	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

Thirteenth Meeting: Austin, Texas, USA, 2-4 April, 2001
	Document VCEG-M52
Filename: VCEG-M52.doc

Generated: 27 March ’01

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Thomas Stockhammer
Institute for Communications Eng.
Munich University of Technology
D-80290 Munich
Germany

Detlev Marpe
Image Processing Department
Heinrich-Hertz-Institute
Einsteinufer 37
D-10587 Berlin
Germany
	Tel:
Fax:
Email:

Tel:
Fax:
Email:
	+49 89 28923474
+49 89 28923490
stockhammer@ei.tum.de

+49 30 31 002 619
+49 30 392 72 00
marpe@hhi.de

	Title:
	Test Model Document Changes for Data Partitioning and NAL Support

	Purpose:
	Proposal

1 Introduction

We request to change the test model document with the following changes to support the data partitioning and network adaptation layer concept in H.26L. In contrast to the current description the two aspects data partitioning and network adaptation layer are separated. The description follows the bit stream syntax which currently specified. A pseudo-C description is used in sequel of the document to provide an appropriate specification of the bit stream syntax. A more appropriate description tool of the syntax will be necessary. Figure 1 shows the layered structure and the interfaces discussed in this proposal.

[image: image1.wmf]Video

Coding Layer

Data Partitioning

Network

Adaptation

Layer

Macroblock Structure

Slice Structure

File Format

H.223

RTP/UDP/IP

Figure 1 Layer Structure of the Test Model description

We propose to replace section 7 and 8 in the current test model document TML6d0 by the sections 2, 3, and 4 of this proposal. The proposal includes the description of an interim file format including the definition of syntax elements and data structures MACROBLOCK and SLICE. Section 3 defines the currently supported data partitioning modes. And section 4 deals with network adaptation layer issues. Section 4 has to be completed by further definitions according to specific transport protocols. The network adaptation layer (NAL) for an H.26L File Format, H.324 transmission and RTP/UDP/IP based transmission is specified. Section 5 of this proposals discusses the integration of the proposed concept in the test model software. Additionally, some further comments on TML software enhancements are added. These additional features could be included by the proponents in the already enhanced software into the test model within one week after the meeting.

2 Interim File Format

We propose to exclude all sequence, picture and slice relevant syntax elements from the syntax element tables as this information is transported according to the network adaptation layer specific protocol. These issues will be discussed in section 4.

2.1 Syntax Elements on Macroblock Level
The following syntax elements are defined on macroblock level. Note that for B-frames up to this point all syntax elements are grouped in one class.
0
SE_MBTYPE

Macroblock Type

1
SE_REFFRAME

Reference Frame

2
SE_INTRAPREDMODE

Intra Prediction Mode

3
SE_MVD

Motion Vector Data

4
SE_CBP_INTRA

Coded Block Pattern for Intra Coded MBs

5
SE_LUM_DC_INTRA

Luma DC Coefficients for Intra Coded MBs

6
SE_CHR_DC_INTRA

Chroma DC Coefficients for Intra Coded MBs

7
SE_LUM_AC_INTRA

Luma AC Coefficients for Intra Coded MBs

8
SE_CHR_AC_INTRA

Chroma AC Coefficients for Intra Coded MBs

9
SE_CBP_INTER

Coded Block Pattern for Inter Coded MBs

10
SE_LUM_DC_INTER

Luma DC Coefficients for Inter Coded MBs

11
SE_CHR_DC_INTER

Chroma DC Coefficients for Inter Coded MBs

12
SE_LUM_AC_INTER

Luma AC Coefficients for Inter Coded MBs

13
SE_CHR_AC_INTER

Chroma AC Coefficients for Inter Coded MBs

0
SE_BFRAME

All Macroblock Data assigned to B-frames

14
MAX_SYNTAX_ELEMENTS_PER_MB

The numbers defined in the first column are used in the following to exactly specify the data partitioning schemes.

