	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

Fourteenth Meeting: USA, 24-27 September, 2001
	Document: VCEG-N19

Filename: VCEG-N19.doc

Generated: 17 September ’01

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Tianli Chu, Shijun Sun, Louis Kerofsky and Shawmin Lei
Sharp Labs of America
5750 NW Pacific Rim Blvd
Camas, WA 98607
	
Tel:
Fax:
Email:
	
360-817-8446
360-817-8436
shawmin@shaprlabs.com

	Title:
	Discussion on Efficient 16-bit Implementation of the Interpolation Routine

	Purpose:
	Information

1 Introduction

In the current TML-8 [1] decoder, the interpolation routine for 1/4-pel motion vector (MV) resolution uses two-dimensional filters [2], which combine the horizontal and vertical filters. This combination slightly reduces the computation when the direct interpolation is done on pixel basis. However, if the interpolation is performed on block basis [2], using two separate one-dimensional filters is more efficient because the intermediate results of one pixel are reusable to some other pixels in the same block.

This document analyzes the computation requirements of two filtering methods and shows that block-based interpolation using separate one-dimensional filters can greatly reduce the complexity. SIMD implementations of the direct interpolation are also discussed.

In the case of 1/8-pel MV resolution, separate filters are already used in the current TML. Similar SIMD implementation as in 1/4-pel resolution can be easily achieved.

2 1/4-pel resolution

2.1 Direct interpolation filters

At the Eibsee-meeting the direct interpolation filters (Table 1) proposed in VCEG-L20 [3] were adopted into the test-model TML-6. Based on these one-dimensional filters there are two kind of filtering methods.

	Subpel-postion
	Filter Coefficients

	1/4
	(1, -5, 52, 20, -5, 1)/64

	2/4
	(2, -10, 40, 40, -10, 2)/64

	3/4
	(1, -5, 20, 52, -5, 1)/64

Table 1: 6-tap Filter coefficients for direct interpolation of different 1/4-pel positions

1. Two-dimensional filtering. This is the one used in the current TML decoder. The interpolation routine uses combined interpolation kernels (Table 2) for different sub-pel positions (Figure 1). These filters have 16-bit filter coefficients and 8-bit pixel values as its input, one 8-bit pixel value as its final output (after proper shifting and rounding). 16-bit data flow is enough here.

2. Separate filtering. Another solution is to use two one-dimensional filters sequentially, first horizontal then vertical. In the first step, the filter coefficients are 8-bit signed integers while the pixel values are 8-bit unsigned integers. It can be shown that the outputs of the first step fit in 16-bit signed integers. These numbers as well as the 8-bit vertical filter coefficients are the input of the second step. Finally, because the result of the second step can be shifted and rounded into an 8-bit pixel value before it is output, this two-step implementation can also be done with 16-bit data flow.

[image: image1.wmf]

Fullpel positon

2

-

16

Subpel positon

2

3

4

6

7

8

5

10

11

12

9

14

15

16

13

Figure 1: Image grid with 4 fullpel positions and the corresponding 15 subpel positions for 1/4-pel interpolation.

	Subpel-postion
	Filter Coefficients * 4096

	2,4,5,13
	 64,-320,3328,1280,-320,64

	3,9
	128,-640,2560,2560,-640,128

	11
	 4, -20, 80, 80, -20, 4

-20, 100,-400,-400, 100,-20

 80,-400,1600,1600,-400, 80

 80,-400,1600,1600,-400, 80

-20, 100,-400,-400, 100,-20

 4, -20, 80, 80, -20, 4

	6,8,14,16
	 1, -5, 52, 20, -5, 1

 -5, 25,-260,-100, 25, -5

 52,-260,2704,1040,-260, 52

 20,-100,1040, 400,-100, 20

 -5, 25,-260,-100, 25, -5

 1, -5, 52, 20, -5, 1

	7,12,15,10
	 2, -10, 40, 40, -10, 2

-10, 50,-200,-200, 50,-10

104,-520,2080,2080,-520,104

 40,-200, 800, 800,-200, 40

-10, 50,-200,-200, 50,-10

 2, -10, 40, 40, -10, 2

Table 2: Interpolation kernels in TML-6

2.2 Complexity analysis

If the to-be-interpolated position is an integer pixel position or it requires filtering in only one direction, the interpolation process is identical for both two-dimensional filtering and separate filtering. So in the following discussion we only consider the interpolation performed for a sub-pel position that requires both horizontal and vertical filtering. Either one 2-dimensional filter or two 1-dimensional filters should be used.

