and Figure 3 (b).

· Pixel label ‘h’ is calculated by bilinear interpolation of two closest pixels in the diagonal direction. 1/2 pixels required to be calculated in order to obtain upper and leftmost 1/4 pixels ‘h’ for 4x4 block using subsequent interpolation are tand using proposed method are depicted, respectively, in Figure 3  (a) and Figure 3 (c).

Table 1 summarizes decoder complexities of the interpolation methods. Complexity is measured in terms of number of 6-tap filter and bilinear filter operations. Interpolation of the "funny pixel" location is assumed to consist of two bilinear operations. The operations needed to interpolate one 4x4 block are listed for each of the 15 sub-pixel positions. Sub-pixel locations are numbered according to the following figure:

	1
	2
	3
	4

	5
	6
	7
	8

	9
	10
	11
	12

	13
	14
	15
	16


Location 1 is full-pixel location and locations 2-16 are sub-pixel locations of which location 16 is the "funny pixel" location. When computing average number of operations it is assumed that probability of motion vector pointing to each sub-pixel position is the same. The average complexity is therefore the average of the 15 sums calculated for each sub-pixel location and one full-pixel location.

Table 1 - Complexity of the 1/4-pel interpolation methods
	
	Subsequent iterp.
	Direct interp.
	Proposed 

	Location
	Bilin.
	6-tap
	Bilin.
	6-tap
	Bilin.
	6-tap

	1
	0
	0
	0
	0
	0
	0

	3,9
	0
	16
	0
	16
	0
	16

	2,4,5,13
	16
	16
	0
	16
	16
	16

	11
	0
	52
	0
	52
	0
	52

	7,15
	16
	52
	0
	52
	16
	52

	10,12
	16
	68
	0
	52
	16
	52

	6,8,14
	48
	68
	0
	52
	16
	32

	16
	32
	0
	32
	0
	32
	0

	Average
	19
	37
	2
	32
	13
	28.25


It can be seen from the table that proposed method requires less 6-tap filter operations than direct interpolation and only some more bilinear operations. Since 6-tap operations are much more complex than bilinear operations complexity of the two methods is similar. Subsequent interpolation has by far the highest complexity.

3 1/8 Pel Resolution interpolation

The proposed method is extended to 1/8 pel resolution interpolation. In the below figure pixels labeled 'A' represent original pixels at integer positions and other symbols represent 1/2, 1/4 and 1/8 pixels to be interpolated. 

A
d
b1
d
b2
d
b3
d
A
d
e
d
f
d
f
d
e


b1
d
c11
d
c12
d
c13
d


d
f
d
g
d
g
d
f


b2
d
c21
d
c22
d
c23
d


d
f
d
g
d
g
d
e


b3
d
c31
d
c32
d
c33
d


d
e
d
f
d
f
d
e


A









Proposed1/8 pel  interpolation 1:

1. 1/2 and 1/4 pixels labeled 'b1', ‘b2’ and ‘b3’ are obtained by first calculating intermediate values 

b1=(-3A1 +12A2-37A3+229A4+71A5-21A6+6A7-A8), 

b2=(-3A1 +12A2-39A3+158A4+158A5-39A6+12A7-3A8), and 

b3=(-A1 +6A2-21A3+71A4+229A5-37A6+13A7-3A8) 

using eight nearest pixels at integer locations in horizontal or vertical direction. Final value of 'bi', i=1,2,3, is  calculated as (bi+128)/256 and clipped to lie in the range [0, 255].

