ISO/IEC 15938-3 FCD

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND ASSOCIATED AUDIO

ISO/IEC JTC1/SC29/WG11/N4062
 March 2001 (Singapore)

	Source:
	Video Group

	Title:
	Text of ISO/IEC 15938-3/FCD Information Technology – Multimedia Content Description Interface – Part 3 Visual

	Status:
	Approved

	Editors:
	Leszek Cieplinski, Munchurl Kim, Jens-Rainer Ohm, Mark Pickering, Akio Yamada

ISO/IEC JTC 1/SC 29/WG 11

Date: 2001-03-14
ISO/IEC FCD 15938-3:2001(?)

Information Technology – Multimedia Content Description Interface – Part 3: Visual

Contents

8Introduction

91
Scope

92
Terms and Definitions

92.1
Default reference axis

92.2
DCT coefficients

92.3
Data element

93
Abbreviations and Symbols

93.1
Abbreviations

93.2
Arithmetic operators

103.3
Logical operators

103.4
Relational operators

103.5
Bitwise operators

103.6
Conditional operators

103.7
Assignment

103.8
Mnemonics

113.9
Constants

113.10
Functions

114
Conventions

114.1
Method of describing the DDL representation syntax

114.2
Method of describing the binary representation syntax

124.3
Method of describing the descriptor semantics

125
Basic structures

125.1
Grid layout

125.1.1
DDL representation syntax

135.1.2
Binary representation syntax

135.1.3
Descriptor components semantics

145.2
Time series

145.2.1
TimeSeries

155.2.1.1
DDL representation syntax

155.2.2
RegularTimeSeries

155.2.2.1
DDL representation syntax

155.2.2.2
Binary representation syntax

155.2.2.3
Descriptor components semantics

165.2.3
IrregularTimeSeries

165.2.3.1
DDL representation syntax

175.2.3.2
Binary representation syntax

175.2.3.3
Descriptor components semantics

185.3
Multiple view

185.3.1
DDL representation syntax

185.3.2
Binary representation syntax

195.3.3
Descriptor components semantics

195.4
Spatial 2D coordinates

205.4.1
DDL representation syntax

225.4.2
Binary representation syntax

235.4.3
Descriptor components semantics

265.5
Temporal interpolation

265.5.1
DDL representation syntax

285.5.2
Binary representation syntax

285.5.3
Descriptor components semantics

306
Color

316.1
Color space

316.1.1
DDL representation syntax

326.1.2
Binary representation syntax

326.1.3
Descriptor components semantics

346.2
Color quantization

346.2.1
DDL representation syntax

356.2.2
Binary representation syntax

356.2.3
Descriptor components semantics

356.2.4
Decoding

356.3
Dominant color

356.3.1
DDL representation syntax

376.3.2
Binary representation syntax

376.3.3
Descriptor components semantics

386.4
Scalable color

386.4.1
DDL representation syntax

396.4.2
Binary representation syntax

396.4.3
Descriptor components semantics

436.5
Color layout

436.5.1
DDL representation syntax

446.5.2
Binary representation syntax

446.5.3
Descriptor components semantics

476.6
Color structure

476.6.1
DDL representation syntax

486.6.2
Binary representation syntax

486.6.3
Descriptor components semantics

486.6.3.1
Extraction

496.6.3.2
Descriptor re-quantization

506.6.3.3
Color space and color quantization

516.6.3.4
Raw ColorStructure histogram accumulation

526.7
GoF/GoP Color

536.7.1
DDL representation syntax

536.7.2
Binary representation syntax

536.7.3
Descriptor components semantics

547
Texture

547.1
Homogeneous texture

557.1.1
DDL representation syntax

567.1.2
Binary representation syntax

567.1.3
Descriptor components semantics

577.2
Texture browsing

577.2.1
DDL representation syntax

587.2.2
Binary representation syntax

587.2.3
Descriptor components semantics

597.3
Edge components histogram

597.3.1
DDL representation syntax

607.3.2
Binary representation syntax

607.3.3
Descriptor components semantics

618
Shape

628.1
Region shape

628.1.1
DDL representation syntax

638.1.2
Binary representation syntax

638.1.3
Descriptor components semantics

638.2
Contour shape

648.2.1
DDL representation syntax

658.2.2
Binary representation syntax

658.2.3
Descriptor components semantics

668.3
Shape 3D

678.3.1
DDL representation syntax

678.3.2
Binary representation syntax

678.3.3
Descriptor components semantics

679
Motion

689.1
Camera motion

689.1.1
DDL representation syntax

719.1.2
Binary representation syntax

749.1.3
Descriptor components semantics

759.2
Motion trajectory

759.2.1
DDL representation syntax

769.2.2
Binary representation syntax

769.2.3
Descriptor components semantics

789.3
Parametric motion

789.3.1
DDL representation syntax

799.3.2
Binary representation syntax

799.3.3
Descriptor components semantics

799.4
Motion activity

809.4.1
DDL representation syntax

819.4.2
Binary representation syntax

819.4.3
Descriptor components semantics

8410
Localization

8410.1
Region locator

8410.1.1
DDL representation syntax

8510.1.2
Binary representation syntax

8510.1.3
Descriptor components semantics

8710.2
Spatio-temporal locator

8710.2.1
DDL representation syntax

8810.2.2
Binary representation syntax

88Datatype components semantics

8810.2.4
FigureTrajectoryType

8910.2.4.1
DDL representation syntax

8910.2.4.2
Binary representation syntax

8910.2.4.3
Descriptor components semantics

9010.2.5
ParameterTrajectoryType

9010.2.5.1
DDL representation syntax

9110.2.5.2
Binary representation syntax

9110.2.5.3
Datatype components semantics

9111
Others

9111.1
Face recognition

9211.1.1
DDL representation syntax

9211.1.2
Binary representation syntax

9211.1.3
Descriptor components semantics

Introduction

MPEG-7 aims at standardizing the core technologies allowing description of audiovisual data content in multimedia environments. This is a challenging task given the broad spectrum of requirements and targeted applications and the large number of audiovisual features of importance in such context.

In order to achieve this goal, MPEG-7 standardizes:

· Descriptors: representations of features that define the syntax and the semantics of each feature representation.

· Description Schemes that specify the structure and semantics of the relationships between their components, which may be both Descriptors and Description Schemes.

· Description Definition Language that allows the definition of Descriptors and Description Schemes.

This document contains the visual elements (Descriptors and Description Schemes) that are considered for being part of the standard. All these Descriptive Structures are classified along the types of the visual features they describe. For each Descriptive Structure, there is one corresponding section in this document. The section specifies textual and binary syntax and semantics of the structures.

The Final Committee Draft document contains only the normative elements of the Descriptors/Description Schemes. The non-normative elements associated with them can be found in the MPEG-7 Visual Experimentation Model document, which will be referred to as the XM. The corresponding version of the MPEG-7 Visual Experimentation Model is 10.0 (WG11 document N4063).

The visual elements should be considered in the context of a global framework, containing also generic and audio descriptive structure. The corresponding MDS part number is 15938-5. The corresponding DDL part number is 15938-2.
The structure of this document is as follows. Clause 1 defines the scope of this part of the standard. Clauses 2-4 specify the terms, abbreviations, symbols and conventions used throughout the document. Clauses 5-11 contain definitions of the descriptive structures standardized by 15938-3 grouped by the visual features they are associated with, starting with basic structures and containers in Clause 5, through color, texture, shape, motion, localization in Clause 10. Clause 11 contains the remaining, unclassified items.
Information technology – Multimedia Content Description Interface – Part 3: Visual

1 Scope

This part of ISO/IEC 15938 specifies tools for description of visual content, including still images, video and 3D models. These tools are defined by their syntax in DDL and binary representations and semantics associated with the syntactic elements. They enable description of the visual features of the visual material, such as color, texture, shape and motion, as well as localization of the described objects in the image or video sequence.

2 Terms and Definitions

2.1 Default reference axis

The default reference axis for angle calculation is the positive x (horizontal) axis. Positive angle is calculated anti-clockwise.

2.2 DCT coefficients

DCT coefficient

The amplitude of a specific cosine basis function.

AC coefficient

Any DCT coefficient for which the frequency in one or both dimensions is non-zero.

DC coefficient

The DCT coefficient for which the frequency in both dimensions is zero.

2.3 Data element

An item of data as represented before encoding and after decoding.

3 Abbreviations and Symbols

The mathematical symbols used to describe ISO/IEC 15938-3 are similar to those used in the C programming language. However, integer divisions with truncation and rounding are specifically defined. Numbering and counting loop generally begin with zero.

3.1 Abbreviations

ART

Angular-Radial Transform

CSS

Curvature Scale Space

DDL

Description Definition Language

DS

Description Schemes

D

Descriptor

DCT

Discrete Cosine Transform

FOC

Focus of Contraction

FOE

Focus of Expansion

GoF

Group of Frames

GoP

Group of Pictures

HMMD
Hue-Min-Max-Difference

HSV

Hue-Saturation-Value

RGB

Red-Green-Blue

3.2 Arithmetic operators

+
Addition

-
Subtraction (as a binary operator) or negation (as a unary operator)

++
Increment, i.e. x++ is equivalent to x=x+1

--
Decrement, i.e. x-- is equivalent to x=x-1

*
Multiplication

x
Multiplication

^
Power

/
Integer division with truncation of the result towards zero. For example, 7/4 and -7/-4 are truncated to 1

-7/4 and 7/-4 are truncated to -1

//
Integer division with rounding to the nearest integer. Half-integer values are rounded away from zero
unless otherwise specified. For example, 3//2 is rounded to 2, and -3//2 is rounded to -2.

(
Used to indicate division in mathematical equations where no rounding is intended

%
Modulus operator, defined only for positive numbers

ld
Logarithm base 2
ceil
Minimum integer number greater or equal than the given floating point number
Sign()

[image: image1.wmf]0

0

1

1

)

(

<

³

î

í

ì

-

=

x

x

x

Sign

Abs()

[image: image2.wmf]0

0

)

(

<

³

î

í

ì

-

=

x

x

x

x

x

Abs

[image: image3.wmf]å

<

=

b

i

a

i

i

f

)

(

Summation of
[image: image4.wmf])

(

i

f

with i taking integer values from a up to, but not including b.

3.3 Logical operators

||
Logical OR

&&
Logical AND

!
Logical NOT

3.4 Relational operators

>
Greater than

>=
Greater than or equal to

(
Greater than or equal to

<
Less than

<=
Less than or equal to

(
Less than or equal to

==
Equal to

!=
Not equal to

max[]
Maximum value in argument list

min[]

Minimum value in argument list

3.5 Bitwise operators

|
OR

&
AND

>>
Shift right with sign extension

<<
Shift left with zero fill

3.6 Conditional operators

?:

[image: image5.wmf]î

í

ì

=

otherwise

condition

if

b

a

b

a

condition

)

(

:

?

3.7 Assignment

=
Assignment operator

3.8 Mnemonics

The following mnemonics are defined to describe the different data types used in the coded bitstream.

bslbf
Bit string, left bit first, where “left” is the order in which bits are written in ISO/IEC 15938-3. Bit strings are generally written as a string of 1s and 0s within single quote marks, e.g. ‘1000 0001’. Blanks within a bit string are for ease of reading and have no significance. For convenience, large strings are occasionally written in hexadecimal, in which case conversion to a binary in the conventional manner will yield the value of the bit string. Thus, the left-most hexadecimal digit is first and in each hexadecimal digit the most significant of the four digits is first.
vluimsbf
Variable length unsigned integer representation consisting of two parts. The first part defines the number of octets (8-bit bit fields) used for the values representation, encoded by a sequence of “1” bits, followed by a “0” bit signaling its end. The second part contains the value of the integer encoded using the number of octets specified in the first part.
uimsbf
Unsigned integer, most significant bit first.

simsbf
Signed integer, in two’s complement format, most significant bit (sign) first.

vlclbf
Variable length code, left bit first, where “left” refers to the order in which the VLC codes are written in ISO/IEC 15938-3. The byte order of multibyte words is most significant byte first.

fsbf
Float (32 bit), sign bit first. The semantics of the bits within a float are specified in the IEEE Standard for Binary Floating Point Arithmetic (ANSI/IEEE Std 754-1985).
UTF-8
Binary string encoding defined in ISO 10646/IETF RFC 2279.
3.9 Constants

(
3.141 592 653 58…

e
2.718 281 828 45…

3.10 Functions

L1 norm

[image: image6.wmf]å

-

=

i

i

i

y

x

L

)

,

(

1

y

x

L2 norm

[image: image7.wmf](

)

å

-

=

i

i

i

y

x

L

2

)

,

(

2

y

x

Euclidean distance

[image: image8.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

=

å

i

i

i

y

x

sqrt

D

2

)

(

)

,

(

y

x

4 Conventions

4.1 Method of describing the DDL representation syntax

The method of describing the DDL representation syntax is defined in ISO/IEC 15938-2 (MPEG-7 Description Definition Language).

4.2 Method of describing the binary representation syntax

The bitstream retrieved is described in Clauses entitled “Binary syntax representation” in clauses 5—11. Each data item in the bitstream is in bold type. It is described with its name, its length in bits, and a mnemonic for its type and order of transmission.

The action caused by a decoded data element in a bitstream depends on the value of that data element and on data elements previously decoded. The following constructs are used to express the conditions when data elements are present and are in normal type.

	while (condition) {
 data_element
 …
}
	If the condition is true, then the group of data elements occurs next in the data stream. This repeats until the condition is not true.

	do {
 data_element
 …
} while (condition)
	
The data element always occurs at least once.

The data element is repeated until the condition is not true.

	if (condition) {
 data_element
 …
} else {
 data_element
 …

}
	If the condition is true, then the first group of data elements occurs next in the data stream.

If the condition is not true, then the second group of data elements occurs next in the data stream.

	for (i=m ; i<n ; i++) {
 data_element
 …

}
	The group of data elements occurs (n-m) times. Conditional construct within the group of data elements may depend on the value of the loop control variable i, which is set to m for the first occurrence, incremented by one for the second occurrence, and so forth.

	/* comments */
	Explanatory comments that may be deleted entirely without in any way altering the syntax.