The following subsections (2.2.1 ~ 2.2.3) discuss the computation requirements of two-dimensional filtering and separate filtering, respectively, given that the interpolation is performed on pixel basis, on block basis, or on block basis using SIMD. Analysis results are put together in Table 3. Figure 2 is a comparison of normalized complexity (the number of multiplications required by two-dimensional filtering on pixel basis is referred to as 100%).

	Implementation of interpolation
	Total number of (parallel) multiplications

per 4x4 block

	
	Two-dimensional filtering
	Seperate filtering

	On pixel basis
	(6x6)x16=576
	(6x6+6)x16=672

	On block basis
	(6x6)x16=576
	((6x6+6)x1+(6+6)x3))x4=312

	SIMD on block basis 64-bit registers
	(2x6)x16=192
	((1x6+2)x1+(1+2)x3))x4=68

	SIMD on block basis 128-bit registers
	(1x6)x16=96
	((1x6+1)x1+(1+1)x3))x4=52

Table 3: Comparison of computation requirements of different filtering for 1/4-pel direct interpolation

[image: image2.wmf]Comparison of Normalized Complexity in 1/4-pel resolution

0

20

40

60

80

100

120

Pixel basis

Block basis

SIMD 64-bit

SIMD 128-bit

Filtering Implementation

2-D Flt.

Sep. Flt.

Figure 2
2.2.1 Interpolation on pixel basis

In this mode no intermediate results are reusable.

· Two-dimensional filtering: The number of multiplication per pixel is 6x6=36. A 4x4 motion block requires 36x16=576 multiplications.

· Separate filtering: For a single pixel, the number of multiplication in the first step is 6x6=36; the second step requires 6 multiplications. A 4x4 motion block thus requires 42x16=672 multiplications, 116% of that in two-dimensional filtering.

2.2.2 Interpolation on block basis

· Two-dimensional filtering: Since no intermediate results are reusable, the number per block remains the same, 576 multiplications.

· Separate filtering: For the first pixel of each column, the interpolation requires 42 multiplications (as in 2.2.1). For the remaining 3 pixel of the same column, only one additional horizontal filtering is needed in the first step, while the second step is not influenced. Thus each of them requires 6+6=12 multiplications. One block in total requires (42+12x3)x4=312 multiplications, 54% of that in two-dimensional filtering.

2.2.3 SIMD implementation

The number of required multiplication depends on the length of the SIMD registers.

1. 64-bit SIMD registers. A 64-bit SIMD register can accept 4 16-bit operands or 8 8-bit operands at the same time for parallel computations.

· Two-dimensional filtering: Ideally the 36 16-bit multiplications can be done with 9 parallel multiplications. However, because the image pixels from different rows are not stored consecutively, it is more efficient to separate the computation of different rows. Consequently each row requires 2 parallel multiplications. One pixel requires 2x6=12 multiplications in total. One block requires 12x16=192 multiplications.

· Separate filtering: The first step has six 6-tap filtering. Each 6-tap filtering requires 6 8-bit multiplications that can be done with only one parallel multiplication. The second step has 16-bit operands and requires 2 multiplications. Applying similar analysis in 2.2.2, the first pixel of each column requires 6+2=8 multiplications. Each of the remaining 3 pixels of the same column requires 1+2 =3 multiplications. Total number of multiplication of the motion block is (8+3x3)x4=68, 35% of that in two-dimensional filtering.

2. 128-bit SIMD registers. A 128-bit SIMD register can accept 8 16-bit operands at the same time for parallel computations.

· Two-dimensional filtering: Ideally the 36 16-bit multiplications can be done with 5 parallel multiplications. But again, aligning elements from different row requires additional overhead, it is more efficient to separate the computation of different rows. Consequently each pixel requires 1x6=6 multiplications. The total of one 4x4 block is 6x16=96 multiplications.

· Separate filtering: The first pixel of each column requires 6+1=7 multiplications. The remaining 3 pixel of the same column requires 1+1 =2 multiplications. The total number of multiplication of the whole block is (7+2*3)x4=52, 54% of that in two-dimensional filtering.

2.3 Discussion on block-based interpolation

Motion-block-based interpolation is more efficient because in most cases all the pixels in the bock are interpolated into the same relative sub-pel position. However when interpolation references data outside of the frame, the interpolation is not uniform within a block. Those out-of-frame pixels are mapped into the nearest picture edge, which corresponds to a different interpolation sub-pel position from that of the inside-frame part. Block-based interpolation for these blocks is still possible but requires much more effort. One solution is to simply use pixel-based interpolation for these special blocks (which is the case in Section 2.4 and Section 3.3). Section 4 proposes an “improved interpolation with padding” to solve this problem.