2. 1/2 and 1/4 pixels labeled 'cij’, i,j=1, 2, 3, are calculated as 

cj1=(-3
[image: image3.wmf]j

b

1

+12
[image: image4.wmf]j

b

2

-37
[image: image5.wmf]j

b

3

+229
[image: image6.wmf]j

b

4

+71
[image: image7.wmf]j

b

5

-21
[image: image8.wmf]j

b

6

+6
[image: image9.wmf]j

b

7

-
[image: image10.wmf]j

b

8

+32768)/65536, 

cj2=(-3
[image: image11.wmf]j

b

1

+12
[image: image12.wmf]j

b

2

-39
[image: image13.wmf]j

b

3

+158
[image: image14.wmf]j

b

4

+158
[image: image15.wmf]j

b

5

-39
[image: image16.wmf]j

b

6

+12
[image: image17.wmf]j

b

7

-3
[image: image18.wmf]j

b

8

+32768)/65536, and 

cj3=(-
[image: image19.wmf]j

b

1

+6
[image: image20.wmf]j

b

2

-21
[image: image21.wmf]j

b

3

+71
[image: image22.wmf]j

b

4

+229
[image: image23.wmf]j

b

5

-37
[image: image24.wmf]j

b

6

+13
[image: image25.wmf]j

b

7

-3
[image: image26.wmf]j

b

8

+32768)/65536 
using intermediate values b1, b2 and b3 of closest 1/2 and 1/4 pixels in the vertical direction. Before storing pixels labeled 'cij’ , i,j=1, 2, 3, in the frame memory they are clipped to lie in the range [0, 255]. Notice that these pixels can also be calculated using intermediate values b1, b2 and b3  in the horizontal direction.

3. 1/8 pixels labeled ‘d’ are calculated as by bilinear interpolation of two integer position, 1/2 or 1/4 pixels closest in the horizontal or vertical direction, e.g., upper and left most pixel ‘d’ is calculated as (A+ b1+1)/2.

4. 1/8 pixels labeled ‘e’ are calculated by bilinear interpolation of two 1/4 pixels closest in the diagonal direction, e.g., upper and left most pixel ‘e’ is calculated as (b1+ b1+1)/2.  1/8 pixels labeled ‘g’ are calculated as (A+3c22+2)/4 and 1/8 pixels marked as ‘f’ are calculated using bilinear interpolation of 1/2 pixels 'b2', i.e., as (3b1+ b1+2)/4 (pixel 'b2' closer to ‘f’ is multiplied by 3). Which diagonal direction should be chosen is indicated in Figure 4. 

[image: image27.emf]Integer position pixels 

1/8 pixels 

1/2 and 1/4 pixels 

Integer position pixels  Integer position pixels 

1/8 pixels  1/8 pixels 

1/2 and 1/4 pixels  1/2 and 1/4 pixels 


Figure 4: Diagonal interpolation for 1/8 pel interpolation.

3.1.1 Encoder complexity

To reduce encoder memory requirements similar approach as for 1/4 pel precision interpolation can be used for 1/8 pixel precision interpolation in which case all 1/2 and 1/4 pixels should be interpolated beforehand and 1/8 pixels only when needed. When proposed method or subsequent interpolation are used 16 times the original picture memory is required to store 1/2 and 1/4 pixels. However in case of direct interpolation intermediate values of 1/2 and 1/4 pixels, represented with 32-bit precision, have to be used. Therefore it is better to interpolate the whole frame at the beginning of the motion compensated prediction and store the interpolated pixels in the buffer having size 64 times of the original frame size. 

3.1.2 Decoder complexity

Decoder complexity of the 1/8 interpolation is calculated the same way as complexity of the 1/4 interpolation. That is, it is assumed that minimum set of interpolation steps that result in interpolated pixel is used. Similarly to 1/4 interpolation, it is assumed that intermediate values common for all the sub-pixels to be interpolated in a given 4x4 block are calculated just once. 

Table 2 summarizes complexities of the interpolation methods. Complexity is measured in terms of number of 8-tap filter and bilinear filter operations. The operations needed to interpolate one 4x4 block is listed for 63 sub-pixel positions that are numbered according to the following figure:

	1
	2
	3
	4
	5
	6
	7
	8

	9
	10
	11
	12
	13
	14
	15
	16

	17
	18
	19
	20
	21
	22
	23
	24

	25
	26
	27
	28
	29
	30
	31
	32

	33
	34
	35
	36
	37
	38
	39
	40

	41
	42
	43
	44
	45
	46
	47
	48

	49
	50
	51
	52
	53
	54
	55
	56

	57
	58
	59
	60
	61
	62
	63
	64


Location 1 is full-pixel location and locations 2-64 are sub-pixel locations. When computing average number of operations it is assumed that probability of motion vector pointing to each sub-pixel position is the same. The average complexity is the average of the 63 sums calculated for each sub-pixel location and one full-pixel location.