The syntax uses a ‘C-code’ convention that a variable or expression evaluating to a non-zero value is equivalent to a condition that is true and a variable or expression evaluating to zero is equivalent to a condition that is false. In many cases a literal string is used in a condition. In such cases a literal string is used to describe the value of a bitstream element.

As noted, a group of data element may contain nested conditional constructs. For compactness, the brackets {} are omitted when only one data element follows. The elements of a multidimensional table are represented as follows.

data_element[n]

data_element[n] is the n+1st element in an array of data

data_element[m][n]

data_element[m][n] is the m+1st,n+1st element in a two-dimensional array of data

data_element[l][m][n]
data_element[l][m][n] is the l+1st,m+1st,n+1st element in a three-dimensional array

The elements of a multidimensional array are transmitted in the bitstream starting with data_element[0][0] and with the outermost elements incremented first, i.e. data_element[0][1] is sent second, data_element[0][2] third, etc.
4.3 Method of describing the descriptor semantics

The general semantics of the descriptors are defined in the introductory sections of respective clauses. The semantics of the syntax components is defined in sections “Descriptor components semantics”. The ordering in the semantics sections normally follows the order in which the items appear in the binary representation syntax, which is typically equivalent to the order of items in DDL instantiation (not schema speicification).
5 Basic structures

This clause introduces five supporting tools of visual descriptions defined in clauses 6(11. They are categorized into two groups, descriptor containers and basic supporting tools. The former consists of three datatypes, GridLayout providing efficient representations of visual features on grids, TimeSeries representing temporal arrays of several descriptions, and MultipleView describing a 3D object using several pictures captured from different view angles. The latter contains two tools, Spatial2DcoordinateSystem used to specify the 2D coordinate system and TemporalInterpolation indicating the interpolation method between two samples on a time axis.
5.1 Grid layout

The grid layout is a splitting of the image into a set of rectangular regions, so that each region can be described separately. Each region of the grid can be described in terms of other descriptors such as color or texture.

5.1.1 DDL representation syntax

<complexType name=”GridLayoutType” final=”#all”>

<sequence>

<element name=”Descriptors” type=”mpeg7:VisualDType”

 maxOccurs=”65025”/>

</sequence>

<attribute name=”partNumX” type=”mpeg7:unsigned8” use=”required”/>

<attribute name=”partNumY” type=”mpeg7:unsigned8” use=”required”/>

<attribute name=”descriptorMask” type=”string”/>

</complexType>

5.1.2 Binary representation syntax

	GridLayout {
	Number of bits
	Mnemonic

	
DescriptorID
	8
	uimsbf

	
partNumX
	8
	uimsbf

	
partNumY
	8
	uimsbf

	
DescriptorMaskPresent
	1
	bslbf

	
if(DescriptorMaskPresent==1)
	
	

	

descriptorMask
	partNumX*partNumY
	bslbf

	
for(k=0;k<partNumX*partNumY; k++) {
	
	

	

if(DescriptorMaskPresent) {
	
	

	

if(descriptorMask[k]==1)
	
	

	

Descriptors[k]
	
	Descriptor instance specified by descriptorID

	

} else {
	
	

	

Descriptors[k]
	
	Descriptor instance specified by descriptorID

	

}
	
	

	
}
	
	

	}
	
	

5.1.3 Descriptor components semantics

DescriptorID

This attribute, which is only present in the binary representation, specifies a descriptor identifier. The descriptor identifier specifies the descriptor type accommodated in the grid layout.
The assignment of IDs to the descriptor is specified in Table 1 below.

	Decriptor
	ID

	CameraMotion
	1

	ColorLayout
	2

	ColorSpace
	3

	ColorStructure
	4

	ColorQuantization
	5

	ContourShape
	6

	DominantColor
	7

	EdgeHistogram
	8

	FaceRecognition
	9

	GoFGoPColor
	10

	GridLayout
	11

	HomogeneousTexture
	12

	IrregularTimeSeries
	13

	MotionActivity
	14

	MotionTrajectory
	15

	MultipleView
	16

	ParametricMotion
	17

	RegionLocator
	18

	RegionShape
	19

	RegularTimeSeries
	20

	ScalableColor
	21

	Shape3D
	22

	Spatial2DCoordinateSystem
	23

	SpatioTemporalLocator
	24

	TemporalInterpolation
	25

	TextureBrowsing
	26

Table 1: Assignment of IDs to descriptors.

partNumX

This field contains the number of horizontal partitions in the grid over the image.

partNumY

This field contains the number of vertical partitions in the grid over the image.

DescriptorMaskPresent

This field, which is only present in the binary syntax, indicates whether all partitions of the image contain the descriptors. If DescriptorMaskPresent==0 then all partitions contain the descriptor. If descriptorMaskPresent==1 then the next field, DescriptorMask indicates which partitions contain descriptors.

descriptorMask

This field contains a bit-field that specifies whether a descriptor is assigned to the corresponding partition. The partitioned image is indexed from left to right and top to bottom. For example, if a descriptorMask of 0110 is given for a 2x2 partitioned image, it means, that the upper right and lower left quarter of the image contain a descriptor.

Descriptors
This represents the visual descriptors.

When a visual descriptor is assigned to a cell within grid layout, it defines the properties of the particular cell according to the semantic definition of the descriptor used. In other words, each cell is treated as an individual image and the descriptor values are computed accordingly. For example, a dominant color descriptor assigned to a cell specifies the dominant colors of the pixels within that cell. All the restrictions on the image size, etc. are now applicable to the size of the cell within the grid.

The following visual descriptors cannot appear in the GridLayout: TimeSeries, MultipleView, Spatial2DCoordinateSystem, TemporalInterpolation, ColorSpace, ColorQuantization, Shape3D, CameraMotion, MotionTrajectory, ParametricMotion, SpatioTemporalLocator.

Grid layout can be applied to a video segment, in which case the geometry of the grid layout is fixed in time. Each frame in the segment is divided into the same number of cells and the cells at corresponding locations form sequences which can be viewed as a group of frames. GoFGoPColor and MotionActivity descriptor can then be applied to each sequence defined by the grid layout.

5.2 Time series

The TimeSeries structure describes a temporal series of descriptors in a video segment and provides image to video-frame and video frames to video frames matching functionalities. Two types of TimeSeries are defined: RegularTimeSeries and IrregularTimeSeries. In the RegularTimeSeries, descriptors are located regularly (with constant intervals) within a given time span. Alternatively, descriptors are located irregularly in the IrregularTimeSeries. Both structures consist of a series of descriptors and temporal intervals between them as illustrated in Figure 1.

[image: image9.wmf]one video segment

.....

Descriptors[0]

Offset

Interval[0]

Interval[1]

Interval[n-1]

Interval[2]

Time

Descriptors[1]

Descriptors[2]

Descriptors[n-1]

Figure 1: Overview of the TimeSeries.

5.2.1 TimeSeries

The TimeSeries serves as the base type for RegularTimeSeries and IrregularTimeSeries. As it is an abstract type, only DDL representation is defined.

5.2.1.1 DDL representation syntax

<complexType name=”TimeSeriesType” abstract=”true”>

<sequence>

<element name=”TimeIncr” type=”mpeg7:mediaDurationType”/>

</sequence>

<attribute name=”offset” type=”mpeg7:mediaDurationType”
use=”default” value=”PT0S”/>
</complexType>
5.2.2 RegularTimeSeries

RegularTimeSeries is used to describe the time series in which descriptors are located regularly within a given time span. A default value for the temporal interval can be specified thus enabling a simple representation for applications which require low complexity.

5.2.2.1 DDL representation syntax

<complexType name="RegularTimeSeriesType" final=”#all”>

<complexContent>

<extension base=”mpeg7:TimeSeriesType”>

<sequence>

<element name="Descriptors" type="mpeg7:VisualDType”

 maxOccurs=”unbounded”/>

</sequence>

</extension>

</complexContent>

</complexType>

5.2.2.2 Binary representation syntax

	RegularTimeSeries {
	Number of bits
	Mnemonic

	
DescriptorID
	8
	bslbf

	
DescriptorNum
	32
	uimsbf

	
IsRandomAccess
	1
	bslbf

	
if(IsRandomAccess)
	
	

	

DescriptorLength
	16
	uimsbf

	
TimeIncr
	See 15938-5
	mediaDuratrionType

	
IsOffset
	1
	bslbf

	
if(IsOffset)
	
	

	

offset
	See 15938-5
	mediaDurationType

	
	
	

	
if(IsRandomAccess)
	
	

	

BitStuffing
	0-7
	vlclbf

	
for(k=0; k<DescriptorNum; k++) {
	
	

	

Descriptors[k]
	
	Descriptor instance specified by DescriptorID

	

if(IsRandomAccess)
	
	

	

BitStuffing
	0-8*DescriptorLength-1
	vlclbf

	
}
	
	

	}
	
	

5.2.2.3 Descriptor components semantics

DescriptorID
This element, which is only present in the binary representation, specifies a descriptor identifier. The descriptor identifier specifies the descriptor type accommodated in the time series. The assignment of IDs to the descriptor is specified in Table 1.
DescriptorNum

This element, which is only present in the binary representation, specifies the number of descriptor instances accommodated in the time series.
IsRandomAccess

This element, only present in the binary representation, specifies access mode, which is either:

· random access if the flag is set to 1; in this case DescriptorLength and BitStuffing elements are present in the binary representation
· no random access if the flag is set to 0; no bit stuffing is allowed and descriptor instances are not padded, which means they may have different lengths
DescriptorLength
This element, which is only present in the binary representation, specifies the length of each descriptor instance in bytes. The value of this element is the size of the largest descriptor instance, aligned to byte boundary by bit stuffing using 0-7 ‘1’ bits.
TimeIncr

This element specifies the default time interval. The time interval is defined as an interval between descriptor locations. An interval that follows a descriptor is associated with the descriptor. The type of this element “mediaDurationType” is specified in the 15938-5.
IsOffset
This element, which is only present in binary representation, signals the presence of offset. If it is equal to 1 (true) offset is present, if 0 (false) offset is not specified (i.e. default value should be used).
offset

This attribute specifies the offset, i.e., the interval between the starting time point of a given time span and the location of the first descriptor. The default value of offset is zero (represented as “PT0S” in DDL). This attribute is illustrated as “Offset” in Figure 1.
BitStuffing
A sequence of ‘1’ stuffing bits to align on the byte boundary.
Descriptors

This element contains the instantiation of the visual descriptor accommodated in this time series. Only one type of child descriptor is allowed to be instantiated. Its binary syntax and semantics follow those of the assigned descriptor. In random access mode, if the size of a particular descriptor instance is smaller than DescriptorLength, it is padded with the required number of ‘1’ bits.

5.2.3 IrregularTimeSeries

IrregularTimeSeries is used to describe the time series in which descriptors are located irregularly within a given time span. The temporal interval can be associated with a descriptor by means of describing the series of (descriptor, time info.) pairs. This enables an efficient representation for an application that has the requirement of narrow transmission bandwidth or low storage capability.
5.2.3.1 DDL representation syntax

<complexType name="IrregularTimeSeriesType" final=”#all”>

<complexContent>

<extension base=”mpeg7:TimeSeriesType”>
<sequence maxOccurs=”unbounded”>

<element name="Descriptors" type="mpeg7:VisualDType"/>

<element name="Interval" type="mpeg7:unsigned32"/>

</sequence>

</extension>

</complexContent>

</complexType>

5.2.3.2 Binary representation syntax

	IrregularTimeSeries {
	Number of bits
	Mnemonic

	
DescriptorID
	8
	bslbf

	
DescriptorNum
	32
	uimsbf

	
IsRandomAccess
	1
	bslbf

	
if(IsRandomAccess)
	
	

	

DescriptorLength
	16
	uimsbf

	
TimeIncr
	See 15938-5
	mediaDurationType

	
IsOffset
	1
	bslbf

	
if(IsOffset)
	
	

	

offset
	See 15938-5
	mediaDurationType

	
IsShortInterval
	1
	bslbf

	
if(IsRandomAccess)
	
	

	

BitStuffing
	0-7
	vlclbf

	
for(i=0; i<DescriptorNum; i++) {
	
	

	

Descriptors[i]
	
	descriptor instance specified by DescriptorID

	

if(IsRandomAccess)
	
	

	

BitStuffing
	0-8*DescriptorLength-1
	vlclbf

	

if (IsShortInterval) {
	
	

	

ShortInterval
	8
	uimsbf

	
	
	

	

} else {
	
	

	

LongInterval
	32
	uimsbf

	

}
	
	

	
}
	
	

	}
	
	

5.2.3.3 Descriptor components semantics

DescriptorID
This element, which is only present in the binary representation, specifies a descriptor identifier. The descriptor identifier specifies the descriptor type accommodated in the time series. The assignment of IDs to the descriptor is specified in Table 1.
DescriptorNum

This element, which is only present in the binary representation, specifies the number of descriptor instances accommodated in the time series.
IsRandomAccess

This element, only present in the binary representation, specifies access mode, which is either:

· random access if the flag is set to 1; in this case DescriptorLength and BitStuffing elements are present in the binary representation

· no random access if the flag is set to 0; no bit stuffing is allowed and descriptor instances are not padded, which means they may have different lengths

DescriptorLength
This element, which is only present in the binary representation, specifies the length of each descriptor instance in bytes. The value of this element is the size of the largest descriptor instance, aligned to byte boundary by bit stuffing using 0-7 ‘1’ bits.
IsShortInterval
This element, which is only present in the binary representation, indicates the size of ShortInterval/LongInterval field. 1 (true) for 8-bit unsigned integer(“unsigned8”) while 0 (false) for 32-bit unsigned integer(“unsigned32”).
TimeIncr

This element specifies the base unit of the time interval. The time interval between descriptor locations is specified as a multiple of this base unit. The type of this element “mediaDurationType” is specified in the 15938-5.