2.2 Data Structures

In the following we will define three data structures which allow to specify interfaces and exact specification of the syntax. We define a general structure which allows to access a sequence of bits with the appropriate length, in the following referred to as bit vector:

typedef struct

{

int

Length
Number of bits included in this vector

[]byte
Data

Content, padded with 0 in the last byte

} BitVector

Additionally, we define a structure MACROBLOCK. It is assumed that the content of the structure is generated by the Video Coding Layer. It contains some header information which describes the current frame or slice as well as the bit vector for each syntax element.

typedef struct {

int
TimeStamp

temporal reference of actual frame

int
Address

address of the macroblock

int
SliceStartFlag
signals start of new slice/picture

int
QP

quantization parameter

int
PictureType

Picture Type

int
PictureFormat
Picture Format

int
EOSFlag

End of Sequence Flag

BitVector SyntaxElement[MAX_SYNTAX_ELEMENTS_PER_MB] contains all Syntax

Elements of macroblock

} MacroBlock

Some additional information might be added to this macroblock structure, if necessary. This structure is the only output of the video coding layer. It enables the data partitioning scheme to access all relevant information.

Finally, we define the data structure SLICE. This structure is the only output of the video coding part to the network adaptation layer. It contains all relevant information such that the packetization of the slice data is possible. It should be mentioned that in case of no slice support, a slice represents an entire frame. The slice structure contains a header and a bit stream description of each partition. Obviously, if no data partitioning is supported the whole slice is included in just one partition. The partition mode and the number of partitions are signalled in the header.

typedef struct {

int
TimeStamp

temporal reference on actual frame

int
StartMBAddress
address of starting macroblock

int
QP

quantization parameter

int
PictureType

Picture Type

int
PictureFormat
Picture Format

int
EOSFlag

End of Sequence Flag

int
NoPartitions
Number of partitions included

int
DP_Mode

Data Partitioning Mode

BitVector Partition[]
contains all Partitions of Slice

} Slice

A slice is the only data structure which is passed to the network adaptation layer. This structure might include different other information like the partitioning mode, the number of macroblocks included in the slice or the total number of bits. However, it seems that this information is not needed at this point by data partitioning or the network adaptation layer.

2.3 Methods on BitVector

We define some methods on the structure BitVector. If the appropriate description tools are selected a more appropriate definition of these methods is necessary. For the time being the semantics of the methods should be clear.

Methods:

ClearBitVector(BitVector *BV)
clears the vector by setting the length to 0.

BVl += BVr
appends the BitVector on the right side BVr to BitVector on the left side BRl (0 padding in byte is removed).

3 Data Partitioning

3.1 Data Partitioning Modes

In the following the mapping of macroblock structures on slice structures for different data partitioning schemes will be discussed. Currently, three data partititioning schemes are supported

0
00
DP_1

no data partitioning is supported, only 1 partition

1
01
DP_2

includes 2 partitions, MVD and Texture split

2
10
DP_4

includes 4 partitions, MB_TYPES, MVD, Intra, Inter

3
Reserved

We will describe how to map the macroblock structure on the slice structure for the different data partitioning modes. The data partitioning modes were suggested and introduced for different applications. However, they are not restricted to the application. Therefore, the context they were introduced for is only mentioned in brackets. For interoperability each data partitioning mode should be supported. Also, in the current definition, the data partitioning mode can be changed for each slice. A restriction on modes might be specified in profile and levels. However, at this point and for sake of interoperability this restriction seems to be non-beneficial.

3.2 Data Partitioning Mode 0 (No Data Partitioning)

This section describes the mapping of macroblocks on slices without any data partitioning modes. We assume that the macroblocks are accessible in the correct order from a buffer. The function GetNextMBFromVCL(MB) takes the macroblock from the buffer. The syntax how to generate a slice which is then passed to the network adaptation layer by the function PutSliceToNAL(Sl)is as follows.