Table 2 - Complexity of the 1/8-pel interpolation methods
	
	Subsequent
	Direct
	Proposed 

	Location
	Bilin.
	8-tap
	Bilin.
	8-tap
	Bilin.
	8-tap

	1
	0
	0
	0
	0
	0
	0

	3,5,7,17,33,49
	0
	16
	0
	16
	0
	16

	19,21,23,35,37,39,51,53,55
	0
	60
	0
	60
	0
	60

	2,8,9,57
	16
	16
	0
	16
	16
	16

	4,6,25,41
	16
	32
	0
	16
	16
	32

	10,16,58,64 
	32
	76
	0
	60
	16
	32

	11,13,15,59,61,63
	16
	60
	0
	60
	16
	60

	18,24,34,40,50,56
	16
	76
	0
	60
	16
	60

	12,14,60,62
	32
	120
	0
	60
	16
	32

	26,32,42,48
	32
	108
	0
	60
	16
	32

	20,22,36,38,52,54
	16
	120
	0
	60
	16
	76

	27,29,31,43,45,47
	16
	76
	0
	60
	16
	76

	28,30,44,46
	32
	152
	0
	60
	16
	60

	Average
	64
	290.25
	0
	197.75
	48
	192.75


The number of 8-tap operations is 34% lower for proposed method than that of the subsequent interpolation used in TML-8. The number of bilinear operations is 25% lower, but this improvement is of relatively small importance compared to reduction in 8-tap operations. Should direct interpolation be utilized for 1/8 pel interpolation its complexity would be comparable to the complexity of proposed methods.

4 Simulation Results

Performance was measured using TML-8 software and recommended encoder settings and test conditions. Simulation results included in VCEG-N31.xls show no significant difference between the direct interpolation, TML-5 interpolation and proposed method both for 1/4 and 1/8 pel precision interpolation. 

To reduce precision requirements we tested using current 8–tap filters coefficients divided by 2, i.e., instead of current 8-tap filters

h1={ -3, 12, -37, 229,  71, -21,  6, -1 },  

h2 = {-3, 12, -39, 158, 158, -39, 12, -3 },  

h3= {-1,  6, -21,  71, 229, -37, 12, -3 },  

we used:

h1 = {-1, 6, -19, 115, 36, -11, 3, -1},

h2 = {-2, 6, -19, 79, 79, -19, 6, -2},

h3 = {-1, 3, -11, 36, 115, -19, 6, -1}.

Results when these reduced precision coefficients are used together with the proposed interpolation method are also given in VCEG-N31.xls. Comparison with the current 1/8-pel interpolation shows no performance degradation.

5 Conclusions

New interpolation method was presented. The coding efficiency and its decoder complexity are comparable to the direct interpolation method currently employed in the TML software. The main difference is the encoder complexity. 

In case of 1/4 pel precision when encoder is implemented by pre-calculating 1/2 pixel values and interpolating 1/4 pixels on the fly direct interpolation requires memory 9x the size of the original frame to store 1/2 pixels comparing to 4x required by the proposed method. Moreover, interpolation of 1/4 pixels in case of direct interpolation is more complex since scaling and clipping is required in addition to bilinear interpolation. 

For 1/8 precision interpolation when direct interpolation is used in the encoder all the sub-pixel values should be calculated before motion estimation is started which requires 64 times the memory of the original frame. Proposed method allows to pre-calculate 1/2 and 1/4 pixels which storage require 16 times the memory of the original frame and 1/8 pixels can be calculated as required by bilinear interpolation.

References

[1] Thomas Wedi, " Complexity Reduced Motion Compensated Prediction with 1/8-pel Displacement Vector Resolution ", Document  VCEG-L20, Video Coding Experts Group (VCEG) 12th meeting, Eibsee, Germany, 9-12 January, 2001

[2] Telenor Broadband Services, "TML H.26L Codec v. 8.0," via ftp://standard.pictel.com/video-site/h26L, 9th July, 2001.




















































































































































































































































































































































































































































































































































File:VCEG-N31.doc
Page: 6
Date Printed: 09/18/2001

_1061288477.unknown

_1061288490.unknown

_1061288497.unknown

_1061288504.unknown

_1061288484.unknown

_1061288462.unknown

_1061288470.unknown

_1061288361.unknown