IsOffset
This element, which is only present in binary representation, signals the presence of offset. If it is equal to 1 (true) offset is present, if 0 (false) offset is not specified (i.e. default value should be used).
offset

This attribute specifies the offset, i.e., the interval between the starting time point of a given time span and the location of the first descriptor. The default value is zero (represented as “PT0S” in DDL).. This element is illustrated as “Offset” in Figure 1.
BitStuffing
A sequence of ‘1’ stuffing bits to align on the byte boundary.
Descriptors

This element contains the instantiation of the visual descriptor accommodated in this time series. Only one type of child descriptor is allowed to be instantiated. Its binary syntax and semantics follow those of the assigned descriptor. In random access, if the size of a particular descriptor instance is smaller than DescriptorLength, it is padded with the required number of ‘1’ bits.

Interval/ShortInterval/LongInterval

This element specifies the time interval that between the current and the preceding descriptor. The value of the element is specified in units defined by TimeIncr.

5.3 Multiple view

The MultipleView descriptor specifies a structure that combines 2D Descriptors representing a visual feature of a 3D object seen from different view angles. The descriptor forms a 3D view-based representation of the object. Any 2D visual descriptor, such as for example contour-shape, region-shape, color or texture can be used. The Multiple View descriptor supports integration of the 2D descriptors used in the image plane to describe features of the 3D (real world) objects.
The MultipleView representation of a 3D object captures the visual properties of an object at a specific time instance or during a time period. When associated with a video segment, MultipleView contains a set of visual descriptors, each describing a visual feature of an object’s view at some time instance during the persistence of the video segment. The visibility flag called “IsVisible” indicates for each component descriptor whether the view which it describes is actually visible in the video segment.
5.3.1 DDL representation syntax

<complexType name="MultipleViewType" final=”#all”>

<sequence maxOccurs=”15”>
<element name="IsVisible" type="boolean"/>

<element name="Descriptors" type="mpeg7:VisualDType"/>

</sequence>

<attribute name="fixedViewsFlag" type="boolean" use=”required”/>
<attribute name="numberOfViews" type="mpeg7:unsigned4"

use=”required”/>

</complexType>

5.3.2 Binary representation syntax

	MultipleView{
	Number of bits
	Mnemonic

	
DescriptorID
	8
	uimsbf

	
fixedViewsFlag
	1
	bslbf

	
numberOfViews
	4
	uimsbf

	
for(k=0;k<numberOfViews;k++) {
	
	

	

IsVisible[k]
	1
	bslbf

	

Descriptors[k]
	
	Description instance specified by DescriptorID

	
}
	
	

	}
	
	

5.3.3 Descriptor components semantics

DescriptorID

This attribute, which is only present in the binary representation, specifies a descriptor identifier. The descriptor identifier specifies the descriptor type accommodated in the multiple views. The assignment of IDs to the descriptor is specified in Table 1.
fixedViewsFlag

This flag describes whether the viewing parameters are fixed or arbitrary/unknown. If this flag is zero, the viewing parameters are arbitrary. If this flag is set to one, the viewing parameters are defined as follows.

For the ContourShape descriptor, the primary, secondary and tertiary viewing directions are determined by the analysis of the covariance matrix of the 3D object. The terms primary, secondary and tertiary eigenvector are used for the eigenvector with the largest, medium and smallest eigenvalue, respectively.

View 1 is spanned by the primary and secondary eigenvector of the covariance matrix. Its direction is therefore the direction of the tertiary eigenvector. Similarly, View 2 is in the direction of the secondary eigenvector and View 3 in the direction of the primary eigenvector.

In addition, another four views are added. The position of View 4 – View 7 can best be described with reference to a coordinate system, where View 1, View 2 and View 3 define axis (1,0,0), (0,1,0) and (0,0,1):

· View 4: (1,1,1)

· View 5: (1,-1,1)

· View 6: (1,-1-1)

· View 7: (1,1,-1)

This flag can only be set to 1 if ContourShape is used.

numberOfViews

The number of views used.

IsVisible

This is a 1-D array that contains a flag for each view, specifying whether the view is visible within the associated visual material.

Descriptors

This element specifies the visual descriptor instance accommodated in this descriptor. Only one type of child descriptor is allowed to be instantiated. Its binary syntax and semantics follow the ones of the assigned descriptor.
5.4 Spatial 2D coordinates

This descriptor defines a 2-D spatial coordinate system to be used by reference in other Ds/DSs when relevant. It supports two kinds of coordinate systems: “local” and “integrated” (see Figure 2). In a “local” coordinate system, the coordinates used for the calculation of the description are mapped to the current coordinate system applicable. In an “integrated” coordinate system, each image (frame) of e.g. a video sequence may be mapped to different areas with respect to the first frame of a shot or video. So, the “integrated” coordinate system can be used to represent coordinates on a mosaic of a video shot.

[image: image10.wmf]Origin

X axis

Origin

X axis

a) “Local” coordinates b) “Integrated” coordinates

Figure 2: "Local" and "integrated" coordinate system.

In the syntax, IntegratedCoordinateSystem allows specification of an integrated coordinate system, and LocalCoordinateSystem allows specification of a local one, when it is different from the default local system. In the default local coordinate system, the origin is placed at the top left corner of the image and the first and the second axis are aligned to the horizontal and vertical lines of the image, respectively. Thus, a LocalCoordinateSystem provides the possibility to map a default local coordinate system that was used to compute visual descriptors to the coordinate system of the current image or video transmitted or rendered. By referencing this mapping, the visual descriptors do not have to be recomputed even though e.g. the format of the current image or video has changed. The specification of the local coordinate system is applicable for images or video. If additionally an “integrated” coordinate system is specified, the mapping applies to the first coordinate space of the first frame.

5.4.1 DDL representation syntax

<complexType name=”Spatial2DcoordinateSystemType” final=”#all”>

<complexContent>

<extension base=”mpeg7:HeaderType”>

<sequence>

<element name=”Unit” type=”mpeg7:unitType” minOccurs=”0”/>

<element name=”LocalCoordinateSystem”

 type=”mpeg7:LocalCoordinateSystemType”

 minOccurs=”0”/>

<element name=”IntegratedCoordinateSystem”

 type=”mpeg7:IntegratedCoordinateSystemType”

 minOccurs=”0”/>

</sequence>

<attribute name=”id” type=”ID”/>

<attribute name=”xRepr” type=”positiveInteger” use=”required”/>

<attribute name=”yRepr” type=”positiveInteger” use=”required”/>

<attribute name=”xSrcSize” type=”positiveInteger” use=”required”/>

<attribute name=”ySrcSize” type=”positiveInteger” use=”required”/>

</extension>

</complexContent>

</complexType>

<simpleType name=”unitType” >

<restriction base=”string”>

<enumeration value=”pixel”/>

<enumeration value=”meter”/>

<enumeration value=”pictureHeight”/>

<enumeration value=”pictureWidth”/>

<enumeration value=”pictureWidthandHeight”/>

</restriction>

</simpleType>

<complexType name=”LocalCoordinateSystemType”>

<sequence>

<sequence maxOccurs=”unbounded”>

<element name=”SrcPixel” type=”mpeg7:integerVector”/>

<choice>

<element name=”CoordPoint” type=”mpeg7:floatVector”/>

<element name=”Pixel” type=”mpeg7:integerVector”/>

</choice>

</sequence>

<element name=”MappingFunct” type=”mpeg7:MappingFunctType”

 minOccurs=”0” maxOccurs=”2”>

<complexType>

<complexContent>

<extension base=”string”>

<attribute name=”dimension” type=”positiveInteger”

use=”required”/>

</extension>

</complexContent>

</complexType>

</element>

</sequence>

<attribute name=”name” type=”ID” use=”required”/>

<attribute name=”dataSet” type=”uriReference” use=”optional”/>

</complexType>

<complexType name=”IntegratedCoordinateSystemType”>

<sequence>

<element name=”TimeIncr” type=”mpeg7:MediaIncrDurationType”/>

<element name=”MotionParameters” type=”float” maxOccurs=”unbounded”/>

</sequence>

<attribute name=”modelType” type=”positiveInteger” use=”required”/>

<attribute name=”xOrigin” type=”float” use=”required”/>

<attribute name=”yOrigin” type=”float” use=”required”/>

<attribute name=”numOfMotionParameterSets” type=”positiveInteger”

use=”required”/>

</complexType>

5.4.2 Binary representation syntax

	Spatial2DcoordinateSystem {
	Number of bits
	Mnemonic

	
id
	
	UTF-8

	
xRepr
	8
	uimsbf

	
yRepr
	8
	uimsbf

	
xSrcSize
	
	vluimsbf

	
ySrcSize
	
	vluimsbf

	
UnitDefined
	1
	bslbf

	
if (unitDefined)
	
	

	

Unit
	3
	bslbf

	
LocalCoordinatesDefined
	1
	bslbf

	
if(LocalCoordinatesDefined)
	
	

	

NameLength
	
	vluimsbf

	

name
	8*NameLength
	bslbf

	

DataSetDefined
	1
	bslbf

	

if(DataSetDefined) {
	
	

	

DataSetLength
	8
	uimsbf

	

dataSet
	DataSetLength
	bslbf

	

}
	
	

	

NumOfPixels
	2
	uimsbf

	

for(k=0; k<NumOfPixels; k++) {
	
	

	

srcPixelX
	xRepr
	simsbf

	

srcPixelY
	yRepr
	simsbf

	

Coord
	1
	bslbf

	

if(Coord==0) {
	
	

	

PixelX
	16
	simsbf

	

PixelY
	16
	simsbf

	

} else {
	
	

	

CoordPointX
	32
	uimsbf

	

CoordPointY
	32
	uimsbf

	

}
	
	

	

}
	
	

	

NumUfMappingFuncts
	2
	uimsbf

	

for(l=0; l<NumOfMappingFuncts; l++) {
	
	

	

MappingFunctLength
	
	vluimsbf

	

MappingFunct
	8*MappingFunctLength
	bslbf

	

}
	
	

	

IntegratedCoordinatesDefined
	1
	bslbf

	

if(IntegratedCoordinatesDefined)
	
	

	

modelType
	3
	uimsbf

	

xOrigin
	32
	bslbf

	

yOrigin
	32
	bslbf

	

numOfMotionParameterSets
	16
	uimsbf

	

for(k=0; k<numOfMotionParameterSets; k++) {
	
	

	

TimeIncr
	See 15938-5
	MediaIncrDurationType

	

for(l=0; l<modelType; l++)
	
	

	

MotionParameters
	32
	bslbf

	

}
	
	

	

}
	
	

	
}
	
	

	}
	
	

5.4.3 Descriptor components semantics

id

Identifier to use ID/IDREF mechanism for referencing the coordinate specification. The value is binary represented as string in UTF-8 format.
xRepr, yRepr

Number of bits used for the representation of normalized X and Y coordinates in the coordinate system of the “src image”.

xSrcSize, ySrcSize

Image size of the source image expressed as the number of pixels along the x (xSrcSize) and y (ySrcSize) axis. The value can be used to convert between pixel-based coordinates and coordinates normalized with respect to the image size.
UnitDefined
If this flag is set to “1”, the definition of units follows. If it is “0”, the default units are used.

Unit
This specifies the units of each axis. “Pixel” is used as the default unit. Other possible units are meters, or pixel coordinates normalized by pictureWidth on each dimension, or by pictureHeight in each dimension, or by pictureWidth and pictureHeight on horizontal and vertical axes respectively.

The units are specified as defined in Table 2.

	pixel
	000

	meter
	001

	pictureHeight
	100

	pictureWidth
	101

	pictureWidth and pictureHeight
	110

	reserved
	010-011 and 111

Table 2: Codes for Unit specification.
LocalCoordinatesDefined
If this flag is set to “1”, the definition of local coordinates follows. Otherwise, the default local definition is used. The default local coordinate system is that the origin is placed at the top left corner of the image and the first and the second axis are aligned to the horizontal and vertical lines of the image, respectively. The definition of a local coordinates specifies a local coordinate system as a mapping between a coordinate system and a local image. If IntegratedCoordinatesDefined is set to “1”, this mapping is applied only to the first frame. If IntegratedCoordinatesDefined is set to “0”, the mapping is applied to all frames.

LocalCoordinateSystem

If LocalCoordinatesDefined is set to “1”, this specifies a local coordinate system as a mapping between a coordinate system and a local image.

CoordinateMapping
This specifies the mapping from the local image. The mapping is defined by points in the default coordinate system of a local image (SrcPixel) that is used for generation of the visual description and the corresponding points in the target coordinate system (Pixel/CoordPoints). This target coordinate system can be an image or frame based (Pixel) coordinate system, or an arbitrary coordinate system, which name is specified. If a visual descriptor refers to this Mapping, “SrcPixel” shall be used to compute the descriptor but the current image has the default coordinate system specified by “Pixel”.

If a mapping of one point is described, the mapping is translational. If mappings of two points are described, it is rotation/scaling model. And if mappings of three points are described, it is rotation/asymmetric scaling (affine) model (seeFigure 3).

[image: image11.wmf]Origin

X axis

Local image

src

pixel

coordPoint

[image: image12.wmf]Origin

X axis

Local

image

src

pixel

src

pixel

coordPoint

coordPoint

[image: image13.wmf]Origin

X axis

coordPoint

coordPoint

Local

image

src

pixel

src

pixel

src

pixel

coordPoint

 a) Translational model b) Rotation/Scaling model c) Rotation/Asymmetric Scaling model

Figure 3: Motion models described by CoordinateMapping (‘SrcPixel’ and ‘CoordPoint’)

NameLength

This unsigned integer specifies the length of the following coordinate mapping name.

name

This string defines the coordinate mapping name.

DataSetDefined

If this flag is set to “1”, a definition of a data set follows.

DataSetLength

This unsigned integer specifies the length of the following DataSet description.

dataSet
Reference to a data set, of which the SrcPixel based coordinate system is used for mapping to the local one. E.g. after image scaling for UMA here a reference can be specified to the data used to generate the visual descriptors referencing this coordinate system.

NumOfPixels
Number of SrcPixels and Pixels or CoordPoints used to specify the mapping between the corresponding coordinate systems.