2.4 Implementation and simulation

Based on the analysis in Section 2.3, we modified the interpolation routine in TML-8 decoder. The new routine performs 4x4 motion-block based interpolation. 64-bit Pentium MMX instructions are used to simulate 64-bit SIMD processing which is described in Section 2.3.

Experiments are conducted following the “Simulation Conditions” specified in VCEG-M75 [5]. A set of TML-8 bitstreams is decoded using TML-8 decoder and SLA’s optimized decoder. For each bitstream the decoding time taken by the luma interpolation routine is measured. Table 4 shows the interpolation complexity of the two decoders. In average there is a 70% complexity reduction.

	sequence
	number of frames
	decoder
	total time taken by luma interpolation routine (ms)
	average complexity reduction

	
	
	
	QP16
	QP20
	QP24
	QP28
	QP31
	

	container_qcif
	100
	TML8
	109.07
	80.08
	72.38
	58.39
	36.49
	70.21%

	
	
	SLA
	33.13
	24.77
	22.31
	17.00
	10.12
	

	
	
	Ratio
	30.37%
	30.94%
	30.82%
	29.12%
	27.72%
	

	news_qcif
	100
	TML8
	186.26
	168.40
	153.47
	124.02
	77.63
	70.50%

	
	
	SLA
	57.88
	51.51
	44.90
	35.45
	21.72
	

	
	
	ratio
	31.07%
	30.59%
	29.26%
	28.58%
	27.98%
	

	foreman_qcif
	100
	TML8
	636.40
	627.41
	588.86
	506.72
	336.58
	74.67%

	
	
	SLA
	159.80
	155.27
	145.40
	126.13
	91.66
	

	
	
	ratio
	25.11%
	24.75%
	24.69%
	24.89%
	27.23%
	

	silent_qcif
	150
	TML8
	340.45
	310.86
	251.99
	163.06
	87.22
	72.82%

	
	
	SLA
	90.11
	83.12
	66.78
	44.99
	24.96
	

	
	
	ratio
	26.47%
	26.74%
	26.50%
	27.59%
	28.61%
	

	paris_cif
	150
	TML8
	1252.99
	1158.80
	1052.31
	885.78
	618.38
	72.47%

	
	
	SLA
	348.56
	322.55
	290.65
	241.70
	167.53
	

	
	
	ratio
	27.82%
	27.83%
	27.62%
	27.29%
	27.09%
	

	mobile_cif
	300
	TML8
	6758.52
	6944.74
	7186.14
	7113.07
	6506.09
	72.93%

	
	
	SLA
	1904.77
	1941.29
	1961.80
	1883.45
	1653.85
	

	
	
	ratio
	28.18%
	27.95%
	27.30%
	26.48%
	25.42%
	

	tempete_cif
	260
	TML8
	6760.28
	6715.66
	6495.42
	5563.53
	3254.17
	73.80%

	
	
	SLA
	1816.73
	1774.53
	1676.92
	1403.27
	868.32
	

	
	
	ratio
	26.87%
	26.42%
	25.82%
	25.22%
	26.68%
	

	total average
	
	
	
	
	
	
	
	72.48%

Table 4
Due to the limitation of Pentium MMX instruction set, the filtering process in the optimized decoder is only an approximation of the SIMD implementation described in Section 2.2. For example, Pentium MMX cannot perform parallel multiplication of 8-bit integers.

Also note that interpolation includes other processing overhead besides filtering. Compared to the analysis in Section 2.2, where only filtering itself is counted, the simulation measures the complexity of the interpolation routine as a whole.

3 1/8-pel resolution

3.1 Direct interpolation filters

Direct interpolation for 1/8-pel resolution uses one-dimensional filters (Table 5), which only have 16-bit filter coefficients. Because the results of the first step are shifted and rounded into 8-bit pixel values before being fed into the second step, 16-bit data flow is enough for 1/8-pel direct interpolation.

In 1/8-pel resolution, the interpolation of a 1/4-pel position follows the same procedure as in 1/4-pel resolution except that a different set of filters is used. The interpolation of a 1/8-pel position (which is not a 1/4-pel position at the same time) is done in 2 steps: first its neighboring 1/4-pel positions are interpolated, and then bilinear interpolation is used to get the value of the 1/8-pel positions.