Slice Sl;

Macroblock MB;

do

{

GetNextMBFromVCL(MB);

if (MB.Address==0 || MB.SliceStartFlag == TRUE)

{

PutSliceToNAL(Sl);

Sl.TimeStamp
= MB.TimeStamp;

Sl.StartMBAddress
= MB.Address;

Sl.QP

= MB.QP;

Sl.PictureType
= MB.PictureType;

Sl.PictureFormat
= MB.PictureFormat;

Sl.EOSFlag

= MB.EOSFlag;

Sl.NoPartitions
= 1;

Sl.DP_Mode

= DP_1 ;

ClearBitVector(Sl.Partition[0]);

}

for(int se=0; se<MAX_SYNTAX_ELEMENTS_PER_MB; se++)

Slice.Partition[0] += MB.SyntaxElement[se];

}

while(!MB.EOSFlag)

3.3 Data Partitioning Mode 1 (IP based Error Prone Networks)

In order to allow unequal protection of more important bits of the bit stream, exactly two packets per slice are generated (see Q15-J-53 for a detailed discussion). Slices should be used to ensure that both packets meet the MTU size constraints to avoid network splitting/recombining processes.

The methods and functions used in here are equivalent to the one in DP_0.

Slice Sl;

Macroblock MB;

do

{

GetNextMBFromVCL(MB);

if (MB.Address==0 || MB.SliceStartFlag == TRUE)

{

PutSliceToNAL(Sl);

Sl.TimeStamp
= MB.TimeStamp;

Sl.StartMBAddress
= MB.Address;

Sl.QP

= MB.QP;

Sl.PictureType
= MB.PictureType;

Sl.PictureFormat
= MB.PictureFormat;

Sl.EOSFlag

= MB.EOSFlag;

Sl.NoPartitions
= 2;

Sl.DP_Mode

= DP_2;

for(int p=0; p< Sl.NoPartitions; p++)

ClearBitVector(Sl.Partition[p]);

}

for(int se=0; se <= SE_MVD; se++)

Slice.Partition[0] += MB.SyntaxElement[se];

for(int se=SE_CBP_INTRA; se < MAX_SYNTAX_ELEMENTS_PER_MB; se++)

Slice.Partition[1] += MB.SyntaxElement[se];

}

while(!MB.EOSFlag)

3.4 Data Partitioning Mode 2 (Circuit Switched Error Prone Networks)

For applications where smaller packets and partitions are useful, the data partitioning mode supporting four partitions is useful. This allows to separate the macroblock type, motion vector data, intra and inter coded macroblocks.

Slice Sl;

Macroblock MB;

do

{

GetNextMBFromVCL(MB);

if (MB.Address==0 || MB.SliceStartFlag == TRUE)

{

PutSliceToNAL(Sl);

Sl.TimeStamp
= MB.TimeStamp;

Sl.StartMBAddress
= MB.Address;

Sl.QP

= MB.QP;

Sl.PictureType
= MB.PictureType;

Sl.PictureFormat
= MB.PictureFormat;

Sl.EOSFlag

= MB.EOSFlag;

Sl.NoPartitions
= 4;

Sl.DP_Mode

= DP_4;

for(int p=0; p< Sl.NoPartitions; p++)

ClearBitVector(Sl.Partition[p]);

}

for(int se=0; se <= SE_REFFRAME; se++)

Slice.Partition[0] += MB.SyntaxElement[se];

for(int se=SE_INTRA_PREDMODE; se =< SE_MVD; se++)

Slice.Partition[1] += MB.SyntaxElement[se];

for(int se= SE_CBP_INTRA; se =< SE_CHR_AC_INTRA; se++)

Slice.Partition[2] += MB.SyntaxElement[se];

for(int se= SE_CBP_INTER; se =< SE_CHR_AC_INTER; se++)

Slice.Partition[3] += MB.SyntaxElement[se];