PixelX, PixelY, SrcPixelX, SrcPixelY, CoordPointX, CoordPointY

This specifies a mapping between a coordinate system and a local image. A mapping is defined by points in an image which is e.g. used for generating the visual descriptor (SrcPixelX, SrcPixelY) and the corresponding points in a default (target) coordinate system of a transmitted image (PixelX, PixelY) (see Figure 4). Another possibility is for these corresponding points to be points in a “real world” coordinate system (CoordPointX, CoordPointY). If a mapping of one point is described, the mapping is translational. If mappings of two points are described, it is rotation/scaling model. And if mappings of three points are described, it is rotation/asymmetric scaling (affine) model (see Figure 3). Local pixel positions are described assuming that the origin is top-left corner of the image.

[image: image14.wmf]Local

image

pixel

srcpixel

Reference image

Origin

X axis

Coordinate system of Reference image

Figure 4: CoordinateMapping (‘Pixel’ and ‘SrcPixel’)
Coord

If this flag is set to “1”, the mapping between a coordinate system and a local image is defined by pixel. Otherwise, the mapping is defined by CoordPoint.

NumOfMappingFuncts
This unsigned integer specifies the number of the following MappingFunct descriptions. MappingFunct’s are described if the bilinear interpolation is insufficient.

MappingFunctLength

This element, which is only present in binary representation, specifies the length of the MappingFunct element in bytes.
MappingFunct
The MappingFunct is only applicable if CoordPoints are specified. It is needed if the specified mapping to the CoordPoints is not precise but only a rough approximation as it might be the case for “real world” coordinates used e.g. in maps. To allow a higher precision the MappingFunct specifies a functional expression in an ISO/IEC 9899 C format using x, y according to the “SrcPixel” coordinates. Accordingly, the descriptor specifies how to map coordinate values between the “SrcPixel” and the “CoordPoints”:
· a mapping to the “x”/“y” coordinate of the CoordPoints is specified by a string starting with “x=”/“y=”

· the remaining part of the string consists of a functional expression in which “x” and “y” represent the x and y coordinates in the “SrcPixel” coordinates.

According to this rule, “x=” and “y=y+0.0001*x*x+100“ represents a mapping from SrcPixels to CoordPoints by (a) shift of 100 and (b) by correcting the linear interpolation by “0.0001*x*x”.
If MappingFunct is not specified, bilinear interpolation between the mapped points has to be considered as a precise mapping.

If a mapping to “Pixel” coordinates is specified, the MappingFunct has no meaning and has to be treated as a comment.

IntegratedCoordinatesDefined

If this flag is set to “1”, “integrated” coordinate system is used and mappings between local images (except for the first frame) and the coordinate system follow. Otherwise, “local” coordinate system is used.
IntegratedCoordinateSystem

If IntegratedCoordinatesDefined is set to “1”, this specifies the used “integrated” coordinate system, by the mappings between local images (except for the first frame) and the coordinate system.
modelType

This is an integer out of 2 (translational model), 4 (rotation/scaling model), 6 (affine model), 8 (planar perspective model), 12 (quadratic model), that specifies the number of parameters the applied motion model consists of and with this it specifies the motion model, expressed on 3 bits. These motion models are already included in the Visual descriptors as part of the ParametricMotion D. The bit codes for this field and associated NumberOfParameters values are specified in Table 29.

xOrigin, yOrigin

X,Y coordinates in the local coordinate system specified by the LocalCoordinateSystem. They specify the origin of the motion model.

numOfMotionParameterSets

Total number of motion parameter sets (frames). The IntegratedCoordinateSystem captures information over a period of time. Therefore also temporal reference information has to be provided. The time frame (a shot) of the video sequence is assumed to be provided by a higher order DS. As illustrated in Figure 5, sets (vectors) of motion parameters (MotionParameters) are spread over this period, the total number is specified by the value numOfMotionParameterSets. Each set of motion parameters carries own temporal information in TimeIncr, which specifies the frame it is related to. This provides high flexibility for temporal spacing of the frames used. It is possible to use for instance every frame, every fifth or even an irregular spacing.
TimeIncr

This specifies the time between the first frame of the considered video sequence and the frame, that the set of motion parameters refers to (see temporal reference system in Figure 5).

MotionParameters

This float specifies a motion parameter value as defined in the section on ParametricMotion D. The motion parameters describe motion at a certain time (as indicated by TimeIncr) with respect to the first frame of the considered video sequence.

[image: image15.wmf]segment

s

(time frame provided by segment DS)

t

0

t

1

t

2

t

N

t

e

n

d

motion parameter

sets

N = number of motion

parameter sets

time stamps

. . . .

Figure 5: Temporal reference system in relation to frame #0.

5.5 Temporal interpolation

The TemporalInterpolation descriptor characterizes temporal interpolation using connected polynomials. This can be used to approximate multi-dimensional variable values that change with time, such as an object position in a video sequence. The descriptor size is usually much smaller than describing all values. In Figure 6, 25 real values are represented by five linear interpolation functions and two quadratic interpolation functions. The beginning of the temporal interpolation is always aligned to time 0.

[image: image16.wmf]

5 linear interpolations

25 real data

2 quadratic interpolations

time t

x coordinate

Figure 6: Real data and interpolation functions.

5.5.1 DDL representation syntax

<complexType name=”TemporalInterpolationType” final=”#all”>

<sequence>

<choice>

<element name=”WholeInterval”>

<complexType>

<choice>

<element name=”MediaDuration”

 type=”mpeg7:mediaDurationType”/>

<element name=”MediaIncrDuration”

 type=”mpeg7:MediaIncrDurationType”/>

</choice>

</complexType>

</element>

<element name=”KeyTimePoint” minOccurs=”2”

 maxOccurs=”unbounded”>

<complexType>

<choice>

<element name=”MediaTimePoint”

 type=”mpeg7:mediaTimePointType”/>

<element name=”MediaRelTimePoint”

 type=”mpeg7:mediaRelTimePointType”/>

<element name=”MediaRelIncrTimePoint”

 type=”mpeg7:mediaRelIncrTimePointType”/>

</choice>

</complexType>

</element>

</choice>

<sequence maxOccurs=”unbounded”>

<element name=”KeyValue”
 minOccurs=”2” maxOccurs=”unbounded”>

<complexType>

<complexContent>

<extension base=”float”>

<attribute name=”type” use=”default”
value=”firstOrder”>
<simpleType>

<restriction base=”string”>

<enumeration value=”startPoint”/>

<enumeration value=”firstOrder”/>

<enumeration value=”secondOrder”/>

<enumeration value=”notDetermined”/>

</restriction>

</simpleType>

</attribute>

<attribute name=”param” type=”float”

use=”default”
 value=”0.0”/>

<attribute name=”dimension”

type=”mpeg7:unsigned4”/>

</extension>

</complexContent>

</complexType>

</element>

</sequence>

</sequence>

<attribute name=”keyPointNum” type=”mpeg7:unsigned16”/>

</complexType>

5.5.2 Binary representation syntax

	TemporalInterpolation {
	Number of bits
	Mnemonic

	
KeyPointNum
	16
	uimsbf

	
Dimension
	4
	uimsbf

	
ConstantTimeInterval
	2
	bslbf

	
if (ConstantTimeInterval==01) {
	
	

	

WholeInterval
	See 15938-5
	

	
} else if (ConstantTimeInterval==10) {
	
	

	

WholeInterval
	See 15938-5
	

	
} else if (ConstantTimeInterval==00) {
	
	

	

KeyTimePointDataType
	2
	bslbf

	

if(KeyTimePointDataType==00) {
	
	

	

for(j=0; j<keyPointNum; j++)
	
	

	

MediaRelTimePoint
	See 15938-5
	

	

} else if(KeyTimePointDataType==01) {
	
	

	

for(j=0; j<keyPointNum; j++)
	
	

	

MediaRelIncrTimePoint
	See 15938-5
	

	

} else if (KeyTimePointDataType==10) {
	
	

	

for(j=0; j<keyPointNum; j++)
	
	

	

MediaTimePoint
	See 15938-5
	

	

}
	
	

	
}
	
	

	
for(j=0; j<dimension; j++) {
	
	

	

DefaultFunction
	1
	bslbf

	

for(k=0; k<keyPointNum; k++) {
	
	

	

KeyValue
	32
	bslbf

	

if(DefaultFunction==0) {
	
	

	

Type
	2
	uimsbf

	

if(type==10)
	
	

	

Param
	32
	bslbf

	

}
	
	

	

}
	
	

	
}
	
	

	}
	
	

5.5.3 Descriptor components semantics

WholeInterval

The whole temporal interval of interest. If this field is defined, the time interval between each successive pair of key points is constant. The beginning of the whole interval is always fixed to 0, and the length of these intervals is calculated by WholeInterval/(KeyPointNum-1). If the time intervals are not constant, all key time should be specified explicitly using the KeyTimePoint element. WholeInterval supports two types, MediaDurationType and MediaIncrDurationType. In the binary representation, ConstantTimeInterval specifies the type.

KeyTimePoint

This field specifies the series of time points of each key point. The number of time points in the series must be equal to the value of keyPointNum. Time points are always sorted in increasing order. KeyTimePoint supports three types for describing intervals, MediaTimePointType, MediaRelTimePointType and MediaRelIncrTimePointType. In the binary representation, KeyTimePointDataType specifies the type.

KeyValue

This field specifies the value of each key point. The number of occurrence of KeyValue in a single InterpolatedValue must be equal to the value of KeyPointNum. The order of KeyValue must be synchronized with the order of KeyTimePoint.

type

This specifies the type of the key point. If this is “startPoint”, the key point is the starting point of the interpolation. If it is “firstOrder” or “secondOrder”, the key point follows the linear or quadratic interpolation function. If it is “notDetermined”, the key point is not the starting point of the interval but no interpolation function is defined between the key point and the previous key point. If it is absent, the value of firstOrder (linear interpolation) is used as a default value.

[image: image17.wmf]

key point #0

KeyValue

“

18.6

”

type

“

startPoint

”

key point #2

KeyValue

“

12.2

”

type

“

firstOrder

”

key point #1

KeyValue

“

23.8

”

type

“

secondOrder

”

param

“

-

2.0

”

key point #3

KeyValue

“

14.1

”

type

“

secondOrder

”

param

“

3.1

”

Figure 7: Example of KeyValue, type and param

param

This field specifies the coefficient of the interpolation function when relevant, i.e. aa (see Table 2) This field is effective only when the function type ="secondOrder" and specifies the second-order coefficient of the interpolation function.
keyPointNum

This field contains the number of sampled positions, denoted as key points, used for the knots of interpolation functions: from 0 to 65535.
dimension

This indicates the dimension (number of components) of interpolated values. Table 3 shows examples of the value of dimension for some MPEG-7 descriptors.

ConstantTimeInterval

This field is used only for binary representation and specifies the type of time description. If it is set to "00", the intervals between key points are not constant and KeyTimePoints are used. Otherwise, the intervals are constant and specified by WholeInterval. The type of WholeInterval is also specified by ConstantTimeInterval. If it is set to "01", its type is MediaDurationType. If "10", its type is MediaIncrDurationType. “11” is prohibited.

	ConstantTimeInterval
	Meaning

	“00”
	described by KeyTimePoints

	“01”
	MediaDurationType

	“10”
	MediaIncrDurationType

	“11”
	prohibited

KeyTimePointDataType

This field is used only for binary representation and specifies the type of KeyTimePoints. The meaning of the values of this field is specified in the following table.
	KeyTimePointDataType
	Meaning

	“00”
	MediaTimePointType

	“01”
	MediaRelIncrTimePointType

	“10”
	MediaRelTimePointType

	“11”
	prohibited

MediaTimePoint

This field specifies the KeyTimePoint using MediaTimePointType.

MediaRelTimePoint

This field specifies the KeyTimePoint using MediaRelTimePointType.

MediaRelIncrTimePoint

This field specifies the KeyTimePoint using MediaRelIncrTimePointType.

DefaultFunction

This one bit is set to "1" if default interpolation function (linear interpolation) is used in the current dimension, to 0 otherwise.

The TemporalInteroplation D describes the temporally variable values by connected polynomials. The dimension of the variable is specified by size (except for the temporal element) and some examples are shown in Table 3. The connection point is called a "key point". The number of key points is described by numOfkeyPoints. The time of key points is described by WholeInterval or an array of KeyTimePoint. WholeInterval is used only for constant intervals and the length of the interval is derived by dividing the specified duration by numOfKeyPoints-1. The values of the key points are described by an array of KeyValue; with numOfKeyPoint values for each dimension.
	D or DS using TemporalInterpolation
	Value of dimension

	2D MotionTrajectory
	2

	3D MotionTrajectory
	3

	ParameterTrajectory (Translational Model)
	2

	ParameterTrajectory (Affine Transformation Model)
	6

	ParameterTrajectory (Parabolic Model)
	12

Table 3: Examples of the value of dimension.

The TemporalInterpolation D can use two types of interpolation functions: first order and second order polynomials. The type of the interpolation function is indicated by type. When a first order polynomial is used (type="firstOrder"), the function can be calculated from the key points. On the other hand, when a second order polynomial is used (type="secondOrder"), the second order coefficient is described by param. The relations between type, interpolation functions, key points and param is shown in Table 2. In the table,
[image: image18.wmf]a

t

 and
[image: image19.wmf]b

t

[image: image20.wmf])

(

b

a

t

t

<

 represent the times of two successive key points, and
[image: image21.wmf]a

f

 and
[image: image22.wmf]b

f

 indicate values of key points at
[image: image23.wmf]a

t

 and
[image: image24.wmf]b

t

. Also,
[image: image25.wmf]2

c

is the value of param and
[image: image26.wmf]1

c

EMBED Equation.3[image: image27.wmf]a

v

 is the value derived from the constraints and other parameter values. The constraint ensures that all interpolation function pass through the key points at both ends. If reliable interpolation functions are not obtained in the extraction process, type is set to "notDetermined". In this case, the interpolation functions are not specified and reliable values between successive key points cannot be determined from the description.