	Subpel-postion
	Filter Coefficients

	1/4
	(-3, 12, -37, 229, 71, -21, 6, -1)/256

	2/4
	(-3, 12, -39, 158, 158, -39, 12, -3)/256

	3/4
	(-1, 6, -21, 71, 229, -37, 12, -3)/256

Table 5: 8-tap Filter coefficients for direct interpolation of different 1/4-pel positions

For the sake of simplicity, in the following analysis, we only consider the direct interpolation of a 1/4-pel position that requires filtering in both directions.

3.2 Complexity analysis

For a 1/4-pel position that requires both horizontal and vertical filtering, direct interpolation for 1/8-pel resolution uses two separate filters sequentially. The first step includes eight 8-tap filtering; each has 16-bit filter coefficients and 8-bit pixel values as its input, and one 8-bit pixel value as its output. The second step includes one 8-tap filtering with the same kind of data flow as in the first step.

Similar analysis as in 2.2 can be easily applied to separate filtering in 1/8-pel direct interpolation. The results are listed in Table 6. Figure 3 is a comparison of normalized complexity (the number of multiplications required by interpolation on pixel basis is referred to as 100%).
	Implementation of interpolation
	Total number of (parallel) multiplications

per 4x4 block

	On pixel basis
	(8x8+8)x16=1152

	On block basis
	((8x8+8)x1+(8+8)x3)x4=480

	SIMD on block basis 64-bit registers
	((2x8+4)x1+(2+4)x3)x4=152

	SIMD on block basis 128-bit registers
	((1x8+2)x1+(1+2)x3)x4=76

Table 6: Comparison of computation requirements of different implementations of 1/8-pel direct interpolation

[image: image3.wmf]Comparison of Normalized Complexity in 1/8-pel complexity

0

20

40

60

80

100

Pixel basis

Block basis

SIMD 64-bit

SIMD 128-bit

Filtering Implementation

Sep. Flt.

Figure 3

3.3 Implementation and simulation

Same as in 1/4-pel resolution, the new routine modified from TML-8 performs 4x4 motion-block based interpolation. 64-bit Pentium MMX instructions are used to simulate 64-bit SIMD processing. Table 7 compares the luma interpolation complexity of the TML-8 decoder and SLA’s optimized decoder. In average there is an 80% complexity reduction.

	sequence
	number of frames
	decoder
	total time taken by luma interpolation routine (ms)
	average complexity reduction

	
	
	
	QP16
	QP20
	QP24
	QP28
	QP31
	

	foreman_qcif
	100
	TML8
	3129.01
	2972.47
	2822.98
	2366.01
	1642.07
	80.84%

	
	
	SLA
	603.60
	573.84
	538.53
	450.34
	313.85
	

	
	
	ratio
	19.29%
	19.31%
	19.08%
	19.03%
	19.11%
	

	mobile_cif
	300
	TML8
	35676.50
	35083.97
	34043.88
	33269.37
	29656.57
	79.86%

	
	
	SLA
	7215.07
	7101.66
	6927.92
	6680.23
	5879.20
	

	
	
	ratio
	20.22%
	20.24%
	20.35%
	20.08%
	19.82%
	

	total average
	
	
	
	
	
	
	
	80.35%

Table 7

4 improved interpolation with padding

As discussed in Section 2.3, sub-pel-positions in interpolation are not uniform for an out-of-frame motion block. To eliminate this variety, we suggest a change in the interpolation process. It is to pad the image boundaries by several integer pixels in both encoder and decoder. The out-of-frame sub-pel positions will be interpolated from the padded integer pixels, on the same sub-pel positions as the inside-frame part.

This padding facilitates a uniform block-based interpolation. In simulation its rate-distortion performance is same as that of the original codec (Figure 4 and Figure 5). Complete test results for seven sequences at different quantization levels are shown in VCEG-19.xls.

[image: image4.wmf]Mobile (CIF, 30 Hz)

20

22

24

26

28

30

32

34

36

0

200

400

600

800

1000

1200

1400

1600

1800

Bitrate [kbit/s]

PSNR Y [dB]

TML-8

Padding

Figure 4

[image: image5.wmf]Foreman (QCIF, 10 Hz)

24

26

28

30

32

34

36

38

10

20

30

40

50

60

70

80

Bitrate [kbit/s]

PSNR Y [dB]

TML-8

Padding

Figure 5

5 IPR Statement

We are unaware of any existing or planned intellectual property related to this contribution.

6 Summary

In this document, we first explore the interpolation process and show that it can be done with 16-bit data flow providing support to SLA’s proposal of an all-16-bit system.