}

while(!MB.EOSFlag)

4 Network Adaptation Layer

The section specifies the encapsulation of the data provided in the slice structure. This encapsulation is done by using the specific properties of the underlying networks. This includes, for example, framing, signaling of logical channels, usage of timing information or end of sequence signaling. Also an NAL for an H.26L file format is specified which allows to access and decode H.26L without any protocol specific signaling. In addition, the network adaptation layer for transmission via H.223 within H.324 and for RTP/UDP/IP transmission is specified. Note that further specifications might be necessary if different transport networks are supported. Additionally, with the definition of the slice structure a specification outside of H.26L is possible.

It is assumed that the only structure to be accessed by the NAL is the slice structure. All relevant information is included in the slice header. Additionally, the signaling of the slice contents has to be specified in an appropriate way. It should also be mentioned that with this specification currently all data partitioning modes are supported by the underlying network. This is reasonable for interoperability.

Each NAL description contains a verbal description of the application, the encapsulation of slices and the appropriate header syntax. Also, test model issues should be discussed for proper interfaces to the test software. Additional restrictions on maximum packet sizes should be added to the description of each NAL.

Note: Byte-Alignment and Padding has to be checked

Note: This description does not include any test model description issues. Appropriate encoder and decoder actions have to be specified in the test model document.

Note: The NAL specification should support simple gateway operations

4.1 NAL for H.26L File Format

4.1.1 Description

A more detailed description has to be added in here. Also sequence headers, the signaling of picture formats, supplemental enhancement information and so on has to be specified. Currently the specification is such that the current file format is supported. In addition a partition marker is introduced which allows to detect partition boundaries.

4.1.2 Encapsulation Process

The encapsulation of slices for the H.26L File format is as follows

Slice Sl;

BitVector Bitstream;

do

{

get_next_slice(Sl);

for(int p=0; p<Sl.NoPartitions; p++)

{

ClearBitVector(Bitstream)

if(p==0)

Bitstream += H26LSliceHeader(Sl.TimeStamp, Sl.QP, Sl.PictureType, Sl.PictureFormat, Sl.StartMBAddress, Sl.DP_Mode, Sl.EOS_Flag);

else

Bitstream += H26LPartitionHeader(Sl.DP_Mode, p);

WriteToBitStream(Sl.Partition[p]);

}

}

while(!Sl.EOSFlag)

4.1.3 Header Specifications

WriteH26LSliceHeader(Sl.TimeStamp, Sl.QP, Sl.PictureType, Sl.PictureFormat, Sl.StartMBAddress, Sl.DP_Mode, SL.EOS_Flag);

Note: The exact specification of WriteSliceHeader has to be added in the appropriate syntax. Currently the description in section 3 of TML6d0 is to used for header generation. However, the signaling of the data partition mode and of different picture types and picture formats has to be supported in here.

WriteH26LPartitionHeader(Sl.DP_Mode, p);

To be defined. An appropriate partition header has to be defined.

4.1.4 Further Rules

To be defined

4.2 NAL for H.324 Transmission

4.2.1 Description

To be defined.

Framing is provided by the underlying layer. Therefore, we do not need the picture or slice sync information in this environment.

4.2.2 Encapsulation Process

The encapsulation of slices for appropriate H.324 transmission is as follows.

Slice Sl;

BitVector H324VideoPacket;

do

{

get_next_slice(Sl);

for(int p=0; p<Sl.NoPartitions; p++)

{

ClearBitVector(H324VideoPacket);

if(p==0)

H324VideoPacket += H324SliceHeader(Sl.TimeStamp, Sl.QP, Sl.PictureType, Sl.PictureFormat, Sl.StartMBAddress, Sl.DP_Mode, SL.EOS_Flag);

else

H324VideoPacket += H324PartitionHeader(Sl.DP_Mode, p);

H324VideoPacket += Sl.Partition[p]

DeliverToH223(H324VideoPacket);

}

}

while(!Sl.EOSFlag)

4.2.3 Header Specifications

H324SliceHeader(Sl.TimeStamp, Sl.QP, Sl.PictureType, Sl.PictureFormat, Sl.StartMBAddress, Sl.DP_Mode, SL.EOS_Flag);

To be defined. A very similar mode as for the file format can be used except for the framing information. This is not necessary as H.223 provides a framed transmission mode.