	Type
	Interpolation Function Form
	Param
	Constraint

	NotDetermined
	(none)
	(none)
	(not applicable)

	StartPoint
	(none)
	(none)
	(not applicable)

	FirstOrder
	
[image: image28.wmf](

)

(

)

a

a

t

t

c

f

t

f

-

+

=

1

	(none)
	
[image: image29.wmf]a

b

a

b

t

t

f

f

c

-

-

=

1

	secondOrder
	
[image: image30.wmf](

)

(

)

2

2

1

)

(

a

a

a

t

t

c

t

t

c

f

t

f

-

+

-

+

=

	
[image: image31.wmf]2

c

	
[image: image32.wmf])

(

2

1

a

b

a

b

a

b

t

t

c

t

t

f

f

c

-

-

-

-

=

Table 4: Interpolation function specified by type and param.

	Binary type
	DDL type

	00
	startPoint

	01
	firstOrder

	10
	secondOrder

	11
	notDetermined

Table 5: Binary and DDL representation of type.
One of the two types of polynomials can be selected by each interval. If only the first order polynomials are used for all intervals, all descriptions of type can be omitted.
6 Color

This clause provides four color descriptors to represent different aspects of color features: representative colors (DominantColor), color distribution (ScalableColor), spatial distribution of colors (ColorLayout), and (ColorStructure). It also contains two supporting tools, ColorSpace and ColorQuantization used in DominantColor and an extension of ScalableColor to group of frames or pictures (GoFGoPColor). All the color descriptor can be extracted from arbitrary shape regions.
6.1 Color space

The feature is the color space that is to be used in other color based descriptions. In the current description, the following color spaces are supported:

- RGB

- YCbCr

- HSV

- HMMD

- Linear transformation matrix with reference to RGB

- Monochrome
A flag is also provided to allow indication of availability of color primaries reference.
6.1.1 DDL representation syntax

<complexType name=”ColorSpaceType” final=”#all”>

<choice>

<element name=”ColorTransMat” minOccurs=”0”>

<simpleType>

<restriction>

<simpleType>

<list itemType=”mpeg7:unsigned16”>

</simpleType>

<length value=”9”/>

</restriction>

</simpleType>

</element>

</choice>

<attribute name=”colorReferenceFlag” type=”boolean”

use=”default” value=”false”/>

<attribute name=”type”>
<simpleType>

<restriction base=”string”>

<enumeration value=”RGB”/>

<enumeration value=”YCbCr”/>

<enumeration value=”HSV”/>

<enumeration value=”HMMD”/>

<enumeration value=”LinearMatrix”/>

<enumeration value=”Monochrome”/>

</restriction>

</simpleType>

</attribute>

</complexType>

6.1.2 Binary representation syntax

	ColorSpace {
	Number of bits
	Mnemonic

	
colorReferenceFlag
	1
	bslbf

	
type
	4
	bslbf

	
if (type==‘LinearMatrix’) {
	
	

	

for(j=0; j<3; j++) {
	
	

	

for(k=0; k<3; k++) {
	
	

	

ColorTransMat[j][k]
	16
	simsbf

	

}
	
	

	

}
	
	

	
}
	
	

	}
	
	

6.1.3 Descriptor components semantics

colorReferenceFlag

If this flag is set to 0, no reference RGB primaries are available. If set to 1, the reference shall be made to the real world CIEXYZ tristimulus chromaticity values as given in Table 6.

	
	Red
	Green
	Blue
	D65

	x
	0.6400
	0.3000
	0.1500
	0.3127

	y
	0.3300
	0.6000
	0.0600
	0.3290

	z
	0.0300
	0.1000
	0.7900
	0.3583

Table 6: CIE chromaticities for reference primaries and D65 reference white illuminant.
type

This field expresses the color space.

· type ‘RGB’ is an RGB color space with or without reference primaries (depending on colorReferenceType).

· type ‘YCbCr’ is expressed by a linear transformation:

Y = 0.299*R + 0.587*G + 0.114*B
Cb = -0.169*R - 0.331*G + 0.500*B
Cr = 0.500*R - 0.419*G - 0.081*B

· type ‘LinearMatrix’ is expressed by a linear matrix transformation from the components of the reference color space:

C1 = ColorTransMat[0][0]*R + ColorTransMat[0][1]*G + ColorTransMat[0][2]*B
C2 = ColorTransMat[1][0]*R + ColorTransMat[1][1]*G + ColorTransMat[1][2]*B
C3 = ColorTransMat[2][0]*R + ColorTransMat[2][1]*G + ColorTransMat[2][2]*B.

· type ‘HSV’ expresses a non-linear transformation. It consists of the Value representing the lightness of color, the Saturation indicating is the degree of colorfuness, and the Hue (H) representing the dominant spectral tone of the color, denoted by angle from 0 to 360 degrees. Their values are derived from the normalized RGB values (ranging from 0 to 1) as follows:

Max = max(R, G, B);
Min = min(R, G, B);
Value = max(R, G, B);
if(Max == 0) then
 Saturation = 0;
else
 Saturation = (Max-Min)/Max;
if(Max == Min) Hue=0; /* achromatic */
otherwise:
if(Max == R && G > B)
 Hue = 60*(G-B)/(Max-Min)
else if(Max == R && G < B)
 Hue = 360 + 60*(G-B)/(Max-Min)
else if(G == Max)
 Hue = 60*(2.0 + (B-R)/(Max-Min))
else
 Hue = 60*(4.0 + (R-G)/(Max-Min))

The HSV color space can best be interpreted as a cylinder, where hue approximately represents the angle in radians, a shown in Figure 8.

[image: image33.wmf]Sat

Hue

Val

Val=0

Val=1

Sat=0

Sat=1

Hue=0

Hue=180

Figure 8: Cylinder representing the limits of the HSV color space.

· type `HMMD’ is defined by a nonlinear, reversible transformation from the RGB color space. There are five distinct attributes (components) in the HMMD color space. The semantics of the five attributes are defined as follows:

- Hue:
same as in HSV.

- Max:
indicates how much black color it has, giving the flavor of shade or blackness.

- Min:
indicates how much white color it has, giving the flavor of tint or whiteness.

- Diff:
indicates how much gray it contains and how close to the pure color, giving the flavor of tone or colorfulness.

- Sum:
simulates the brightness of the color.

Three components: Hue, Max and Min or Hue, Diff and Sum are enough to define the color space.

The transformations for Max, Min and Hue are the same as the equations for Min, Max and Hue in HSV color space. The transformations for Diff and Sum have the following form:

Diff = Max – Min;
Sum = (Max + Min)/2;

HMMD color space has a double cone appearance (as shown in Figure 9) consisting of blackness, whiteness, colorfulness and hue.

[image: image34.wmf]White Color

Max

Min

Black

Color

Sum

Diff

Hue

Figure 9: Appearance of the HMMD color space.

· type ‘Monochrome’ is expressed by a linear transformation:

Y = 0.299*R + 0.587*G + 0.114*B

from the components of the reference color space.

Within a description, the components of a color space must be ordered in a specific sequence. For the color spaces described, the sequence shown in Table 7 shall be valid.

	type
	Component1
	Component2
	Component3
	Component4
	Component5

	RGB
	R
	G
	B
	N/A
	N/A

	YCbCr
	Y
	Cb
	Cr
	N/A
	N/A

	HSV
	H
	S
	V
	N/A
	N/A

	HMMD
	H
	Max
	Min
	Diff
	Sum

	LinearMatrix
	C1
	C2
	C3
	N/A
	N/A

	Monochrome
	Y
	N/A
	N/A
	N/A
	N/A

Table 7: Ordering of color components.

The binary representation of this attribute is Table 8.

	type
	Meaning

	0000
	RGB

	0001
	YCbCr

	0010
	HSV

	0011
	HMMD

	0100
	LinearMatrix

	0101
	Monochrome

	0110-1111
	Reserved

Table 8: Meaning of type.

ColorTransMat

If the color space is expressed by the linear matrix transformation, the values of this matrix define the transformation with reference to the RGB color space. Matrix values are within the range of -1 to 1, and are expressed as 16 bit unsigned integers, corresponding to a quantisation step size of 2-15 within that value range (i.e. –1 is mapped to 0 and 1 is mapped to 65535).

6.2 Color quantization

This descriptor defines the uniform quantization of a color space.

6.2.1 DDL representation syntax

<complexType name=”ColorQuantizationType” final=”#all”>

<sequence maxOccurs=”unbounded”>

<element name=”Component” >
<simpleType>

<restriction base=”string”>

<enumeration value=”R”/>

<enumeration value=”G”/>

<enumeration value=”B”/>

<enumeration value=”Y”/>

<enumeration value=”Cb”/>

<enumeration value=”Cr”/>

<enumeration value=”H”/>

<enumeration value=”S”/>

<enumeration value=”V”/>

<enumeration value=”Max”/>

<enumeration value=”Min”/>

<enumeration value=”Diff”/>

<enumeration value=”Sum”/>

</restriction>

</simpleType>

</element>

<element name=”BinNumber” type=”mpeg7:unsigned12”/>

</sequence>

</complexType>

6.2.2 Binary representation syntax

	ColorQuantization {
	Number of bits
	Mnemonic

	
for(k=0; k<NumComponents; k++) {
	
	

	

Component[k]
	5
	bslbf

	

BinNumber[k]
	12
	uimsbf

	
}
	
	

	}
	
	

6.2.3 Descriptor components semantics

Component
This element specifies the color component to be quantized, allowing the components to be quantized in an arbitrary order. NumComponents is set to 1 when the color space quantized by this descriptor is monochrome and to 3 otherwise. The allowed color components combinations used for each color space are defined in Table 7. For HMMD color space, the allowed combinations are {H,Max,Min} and {H,Diff,Sum}. In binary representation, the meaning of the codes is as follows:

	Component
	Meaning

	00000
	R

	00001
	G

	00010
	B

	00011
	Y

	00100
	Cb

	00101
	Cr

	00110
	H

	00111
	S

	01000
	V

	01001
	Max

	01010
	Min

	01011
	Diff

	01100
	Sum

	
	

	01101-11111
	reserved

BinNumber
This element specifies the number of bins for the color component. In case of uniform quantizer, the normalized value range A of the color component is divided into BinNumber equal intervals of width A/BinNumber each.

6.2.4 Decoding

The decoder decodes a color index that points to a specific color value.

Reconstruction of component x (x=0, …, NumComponents-1) with known max_value and min_value of each normalized component:

comp_rec[x] = (comp_index[x]+0.5)*value_range/BinNumber[x];

The color values residing on the boundaries between bins are assigned to the higher color index.

6.3 Dominant color

This descriptor specifies a set of dominant colors in an arbitrarily-shaped region. It targets content-based retrieval for color, either for the whole image or for an arbitrary region (rectangular or irregular).

6.3.1 DDL representation syntax

<complexType name=”DominantColorType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<sequence>

<element name=”ColorSpace” type=”mpeg7:ColorSpaceType”

 minOccurs=”0”/>

<element name=”ColorQuantization”

 type=”mpeg7:ColorQuantizationType” minOccurs=”0”/>

<element name=”SpatialCoherency” type=”mpeg7:unsigned5”/>

<element name=”Values” maxOccurs=”8”>

<complexType>

<sequence>

<element name=”Percentage” type=”mpeg7:unsigned5”/>

<element name=”ColorValueIndex”>

<simpleType>

<restriction>

<simpleType>

<list itemType=”mpeg7:unsigned12”/>

</simpleType>

<length value=”3”/>

</restriction>

</simpleType>

</element>

<element name=”ColorVariance”minOccurs=”0”>

<simpleType>

<restriction>

<simpleType>

<list itemType=”mpeg7:unsigned1”/>

</simpleType>

<length value=”3”/>

</restriction>

</simpleType>

</element>

</sequence>

</complexType>

</element>

</sequence>

<attribute name=”size” >
<simpleType>

<restriction base=”positiveInteger”>

<minInclusive value=”1”/>

<maxInclusive value=”8”/>

</restriction>

</simpleType>

</attribute>
</extension>

</complexContent>

</complexType>

6.3.2 Binary representation syntax

	DominantColor {
	Number of bits
	Mnemonic

	
size
	3
	uimsbf

	
ColorSpacePresent
	1
	bslbf

	
if(ColorSpacePresent)
	
	

	

ColorSpace
	Specified in Clause 6.1.2
	

	
ColorQuantizationPresent
	1
	bslbf

	
if(ColorQuantizationPresent)
	
	

	

ColorQuantization
	Specified in Clause 6.2.2
	

	
VariancePresent
	1
	bslbf

	
SpatialCoherency
	5
	uimsbf

	
for(k=1; k<=size; k++) {
	
	

	

Percentage
	5
	uimsbf

	

for(m=1; m<=3; m++) {
	
	

	

ColorValueIndex
	1-12
	uimsbf

	

if(VariancePresent==1) {
	
	

	

ColorVariance
	1
	uimsbf

	

}
	
	

	

}
	
	

	
}
	
	

	}
	
	

6.3.3 Descriptor components semantics

size

This element specifies the number of dominant colors in the region. The maximum allowed number of dominant colors is 8, the minimum number of dominant colors is 1. In binary representation, the following mapping of bit patterns is used: 000->1, …, 111->8.

ColorSpacePresent

This element, which is only present in the binary representation, signals the presence of the ColorSpace element. If set to 0, ColorSpace is not present and RGB color space is used.

ColorSpace

This element is defined in Clause 6.1.

ColorQuantizationPresent

This element, which is only present in the binary representation, signals the presence of the ColorQuantization element. If set to 0, ColorQuantization is not present and uniform color quantization of the components to 5 bits is used.

ColorQuantization

This element is specified in Clause 6.2.

VariancePresent

This is a flag used only in binary representation that signals the presence of the color variances in the descriptor.

SpatialCoherency

This element is computed as a single value by the weighted sum of per-dominant-color spatial coherencies. The weight is proportional to the number of pixels corresponding to each dominant color. Spatial coherency per dominant color captures how coherent the pixels corresponding to the dominant color are and whether they appear to be a solid color in the given image region (See Figure 10, where red pixels in the left image have low spatial coherency and in the right image high spatial coherency). Spatial coherency per dominant color is computed by the normalized average connectivity (8-connectedness) for the corresponding dominant color pixels

[image: image160.png]

Figure 10: Examples of high and low spatial coherency of color.