Interpolation is the most time-consuming routine in the TML decoder. We analyze the complexity of different filtering implementation in terms of required multiplications. It is shown that separate filtering is more computation-efficient than two-dimensional filtering if interpolation is performed on block basis and intermediate results are reused. In simulation block-based separate filtering with MMX reduces the interpolation routine complexity by 70% ~ 80%.

References

[1] H.26L Test Model Long Term Number 8 (TML-8) draft0
[2] Thomas Wedi, “ Direct Interpolation Filters in TML-6 ”, Document VCEG-M44, Video Coding Experts Group (VCEG) 13th meeting, Austin, USA, April 2-4, 2001

[3] Thomas Wedi, " Complexity Reduced Motion Compensated Prediction with 1/8-pel Displacement Vector Resolution ", Document VCEG-L20, Video Coding Experts Group (VCEG) 12th meeting, Eibsee, Germany, January 9-12, 2001

[4] Antti Hallapuro, Marta Karczewicz, “ Complexity Analysis of H.26L “, Document VCEG-M50, Video Coding Experts Group (VCEG) 12th meeting, Austin, USA, March 2-5, 2001

[5] Gisle Bjontegaard, “ Recommended Simulation Conditions for H.26L “, Document VCEG-M75, Video Coding Experts Group (VCEG) 13th meeting, Austin, USA, April 2-4, 2001

_1058184534.xls
Chart1

		Pixel basis		Pixel basis

		Block basis		Block basis

		SIMD 64-bit		SIMD 64-bit

		SIMD 128-bit		SIMD 128-bit

2-D Flt.

Sep. Flt.

Filtering Implementation

Normalized Complexity (%)

Comparison of Normalized Complexity in 1/4-pel resolution

100

116.6666666667

100

54.1666666667

33.3333333333

11.8055555556

16.6666666667

9.0277777778

fourth-pel

		Comparison of Normalized Complexity in 1/4-pel resolution

				Pixel basis		Block basis		SIMD 64-bit		SIMD 128-bit

		2-D Flt.		576		576		192		96

		Sep. Flt.		672		312		68		52

		2-D Flt.		100		100		33.3333333333		16.6666666667

		Sep. Flt.		116.6666666667		54.1666666667		11.8055555556		9.0277777778

_1059556195.xls
Chart1

		75.697		75.66

		47.34		47.372

		29.954		29.949

		18.929		18.841

		12.415		12.342

TML-8

Padding

Bitrate [kbit/s]

PSNR Y [dB]

Foreman (QCIF, 10 Hz)

36.13

36.15

33.53

33.54

31.05

31.06

28.37

28.35

26.12

26.12

Sheet1

		TML-8		QP16		QP20		QP24		QP28		QP31

		bitrate (kbps)		75.697		47.34		29.954		18.929		12.415

		psnr y (db)		36.13		33.53		31.05		28.37		26.12

		Padding		QP16		QP20		QP24		QP28		QP31

		bitrate (kbps)		75.66		47.372		29.949		18.841		12.342

		psnr y (db)		36.15		33.54		31.06		28.35		26.12

_1059556318.xls
Chart1

		1641.592		1638.299

		845.177		843.818

		429.438		429.413

		244.845		244.946

		167.663		167.315

TML-8

Padding

Bitrate [kbit/s]

PSNR Y [dB]

Mobile (CIF, 30 Hz)

34.07

34.08

30.88

30.88

28

28.01

25.16

25.17

22.82

22.84

Sheet1

		TML-8		QP16		QP20		QP24		QP28		QP31

		bitrate (kbps)		1641.592		845.177		429.438		244.845		167.663

		psnr y (db)		34.07		30.88		28		25.16		22.82

		Padding		QP16		QP20		QP24		QP28		QP31

		bitrate (kbps)		1638.299		843.818		429.413		244.946		167.315

		psnr y (db)		34.08		30.88		28.01		25.17		22.84

_1058186495.xls
Chart1

		Pixel basis

		Block basis

		SIMD 64-bit

		SIMD 128-bit

Sep. Flt.

Filtering Implementation

Normalized Complexity (%)

Comparison of Normalized Complexity in 1/8-pel complexity

100

41.6666666667

13.1944444444

6.5972222222

fourth-pel

		Comparison of Normalized Complexity in 1/8-pel complexity

				Pixel basis		Block basis		SIMD 64-bit		SIMD 128-bit

		Sep. Flt.		1152		480		152		76

		Sep. Flt.		100		41.6666666667		13.1944444444		6.5972222222

_1047195489.doc

13

16

15

14

9

12

11

10

5

8

7

6

4

3

2

Subpel positon

2-16

Fullpel positon