H324PartitionHeader(Sl.DP_Mode, p);

To be defined

4.2.4 Further Rules

To be checked in detail.

· Each partition start has to be aligned with the start if a MUX-PDU.

· A maximum H324VideoPacket length has to be defined. I think 254 bytes. Denote that this is not part of the syntax description, this has to be taken care of the Video Coding Layer.

4.3 NAL for IP Networks

4.3.1 Description

This section covers the Network Adaptation Layer for non-managed, best effort IP networks using RTP [RFC1889] as the transport. The section will likely end up in the form of a standard’s track RFC covering an RTP packetization for H.26L.

The NAL takes the information of the slice structure as discussed in section 2 and converts it into packets that can be transported over RTP. It is designed to be able to take advantage of more than one virtual transport stream (either within one RTP stream by unequal packet content protection currently discussed in the IETF and as Annex I of H.323, or by using several RTP streams with network or application layer unequal error protection).

In doing so, it has to

· arrange slices and partitions in an appropriate way to generate RTP/UDP/IP packets,

· avoid the redundant transmission of information already included in the RTP header,

· appropriate and efficient signaling of the slice header and partition header.

4.3.2 Encapsulation Process

The encapsulation for RTP/UDP/IP transmission is as follows:

Slice Sl;

BitVector RTPPacket;

do

{

get_next_slice(Sl);

for(int p=0; p<Sl.NoPartitions; p++)

{

ClearBitVector(RTPPacket);

if(p==0)

RTPPacket += RTPSliceHeader(Sl.TimeStamp, Sl.QP, Sl.PictureType, Sl.PictureFormat, Sl.StartMBAddress, Sl.DP_Mode, SL.EOS_Flag);

else

RTPVideoPacket += RTPPartitionHeader(Sl.DP_Mode, p);

RTPVideoPacket += Sl.Partition[p];

DeliverToIP(RTPPacket);

}

}

while(!Sl.EOSFlag)

4.3.3 Header Specifications

RTPSliceHeader(Sl.TimeStamp, Sl.QP, Sl.PictureType, Sl.PictureFormat, Sl.StartMBAddress, Sl.DP_Mode, SL.EOS_Flag);

The slice header consists of a 32 bit header. An exact mapping of the slice header to the following 32 bit header has to be specified.

Bit 30..31
Partition Id is set to 0

Bits 16-29
StartMB. It is assumed that no picture has more than 2**14 Macroblocks

Bit 14..15
Partition Mode

Bits 9..13
Quantization Parameter

Bits 6..8

Picture Type

Bits 2..5

Picture Format

Bits 0..1

Reserved

Note: The PictureID (TR) can be easily reconstructed from the RTP Timestamp and is therefore not coded again.

Note: The EOSFlag can be signaled via the marker bit within the RTP header

RTPPartitionHeader(Sl.DP_Mode, p)

The partition header is specified by a partition id not equal to zero. The Bits 0..15 in the slice header are therefore identical for the partition having the same temporal reference and the same StartMB Address. Without having partition 0 the residual partitions would be useless anyways. That is why the following 16 bit partition header is good enough.

Bit 14..15
Partition Id

Bits 0-13
StartMB. It is assumed that no picture has more than 2**14 Macroblocks

The encapsulation process converts the slice structure (or, in a real world system, data partitioned symbols arriving through a software interface) into IP/UDP/RTP packets. The following RTP header fields are used (see RFC1889 for exact semantics):

· Timestamp: is calculated according to the rules of RFC1889 and RFC2429 based on a 90 KHz timestamp.