The weighted sum of per-dominant-color spatial coherencies is normalized from 0 to 1, then non-uniformly quantized to the range from 1 to 31 as follows. Normalized values less than 0.7 are set to 1, while values between 0.7 to 1 are uniformly quantized to the range 2 to 31. 0 is used to signal that this element is not computed (note that if it is not computed it does not

Values

This is an array of elements that hold percentages and values of colors in a visual item. The array elements consist of Percentage, ColorValueIndex and ColorVariance.

Percentage

This field describes the percentage of pixels that have the associated color value. The percentage value is uniformly quantized to 5 bits with 0 corresponding to 0 percentage and 31 corresponding to 100%. Note that the sum of the Percentage values for a given visual item does not have to be equal to 100%.

ColorValueIndex

This is an integer that holds the index of the dominant color in the selected color space as defined in ColorQuantization. The dimension of this vector depends on the selected color space.

ColorVariance

This is an integer array containing the value of the variance of color values of pixels corresponding to the dominant color in the selected color space, i.e.

[image: image35.wmf](

)

å

-

=

-

=

1

0

2

1

N

k

kj

j

j

p

m

N

CV

where j indexes the color component, mj is j-th component of the dominant color, pkj is j-th component of the k-th pixel value, and the summation is over N pixels corresponding to the dominant color under consideration.

The dimension of this vector depends on the selected color space. Each component is quantized to 1 bit, with “0” corresponding to low variance and “1” corresponding to high variance. The quantization threshold is equal to 0.005 of the squared color component value range.
6.4 Scalable color

The ScalableColor descriptor is a color histogram in the HSV color space, which is encoded by a Haar transform. Its binary representation is scalable in terms of bin numbers and bit representation accuracy over a broad range of data rates.

6.4.1 DDL representation syntax

<complexType name=”ScalableColorType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<sequence>

<element name=”Coefficients” type=”mpeg7:integerVector”/>

</sequence>

<attribute name=”numberOfCoefficients” type=”mpeg7:unsigned3”/>

<attribute name=”numberOfBitplanesDiscarded”

type=”mpeg7:unsigned3”/>

</extension>

</complexContent>

</complexType>

6.4.2 Binary representation syntax

	ScalableColor {
	Number of bits
	Mnemonic

	
numberOfCoefficients
	3
	bslbf

	
numberOfBitplanesDiscarded
	3
	bslbf

	
for(k=0; k<numberOfCoefficients; k++) {
	
	

	

CoefficientSign
	1
	bslbf

	
}
	
	

	
for(k=0; k<8-numberOfBitplanesDiscarded; k++) {
	
	

	

Bitplane[k]
	BitplaneSize
	bslbf

	
}
	
	

	}
	
	

6.4.3 Descriptor components semantics

numberOfCoefficients
This attribute specifies the number of coefficients used in the scalable representation. Possible values are: 16, 32, 64, 128, and 256. Its binary semantics are specified in the following table.

	numberOfCoefficients
	Meaning

	000
	16

	001
	32

	010
	64

	011
	128

	100
	256

	101-111
	Reserved

numberOfBitplanesDiscarded
This attribute specifies the number of bitplanes discarded in the scalable representation for each coefficient. Possible values are: 0, 1, 2, 3, 4, 6, 8. If the number of bits allocated to a specific coefficient is less than NumberOfBitplanesDiscarded, only the sign bit of this coefficient is retained. The binary semantics of this field are defined in the following table.

	numberOfBitplanesDiscarded
	Meaning

	000
	0

	001
	1

	010
	2

	011
	3

	100
	4

	101
	6

	110
	8

	111
	Reserved

Coefficients
In the DDL representation, coefficients are expressed as signed integers, where the precision of the quantized representation follows from the NumberOfBitplanesDiscarded value. In the binary representation, coefficients are expressed through their sign and optionally their amplitude.

CoefficientSign
This is the sign of a Haar coefficient representing a component of a transformed color histogram in HSV color space.

Bitplane[k]
This represents one bitplane of all the coefficients that are encoded in this specific bitplane. Due to the fact that each coefficient is encoded with a different number of bits, the size of each bitplane increases starting from the most significant bits (MSB=8) to the least significant bits (LSB=1). The first bitplane contains the MSB of all coefficients encoded on 8 bits, while the last bitplane contains the LSB of all coefficients encoded. Table 9 shows the size in bits (or equivalently in number of coefficients represented) of each bitplane, depending on the NumberOfCoefficients retained in the scalable color representation. Note that following the notation of 6.4.2, Bitplane[0] is the most significant bitplane, while Bitplane[7] contains the least significant bit of each coefficient.

	Bitplanesize (significance)
	Number Of Coefficients=16
	Number Of Coefficients=32
	Number Of Coefficients=64
	Number Of Coefficients=128
	Number Of Coefficients=256

	Bitplane[0]
	3
	3
	3
	3
	3

	Bitplane[1]
	5
	5
	5
	5
	5

	Bitplane[2]
	14
	17
	17
	17
	17

	Bitplane[3]
	16
	24
	25
	25
	25

	Bitplane[4]
	16
	30
	51
	82
	91

	Bitplane[5]
	16
	31
	63
	102
	138

	Bitplane[6]
	16
	32
	64
	122
	227

	Bitplane[7]
	16
	32
	64
	128
	256

Table 9: Sizes of successive bitplanes, depending on the NumberOfCoefficients.

Corresponding to Table 9, Bitplane[k] is assigned rank r=8-k. If for a coefficient BN<r in Table 10, the coefficient is skipped in Bitplane[k].

Within the bitplanes the coefficients, if present, are ordered as follows with respect to the coefficient index CI in Table 10:

· Coefficients 0-15:
CI: 0, 4, 8, 12, 32, 36, 40, 44, 128, 132, 136, 140, 160, 164, 168, 172

· Coefficients 16-31:
CI: 2, 6, 10, 14, 34, 38, 42, 46, 130, 134, 138, 142, 162, 166, 170, 174

· Coefficients 32-63:
CI: 64, 66, 68, 70, 72, 74, 76, 78, 96, 98, 100, 102, 104, 106, 108, 110, 192, 194, 196, 198, 200, 204, 206, 224, 226, 228, 230, 232, 234, 236, 238

· Coefficients 64-127:
CI: 16, 18, 20, 22, 24, 26, 28, 30, 48, 50, 52, 54, 56, 58, 60, 62, 80, 82, 84, 86, 88, 90, 92, 94, 112, 114, 116, 118, 120, 122, 124, 126, 144, 146, 148, 150, 152, 154, 156, 158, 176, 178, 180, 182, 184, 186, 188, 190, 208, 210, 212, 214, 216, 218, 220, 222, 240, 242, 244, 246, 248, 250, 252, 254

· Coefficients 128-255:
CI: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255.

For instance in Bitplane[1] with 16 coefficients, 5 bits expressing this bitplane for the coefficients (in sequence) CI=0, 4, 8, 12, 128 would be contained.

Bit representation of Coefficients

For each coefficient, what is encoded is the magnitude of a Haar coefficient representing a component of a transformed color histogram in the HSV color space. The Coefficient Index CI, the Number Of Bits allocated to the coefficients BN, as well as Offset values QO necessary for reconstruction of histograms, are given in Table 10. Reconstruction of one coefficient is defined as CR=QO+SIGN*AMPLITUDE. The AMPLITUDE value is constituted from all the bitplanes that are available, in their respective significance position. All bit values that are not available shall be supplemented by zero values.

	CI
	BN
	QO
	CI
	BN
	QO
	CI
	BN
	QO
	CI
	BN
	QO

	0
	8
	217
	64
	4
	3
	128
	7
	-29
	192
	4
	-5

	1
	3
	-1
	65
	3
	1
	129
	4
	1
	193
	3
	0

	2
	6
	4
	66
	5
	3
	130
	6
	0
	194
	4
	-4

	3
	2
	0
	67
	3
	0
	131
	3
	-1
	195
	3
	-1

	4
	8
	-54
	68
	4
	0
	132
	6
	-22
	196
	4
	-2

	5
	2
	-1
	69
	2
	-1
	133
	2
	0
	197
	2
	0

	6
	5
	-1
	70
	4
	-1
	134
	4
	0
	198
	4
	-1

	7
	2
	0
	71
	2
	0
	135
	2
	0
	199
	2
	0

	8
	8
	-71
	72
	4
	2
	136
	6
	-14
	200
	4
	-3

	9
	2
	0
	73
	3
	0
	137
	3
	0
	201
	3
	0

	10
	5
	-5
	74
	4
	0
	138
	5
	-5
	202
	4
	-1

	11
	2
	0
	75
	2
	0
	139
	2
	0
	203
	2
	0

	12
	7
	-27
	76
	4
	0
	140
	6
	-8
	204
	3
	-1

	13
	2
	0
	77
	2
	0
	141
	2
	0
	205
	2
	0

	14
	4
	3
	78
	4
	0
	142
	4
	1
	206
	4
	-1

	15
	2
	0
	79
	2
	0
	143
	2
	0
	207
	2
	0

	16
	4
	-1
	80
	4
	0
	144
	4
	0
	208
	4
	-1

	17
	3
	1
	81
	4
	2
	145
	4
	2
	209
	3
	1

	18
	4
	1
	82
	4
	-1
	146
	4
	-2
	210
	4
	-2

	19
	3
	0
	83
	4
	-1
	147
	4
	-1
	211
	3
	-1

	20
	4
	0
	84
	4
	-3
	148
	4
	-3
	212
	4
	-2

	21
	2
	-1
	85
	3
	-1
	149
	2
	0
	213
	2
	0

	22
	4
	-1
	86
	4
	-3
	150
	4
	-3
	214
	4
	-2

	23
	2
	0
	87
	2
	0
	151
	2
	0
	215
	1
	0

	24
	3
	0
	88
	4
	-1
	152
	4
	-1
	216
	4
	-1

	25
	3
	0
	89
	4
	1
	153
	4
	1
	217
	3
	1

	26
	3
	-1
	90
	4
	-2
	154
	4
	-2
	218
	4
	-2

	27
	2
	0
	91
	2
	-1
	155
	2
	0
	219
	2
	0

	28
	2
	-1
	92
	3
	-2
	156
	3
	-1
	220
	3
	-1

	29
	1
	0
	93
	1
	0
	157
	1
	0
	221
	1
	0

	30
	3
	-1
	94
	4
	-2
	158
	4
	-2
	222
	3
	-1

	31
	2
	0
	95
	2
	0
	159
	2
	0
	223
	2
	0

	32
	6
	-22
	96
	4
	0
	160
	6
	-22
	224
	4
	-2

	33
	3
	1
	97
	4
	1
	161
	3
	1
	225
	2
	0

	34
	6
	0
	98
	4
	-3
	162
	5
	-2
	226
	4
	-1

	35
	3
	0
	99
	4
	-1
	163
	3
	0
	227
	2
	0

	36
	6
	-19
	100
	4
	-3
	164
	5
	-11
	228
	2
	0

	37
	2
	0
	101
	2
	0
	165
	2
	0
	229
	1
	0

	38
	4
	-2
	102
	4
	-2
	166
	2
	0
	230
	2
	0

	39
	2
	0
	103
	2
	0
	167
	1
	0
	231
	1
	0

	40
	6
	-14
	104
	4
	-2
	168
	6
	-13
	232
	4
	-1

	41
	3
	0
	105
	3
	1
	169
	3
	1
	233
	3
	0

	42
	5
	-2
	106
	4
	-2
	170
	4
	-1
	234
	2
	0

	43
	2
	-1
	107
	2
	0
	171
	2
	0
	235
	2
	0

	44
	6
	-9
	108
	2
	0
	172
	5
	-6
	236
	2
	0

	45
	1
	0
	109
	1
	0
	173
	1
	0
	237
	1
	0

	46
	4
	2
	110
	4
	-1
	174
	3
	0
	238
	2
	0

	47
	2
	0
	111
	2
	0
	175
	2
	0
	239
	1
	0

	48
	3
	0
	112
	4
	-2
	176
	4
	-1
	240
	3
	-1

	49
	3
	1
	113
	3
	0
	177
	2
	0
	241
	2
	0

	50
	3
	-1
	114
	4
	-2
	178
	3
	-1
	242
	2
	0

	51
	2
	0
	115
	3
	0
	179
	2
	0
	243
	2
	0

	52
	3
	0
	116
	2
	0
	180
	2
	0
	244
	1
	0

	53
	2
	0
	117
	2
	0
	181
	1
	0
	245
	1
	0

	54
	2
	0
	118
	2
	0
	182
	1
	0
	246
	1
	0

	55
	2
	0
	119
	1
	0
	183
	1
	0
	247
	1
	0

	56
	3
	-1
	120
	3
	-1
	184
	3
	-1
	248
	3
	0

	57
	2
	0
	121
	2
	0
	185
	2
	0
	249
	2
	0

	58
	3
	0
	122
	2
	0
	186
	2
	0
	250
	2
	0

	59
	2
	-1
	123
	2
	0
	187
	2
	0
	251
	2
	0

	60
	2
	0
	124
	2
	0
	188
	1
	0
	252
	1
	0

	61
	1
	0
	125
	1
	0
	189
	1
	0
	253
	1
	0

	62
	3
	1
	126
	2
	0
	190
	2
	0
	254
	1
	0

	63
	2
	1
	127
	2
	0
	191
	2
	0
	255
	1
	0

Table 10: Indexing, bit allocation and quantiser offsets of Haar coefficients.
Input of the transform is an HSV Color Histogram based on definition of uniform ColorQuantization descriptor with 16 bins in H, each 4 bins in S and V (256 bins in total). Index values of input histogram bins equal the index values of uniform ColorQuantization descriptor. Prior to the Haar transform, the histogram (probability) values are subject to a non-uniform mapping into a 4-bit index. Table 11 specifies the mapping function from a histogram with bin values of 11-bit integer precision into this 4-bit representation, which is used as input of Figure 12(a). The flow diagram of the Haar transform is explained in Figure 12. The transform is performed in place, i.e. the indexing of the coefficients in Table 12 corresponds to the respective direct input path of the flow diagram. Figure 12(a) shows the first four levels of the transform, which has likewise to be applied with index offsets of 4, 8, 12, 32, 36, 40, 44, 128, 132, 136, 140, 160, 164, 168, 172. Figure 12(b) shows the remaining four levels, for which only the “intermediate lowpass” coefficients (to be found at the leading positions from the 16 index offsets) are used as inputs.

	Histogram value
	4-bit index
	Histogram value
	4-bit index
	Histogram value
	4-bit index
	Histogram value
	4-bit index

	0
	0
	40
	4
	…
	8
	422
	12

	1
	1
	41
	5
	197
	8
	…
	12

	2
	1
	…
	5
	198
	9
	519
	12

	3
	2
	66
	5
	…
	9
	520
	13

	…
	2
	67
	6
	261
	9
	…
	13

	9
	2
	…
	6
	262
	10
	629
	13

	10
	3
	101
	6
	…
	10
	630
	14

	…
	3
	102
	7
	335
	10
	…
	14

	21
	3
	…
	7
	336
	11
	752
	14

	22
	4
	144
	7
	…
	11
	753
	15

	…
	4
	145
	8
	421
	11
	…
	15

	
	2047
	15

Table 11: Equivalent quantisation table of reconstructed HSV color histogram bin values.

[image: image36.wmf]+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

0

4

8

12

32

36

40

44

128

132

136

140

160

164

168

172

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

-

S

S

+

+

-

S

S

+

+

-

S

S

+

+

+

 LINK Designer.Drawing.7 "C:\\Eigene Dateien\\ohm\\DRW\\M7_HIST_HAAR_4.DSF" "" \p [image: image37.wmf]+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

...

+

+

+

-

S

S

0

1

2

3

16

17

18

19

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

...

+

+

+

-

S

S

64

65

66

67

80

81

82

83

...

+

+

+

-

S

S

+

+

+

-

S

S

+

+

+

-

S

S

S=0, V=0

S=1, V=0

S=0, V=1

S=1, V=1

256 bins

128 bins

64 bins

32 bins

16 bins

(a) (b)

Figure 12: (a) Inverse Haar transform into 16-bin HSV color histogram. (b) Inverse Haar transform operations for reconstruction of an HSV histogram with 32-256 bins.

	Number of coefficients
	Number of bins H
	Number of bins S
	Number of bins V

	16
	4
	2
	2

	32
	8
	2
	2

	64
	8
	2
	4

	128
	8
	4
	4

	256
	16
	4
	4

Table 12: Bin numbers of reconstructed HSV color histograms.
6.5 Color layout

This descriptor specifies the spatial distribution of colors for high-speed retrieval and browsing. It targets image –to image matching and video clip –to video clip matching. It can also be used for color layout-based retrieval, such as sketch-to-image matching. This descriptor can be applied to arbitrarily shaped regions. When applied to a video segment or a moving region, the descriptor specifies the spatial distribution of color of a representative frame selected from the corresponding video segment or a representative region selected from the corresponding moving region.

6.5.1 DDL representation syntax

<complexType name=”ColorLayoutType” final=”#all”>

<complexContent>

<extension base=”VisualDType”>

<sequence>

<element name=”YCoeff”>

<complexType>

<element name=”YDCCoeff” type=”mpeg7:unsigned6”/>

<element name=”YACCoeff” type=”mpeg7:acCoeffType”/>

</complexType>

</element>

<element>

<complexType>

<element name=”CbDCCoeff” type=”mpeg7:unsigned6”/>

<element name=”CbACCoeff” type=”mpeg7:acCoeffType”/>

</complexType>

</element>

<element>

<complexType>

<element name=”CrDCCoeff” type=”mpeg7:unsigned6”/>

<element name=”CrACCoeff” type=”mpeg7:acCoeffType”/>

</complexType>

</element>

</sequence>

<attribute name=”numOfYCoeff” type=”mpeg7:numberOfCoeffType”

 use=”default” value=”6”/>

<attribute name=”numOfCCoeff” type=”mpeg7:numberOfCoeffType”
 use=”default” value=”3”/>

</extension>

</complexContent>

</complexType>

<simpleType name=”numberOfCoeffType” base=”mpeg7:positiveInteger”>

<enumeration value=”1”/>

<enumeration value=”3”/>

<enumeration value=”6”/>

<enumeration value=”10”/>

<enumeration value=”15”/>

<enumeration value=”21”/>

<enumeration value=”28”/>

<enumeration value=”64”/>

</simpleType>

<simpleType name=”acCoeffType”>

<restriction>

<simpleType>

<list itemType=”mpeg7:unsigned5”/>

</simpleType>

<maxLength value=”63”/>

</restriction>

</simpleType>

6.5.2 Binary representation syntax

	ColorLayout {
	Number of bits
	Mnemonic

	
CoefficientPattern
	1-2
	vlclbf

	
if(CoefficientPattern==11) {
	
	

	

numOfYCoeffIndex
	3
	bslbf

	

numOfCCoeffIndex
	3
	bslbf

	
}
	
	

	
YDCCoeff
	6
	uimsbf

	
for(k=1; k<numOfYCoeff; k++) {
	
	

	

YACCoeff
	5
	uimsbf

	
}
	
	

	
CbDCCoeff
	6
	uimsbf

	
for(k=1; k<numOfCCoeff; k++) {
	
	

	

CbACCoeff
	5
	uimsbf

	
}
	
	

	
CrDCCoeff
	6
	uimsbf

	
for(k=1; k<numOfCCoeff; k++) {
	
	

	

CrACCoeff
	5
	uimsbf

	
}
	
	

	}
	
	

6.5.3 Descriptor components semantics

CoefficientPattern

This is a 1- or 2-bit integer, which is only present in the binary representation that specifies the number of coefficients included in the descriptor. The meaning of the values is specified in Table 13.

It is forbidden to use CoefficientPattern “11” to express the combinations of numOfYCoeff and numOfCCoeff that are specified by CoeffPatterns “0” and “01”.

	CoefficientPattern
	Meaning

	
	numOfYCoeff
	numOfCCoeff

	0
	6
	3

	10
	6
	6

	11
	Specified by numOfYCoeffIndex
	Specified by numOfCCoeffIndex

Table 13: Meaning of CoefficientPattern.
numOfYCoeff, numOfCCoeff
These elements specify the number of coefficients for each color component (Y and Cb/Cr). The possible number is one of 1, 3, 6, 10, 15, 21, 28, and 64. When not specified, these elements are set to their default values: 6 for Y and 3 for Cb and Cr. The encoding for the 3-bit binary representation is specified in Table 14.

numOfYCoeffIndex, numOfCCoeffIndex

These elements, which are only present in binary representation, indicate the numOfYCoeff and numOfCCoeff. Their meanings are shown in Table 14.
	numOfYCoeffIndex/numOfCCoeffIndex
	numOfYCoeff, numOfCCoeff

	000
	1

	001
	3

	010
	6

	011
	10

	100
	15

	101
	21

	110
	28

	111
	64

Table 14: Meaning of numOfYCoeffIndex, numOfCCoeffIndex.
YDCCoeff, YACCoeff, CbDCCoeff, CbACCoeff, CrDCCoeff, CrACCoeff
These are integer arrays that hold series of zigzag-scanned DCT coefficient values.

YDCCoeff

The first quantized DCT coefficient of Y component.

YACCoeff

The second and the successive quantized DCT coefficients of Y component.

CbDCCoeff

The first quantized DCT coefficient of Cb component.

CbACCoeff

The second and the successive quantized DCT coefficients of Cb component.

CrDCCoeff

The first quantized DCT coefficient of Cr component.

CrACCoeff

The second and the successive quantized DCT coefficients of Cr component.

These coefficients are derived as follows. It should be noted that the following process must be performed on each color component independently. The DCT coefficients of each color component are derived from the corresponding component of local representative colors. The selection algorithm of local representative colors is not normative.

1. DCT transformation of an 8x8 array of local dominant colors.

The 8x8 DCT coefficient matrix, c[8][8], can be calculated from the 8x8 matrix of local representative colors, d[8][8], as follows

int i, j, k;
double s;
double tmp[64];
for(i=0; i<8; i++) {
 for(j=0; j<8; j++) {
 s = 0.0;
 for(k=0; k<8; k++)
 s += m[j][k]*d[i][k];
 tmp[i][j] = s;
 }
}
for(j=0; j<8; j++) {
 for(i=0; i<8; i++) {
 s = 0.0;
 for(k=0; k<8; k++)
 s += m[i][k]*tmp[k][j];
 c[i][j] = (int)trunc(s+0.499999);
 }
}

Here, the function trunc(x) drops the fractions of x for rounding to the integer values. The matrix m[8][8] is defined as follows:

for(i=0; i<8; i++) {
 double s=(i==0) ? sqrt(0.125) : 0.5;
 for(j=0; j<8; j++) {
 m[i][j] = s*cos((M_PI/8.0)*i*(j+0.5));
 }
}

It should be noted that the invalid location on d[8][8] should be padded before the above process using average color over all valid representative colors.

In the following process, yc[8][8], cbc[8][8] and crc[8][8] denote DCT coefficient matrix on Y, Cb and Cr color components.

2. Quantisation of DCT coefficients

The coefficient matrix c should be quantised as follows:

YC[0][0] = quant_Y_DC(yc[0][0]) YC[i][j] = quant_Y_AC(yc[i][j])
CbC[0][0] = quant_CbCr_DC(cbc[0][0]) CbC[i][j] = quant_CbCr_AC(cbc[i][j])
CrC[0][0] = quant_CbCr_DC(crc[0][0]) CrC[i][j] = quant_CbCr_AC(crc[i][j])

The quantisation functions should be implemented as follows:

int quant_Y_DC(int i) {
 int j;
 i = i/8;
 if(i>192) j=112+(i-192)/4;
 else if(i>160) j=96+(i-160)/2;
 else if(i>96) j=32+i-96;
 else if(i>64) j=16+(i-64)/2;
 else j=i/4;
 return j>>1;
}
int quant_CbCr_DC(int i) {
 int j;
 i = i/8;
 if(i>191) j=63;
 else if(i>160) j=56+(i-160)/4;
 else if(i>144) j=48+(i-144)/2;
 else if(i>112) j=16+i-112;
 else if(i>96) j=8+(i-96)/2;
 else if(i>64) j=(i-64)/4;
 else j=0;
 return j;
}
int quant_Y_AC(int i) {
 int j;
 i = i/2;
 if(i>255) i=255;
 if(i<-256) i=-256;
 if(abs(i)>127) j=64+abs(i)/4;
 else if(abs(i)>63) j=32+abs(i)/2;
 else j=abs(i);
 j = (i<0)?-j:j;
 return (int)trunc(((double)j+128.0)/8.0+0.5);
}
int quant_CbCr_AC(int i) {
 int j;
 if(i>255) i=255;
 if(i<-256) i=-256;
 if(abs(i)>127) j=64+abs(i)/4;
 else if(abs(i)>63) j=32+abs(i)/2;
 else j=abs(i);
 j = (i<0)?-j:j;
 return (int)trunc(((double)j+128.0)/8.0+0.5);
}

3. Zigzag scanning of quantised coefficients

The quantised coefficients YC, CbC, and CrC are scanned in a zigzag manner and the descriptor values, YCoeff, CbCoeff and CrCoeff, are derived as follows:

YCoeff[zigzag(i,j)] = YC[i][j]
CbCoeff[zigzag(i,j)] = CbC[i][j]
CrCoeff[zigzag(i,j)] = CrC[i][j]

where the function zigzag(i,j) returns the order of zigzag scanning at location (i,j) as shown in Table 15.

	
	i

	j
	1
	2
	6
	7
	15
	16
	28
	29

	
	3
	5
	8
	14
	17
	27
	30
	43

	
	4
	9
	13
	18
	26
	31
	42
	44

	
	10
	12
	19
	25
	32
	41
	45
	54

	
	11
	20
	24
	33
	40
	46
	53
	55

	
	21
	23
	34
	39
	47
	52
	56
	61

	
	22
	35
	38
	48
	51
	57
	60
	62

	
	36
	37
	49
	50
	58
	59
	63
	64

Table 15: Zigzag scan order on an 8x8 matrix.

The DC coefficients are quantized to 6 bits and 5 bits are assigned for the remaining coefficients.

6.6 Color structure

This descriptor is a color feature descriptor that captures both color content (similar to that of a color histogram) and the structure of this content. It does this via the use of a structuring element. Its main function is image-to-image matching and its intended use is for still-image retrieval, where an image may consist of either arbitrarily shaped, possibly disconnected, regions or a single rectangular frame.

The descriptor expresses local color structure in an image by means of a structuring element that is composed of several image samples. The semantics of the descriptor, though related to those of a color histogram, differ in the following way. Instead of characterizing the relative frequency of individual image samples with a particular color, this descriptor characterizes the relative frequency of structuring elements that contain an image sample with a particular color. Hence, unlike the color histogram, this descriptor can distinguish between two images in which a given color is present in identical amounts but where the structure of the groups of pixels having that color is different in the two images. Figure 13 depicts an example of this.

[image: image38.png]Pixels w/in un.age havmg color ¢y

nghly structured color -

 [image: image39.png]

Figure 13: Examples of structured and unstructured color.

6.6.1 DDL representation syntax

<complexType name=”ColorStructureType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<sequence>

<element name=”Values” >

<simpleType>

<restriction>

<simpleType>

<list itemType=”mpeg7:unsigned8”/>

</simpleType>

<minLength value=”32”/>

<maxLength value=”256”/>

</restriction>

</simpleType>

</element>

</sequence>

<attribute name=”colorQuant” type=”mpeg7:unsigned3” use=”required”/>

</extension>

</complexContent>
</complexType>

6.6.2 Binary representation syntax

	ColorStructure{
	Number of bits
	Mnemonic

	
colorQuant
	3
	bslbf

	
for (k=0; k<numberOfValues; k++)
	
	

	

Values[k]
	8
	uimsbf

	}
	
	

6.6.3 Descriptor components semantics

colorQuant
This attribute specifies the color space and color quantization operating point and determines the number of ColorStructure values used in the descriptor. Its semantics are specified in the following table.

	colorQuant
	NumberOfValues

	000
	Forbidden

	001
	 32 (HMMD)

	010
	 64 (HMMD)

	011
	128 (HMMD)

	100
	256 (HMMD)

	101-111
	Reserved

Table 16: Semantics of colorQuant attribute.
Values
This element contains the ColorStructure descriptor data which is organized in an M element array of 8-bit integer values, h(m) for m ({0, 1, ..., M-1}. The array elements shall be referred to as bins. The number, M, of bins shall be chosen from the set {256, 128, 64, 32} of allowable operating points. The bins of an M-bin descriptor are associated bijectively to the M quantised colors, c0, c1, c2, …, cM-1, of the M-cell color space, which is defined below. For the M=256 case, the value of h(m) represents, in a non-linear manner to be described, the number of structuring elements in the image that contain one or more pixels with color cm.