· Marker Bit: set for the very last packet of a picture (’Second’ packet of the last Slice), otherwise cleared.

· Sequence Number is increased by one for every generated packet, and starts with 0 for easier debugging (this in contrast to RFC1889, where a random initialisation is mandatory for security purposes).

· Version (V): 2

· Padding (P): 0

· Extension (X): 0

· Csourcecount (CC): 0

· Payload Type (PT): 0
(This in contrast to RFC1889 where 0 is forbidden)

4.3.4 Test Model Issues

The RTP packet file, used as the input to packet loss simulators and similar tools (note that this format is identical to the ones used for IP-related testing during the H.263++ project, so that the loss simulators, error patterns etc, can be re-used):

· Int32
size of the following packet in bytes

· []byte
packet content, starting with the RTP header.

The De-packetization process reconstructs a file in the Interim File Format from an RTP packet file (that is possible subject to packet losses). This task is straightforwad and reverse to the packetization process. (Note that the QP and Format fields curretly have to be reconstructed using the VLC-coded symbols in the TYPE_HEADER partition. This bug in the Interim File Format spec should be fixed some time).

In order to take advanatge of potential UEP for the ’First’ packet and the ability of the decoder to reconstruct data where CBP/coefficient information was lost, a very simple error concealment strategy is used. This strategy repairs the bitstream by replacing a lost CBP partition with CBPs that indicate no coded coefficients. Unfortunately, the CBP codewords for Intra and Inter blocks are different, so that such a repair cannot be done context-insensitive. Instead of (partly) VLC-decoding the CBP partition in the NAL module in order to insert the correct type of CBP symbol in the (lost) partition, the decoder itself can be changed to report the appropriate CBP symbols saying ”No coefficients” whenever the symbol fetch for a CBP symbol returns with the indication of a lost/empty partition.

4.3.5 Further Rules and Restrictions

This is actually not necessary for the standard description:

Any packetization scheme has to make some assumptions on typical network conditions and constraints. The following set of assumptions have been used in earlier Q.15 research on packetization and are deemed to be still valid:

· MTU size: around 1500 bytes per packet for anything but dial-up links, 500 bytes for dial-up links.

· Packet loss characteristic: non-bursty (due to drop-tail router implementations, and assuming reasonable pacing algorithms (e.g. no bursting occurs at the sender).

Packet loss rate: up to 20%

5 Software Integration

The presented data structures will be introduced into the test model software. Additionally, the software of the test model is modified to operate in a more modular way. The following changes to the current software implementation (Version 5.9) have been considered:

· The branching corresponding to different picture types (I-/P- or B-frame), which is currently located at the top level of frame processing, will be pulled down to the processing on macroblock level. This modification avoids unnecessary duplication of source code and thus increases the reusability and maintenance of the software.

· Identifying multiple written routines and putting them into subroutines increases the benefit of reusability such that the consistency and hence the efficiency of the implementation will be much improved.

· The implicitly given decoding routines in the encoder will be identified and modularized. By transferring these routines to the decoder software project a more consistent realization of the encoder and decoder is achieved. This will be important for future integration processes since it may reduce the risk of encoder​/de​coder mismatch and, at the same time, limit the burden of a duplicated implementation.

So far, no changes to syntax or test model relevant issues are included. However, the concept of a modular structured software allows for

· Better integration of new methods,

· Better reusability of already implemented routines,

· Better maintenance of the software project,

· Better readability of the software.

The policy of future software integration should be such that any implementation of new methods into the modified test model should be done with respect to the modular architecture and its corresponding data structures. Additionally, the network adaptation layers should be implemented separately. They should operate on the slice structure. Additionally, the appropriate test model descriptions have to be added for decoder reactions.

File:VCEG-M52.doc
Page: 10
Date Printed: 28.03.2001