6.6.3.1 Extraction

The Color Structure descriptor containing 256 bins is extracted directly from the image based on a 256-cell quantisation of the HMMD color space. Figure 14 depicts the extraction procedure. A "raw" 256-bin CS histogram is accumulated directly from the image, as described below. At this point, bin amplitudes are un-quantized and linear, i.e., linearly related to the number of structuring elements that containing the color associated with the bin.

Color Structure descriptors containing 128, 64, or 32 bins are computed based on unification of the bins of the 256-bin descriptor. For 256-bin descriptors no unification is performed. The unification is performed by adding the amplitudes contained in the appropriate bins and then clipping the sum to a maximum value of Rmax, to be discussed below.

The mapping of the bins in the 256-bin descriptor to the bins in a smaller descriptor is defined by re-quantizing the color represented by each bin of the 256-bin descriptor into the more coarsely quantized color space as specified in Table 18, and then computing the bin index that represents each re-quantized color.

The final step of the extraction process is the non-uniform quantization of each bin amplitude to an 8-bit code value. The non-uniform nature of the quantization results in a non-linear relationship between code values and associated linear amplitudes. Non-uniform quantization proceeds as follows. Bin amplitudes are normalized by Rmax. That is, the values h(m)/ Rmax are computed for m ({0, 1, ..., M-1} so that the range of h is [0, 1]. This interval is divided into 6 regions each of which is subdivided into a specific number of uniform quantization levels. The first 5 of the 6 regions are of the form [thn, thn+1), n ({0, ..., 4} and the last is of the form [th5, 1.0] where values of thn are given by: th0=0, th1=0.000000001, th2=0.037, th3=0.08, th4=0.195, th5=0.32. Table 17 contains the number of (uniform) quantization levels within each region.

	Region
	Number of levels

	0
	1

	1
	25

	2
	20

	3
	35

	4
	35

	5
	140

Table 17: Number of quantization levels in each region of the bin value range for non-uniform quantization.

[image: image40.png]5 g
8 £
= T
cout z 256-binCSD 5.5
input image] 23
g no B 2
2 B=h]
- i p El
Compile raw 256-bin| £ 256 bi Non-uniform | 5 256 128 64
. < ns i 256—, 128, 64—,
C'S hls‘togram dosired amp!ltuc!e ™ 32.bin CS D
rom image quantisation
yos
Colour space clipping
re—quantisation ;gég;nsé;’ g
via Bin Unification| -

Descriptor Extraction Procedure

Figure 14: ColorStructure descriptor extraction.

Both query and database descriptors are extracted by the preceding algorithm.

6.6.3.2 Descriptor re-quantization

When a query and a database descriptor are presented for comparison to a Similarity Measure their sizes must agree. Given a database descriptor of size M and a query descriptor of size N, the larger of the two descriptors must be reduced in size to match the smaller of the two. Figure 15 illustrates the method by which this reduction is performed. The code values of the descriptor to be reduced are first converted to (quantized) linear amplitudes. The conversion of code values to linear amplitudes shall have the following two properties: (i) there shall be a linear relationship between the resultant amplitudes and the mid-interval values of the non-uniform quantization intervals within [0,1] defined above, and (ii) these linear amplitude mid-interval values shall be represented by B bits, where B=20.

Next, bin unification is performed in the same manner as described above. In particular, if it is assumed that M>N, then the mapping of the bins in the M-bin descriptor to the bins in the N-bin descriptor is defined by re-quantizing the color represented by each bin of the M-bin descriptor into the N-cell color space as specified in Table 18, and then computing the bin index that represents each re-quantized color.

During bin unification the sum of two bins is clipped to the maximum possible linear amplitude, 2B-1.

Last, the linear amplitudes of the reduced descriptor are converted back to non-linear 8-bit code values. It is to be noted that there is a bijective relationship between code values and (quantized) linear amplitudes.

[image: image41.png]R
M-bin
“database” D

to Similarity

Measure
%
Colour space clipping
— re—quantisation
gg via Bin Unification g
il 7 e L3
E) &
Ts g Ts
53 23 84
28 =3 g
B2 B2 B
ZE 5'a =]
28 EE £8
g EE] g
E] El El
2 & &

Preparation for Descriptor Comparison

Figure 15: ColorStructure descriptor re-quantization for similarity matching.

6.6.3.3 Color space and color quantization

The Color Structure descriptor shall be defined using the HMMD color space. The color pixels of incoming images in any other color space shall be converted to the HMMD color space. The Color Structure descriptor shall be defined using the following color space quantization operating points: 256, 128, 64, and 32 bins.

The 256-cell color space is quantized non-uniformly as follows (see Table 18). First, the HMMD color space is divided into 5 subspaces: subspaces 0, 1, 2, 3, and 4. This subspace division is defined along the Diff (colorfulness) axis of the HMMD color space, as shown in Figure 9. The subspaces are defined by cut-points which determine the following diff-axis intervals: [0,6), [6, 20), [20, 60), [60, 110) and [110, 255]. Second, each color subspace is uniformly quantized along the Hue and Sum axes, where the number of quantization levels along each axis is defined in Table 18 for each operating point.

	Subspace
	Number of quantization levels for different numbers of histogram bins

	
	256
	128
	64
	32

	
	Hue
	Sum
	Hue
	Sum
	Hue
	Sum
	Hue
	Sum

	0
	1
	32
	1
	16
	1
	8
	1
	8

	1
	4
	8
	4
	4
	4
	4
	4
	4

	2
	16
	4
	8
	4
	4
	4
	
	

	3
	16
	4
	8
	4
	8
	2
	4
	1

	4
	16
	4
	8
	4
	8
	1
	4
	1

Table 18: HMMD color space quantization for ColorStructure descriptor.

Figure 16 shows a slice of the HMMD space in the diff-sum plane for zero hue angle and depicts the quantization cells for the 128-cell operating point. Cut-points defining the subspaces are indicated in the figure by vertical lines in the color plane. The diff-axis values that determine the cut-points are shown in black at the top of the dashed cut-point markers along the upper edge of the plane. Horizontal lines within each subspace depict the quantization along the sum-axis. The quantization of hue angle is indicated by the gray rotation arrows around each cut-point marker. The gray number to the right of a rotation angle corresponds to the number of levels to which hue has been quantized in the subspace to the right of the cut-point. For example, Figure 16 states that the hue values associated with the subspace between diff = 60 and diff = 110 (i.e. subspace 3) are quantized to 8 levels. This agrees with the entry in Table 18.

The bijective mapping between color-space cells and descriptor bin indices is given explicitly by the numbers within the cells. The ordering of these numbers is first from bottom to top (parallel to the sum-axis), then from diff-sum plane to diff-sum plane (around the hue-axis) staying within a subspace, and finally from subspace to subspace. For example, the cells of Figure 16 closest to the bottom edge in subspaces 2 and 3 are numbered 32 and 64. The jump is due to the fact that there are four sum levels and 8 hue levels for this subspace. The numbers within the subspace, therefore, increase from 32 to 32 + 4*8 – 1 = 63.

[image: image42.png]oift

60

Pl

ol RTET2[E[T8 e

Figure 16: Correspondence between 128-cell HMMD color space and bin indices.

6.6.3.4 Raw ColorStructure histogram accumulation

In the discussion that follows, an image is defined as a rectangular array of pixels where each pixel is classified into one of two categories: active or passive, and where the active pixels form arbitrarily shaped, possibly disconnected, regions. An image in the usual sense is one in which all pixels in the rectangular array are classified as active. The dimensions of an image are taken to be the dimensions of the rectangular array. The values of active pixels are, under all circumstances, ignored. In particular, passive pixels do not contribute to the accumulation of the bin values (defined below) of the CS histogram.
The accumulation of the raw Color Structure histogram is illustrated in Figure 17. Suppose that at a certain location in the image, the structuring element contains some pixels with color c1, some pixels with color c3 and some pixels with color c7. Then, the bin labeled c1, the bin labeled c3 and the bin labeled c7 would each be incremented once. So, in this location, the Color Structure histogram is incremented three times, once for each color present in the structuring element area.

[image: image43.wmf]8 x 8 structuring

element

COLOR

BIN

C0

C1

+1

C2

C3

+1

C4

C5

C6

C7

+1

Figure 17: Color structure histogram accumulation.

The spatial extent of the structuring element depends on the image size but the number of samples in the structuring element is held constant by subsampling the image and the structuring element at the same time. The number of samples in the structuring element is always 64, laid out in an 8x8 pattern, and the distance between two samples in this pattern increases with image size as shown in Figure 18. This method is equivalent to subsampling the image by a power of 2 and then using a structuring element of size 8x8 pixels. This can also be interpreted as resizing the image to a fixed base size and always using the same 8x8 structuring element.

[image: image44.wmf]a

.

b

.

Figure 18: Structuring elements for images with different resolutions: a: 320x240, b: 640x480.

The subsampling factor and the structuring element width and height are defined as follows. Let E be the spatial extent of the structuring element in the original image, i.e., the spatial extent is ExE. Let K be the subsampling factor applied, i.e., K={1, 2, 4, 8, 16, …}, where K=1 implies no subsampling, K=2 implies subsampling by 2 horizontally and vertically, etc. K and E are defined as follows:

p = max{0, round(0.5*log2(width*height)-8)}
K = 2p
E = 8*K
For example, an image of size 320x240 yields K=1 and E=8, in which case the structuring element is simply 8x8 pixels and no subsampling takes place. An image with sizes 640x480 yields K=2 and E=16, in which case the spatial extent of the structuring element is 16x16 and subsampling is 2x2, i.e. the structuring element of size 8x8 is applied to a subsampled image. Note that images smaller than 256x256 pixels are a special case in the sense that K=1 and E=8 in all cases. Images with width and/or height smaller than 8 pixels should be upsampled by the smallest power of 2 (in both directions) such that the minimum of the width and height of the resulting image is greater than or equal to 8.

Figure 18 (only a part of the images is shown) shows the structuring element in the initial location at the upper left corner of the image. The structuring element slides over the image and is shifted by one pixel in case (a) and by two pixels in case (b). Case (b) corresponds to subsampling of the image by 2 in both directions and subsequently applying the same 8x8 structuring element.

Each bin of the Color Structure descriptor h(m) represents the number of locations of the structuring element at which a pixel with color cm falls inside the element. The origin of the structure element is defined by its top-left sample. The locations of the structuring element over which the descriptor is accumulated are defined by the grid of pixels of the possibly subsampled input image.

The bin values h(m) of the Color Structure descriptor are normalized by the number of positions within the (possibly subsampled) image that the structuring element can occupy if its origin is moved to every allowable location. The normalization factor is denoted by Rmax. For example, for a 320x240 image the normalizing factor is (320-7)x(240-7). Normalized bin amplitude values lie in the range [0.0, 1.0].

6.7 GoF/GoP Color

The group-of-frames/pictures (GoF/GoP) color descriptor defines a structure required for representing the color features of a collection of (similar) images or video frames by means of the scalable color descriptor detailed in Clause 6.4. The collection of video frames can be a contiguous video segment or a non-contiguous collection of similar video frames.

6.7.1 DDL representation syntax

<complexType name=”GoFGoPColorType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<sequence>

<element name=”ScalableColor” type=”mpeg7:ScalableColorType”/>

</sequence>

<attribute name=”aggregation” type=”mpeg7:AggregationType”/>

</extension>

</complexContent>

</complexType>
<simpleType name=”AggregationType” >

<restriction base=”string”/>

<enumeration value=”Average”/>

<enumeration value=”Median”/>

<enumeration value=”Intersection”/>

<enumeration value=”Reserved”/>

</restriction>

</simpleType>

6.7.2 Binary representation syntax

	GofGoPColor {
	Number of bits
	Mnemonic

	
aggregation
	2
	bslbf

	
ScalableColor
	See clause 6.4.2
	

	}
	
	

6.7.3 Descriptor components semantics

aggregation
This attribute indicates the specific kind of aggregation used, i.e. how the individual frame/picture histograms in the group are combined to obtain the group-of-frames/pictures histogram. The aggregation is performed over the histograms of the group of video frames or images, and the scalable descriptor is then computed on the aggregated histogram. The individual histogram of a video frame or an image is an HSV color histogram based on the definition of uniform ColorQuantization descriptor with 16 bins in H, and 4 bins in S and V (256 bins in total). The ColorQuantization for the histogram bins is the same as the one used in ScalableColor in Clause 6.4. The semantics of binary representation of this attribute is as follows:

	aggregation
	Meaning

	00
	Average

	01
	Median

	10
	Intersection

	11
	Reserved

The “Average” histogram (Avg_Histogram) is computed by accumulating the frame/picture histograms in the group and subsequently normalizing each accumulated bin value by N, where N is the number of frames in the GoF or the number of pictures in the GoP. The value of bin j of the average histogram is computed as follows:

[image: image45.wmf].

255

,...,

0

;

]

[

_

1

]

[

_

_

0

=

=

å

=

j

j

value

Histogram

N

j

value

Histogram

Avg

N

i

i

The “Median” histogram (Med_Histogram) is obtained by constructing, for each bin, the ascending list of N frame/picture histogram values over the length of the GoF/GoP, and assigning the median of this list to the corresponding bin in the GoF/GoP histogram.

[image: image46.wmf].

255

,...,

0

]),

[

_

],...,

[

_

(

]

[

_

_

1

0

=

=

-

j

j

value

Histogram

j

value

Histogram

j

value

Histogram

Med

N

median

The median histogram eliminates aberrant effects such as lighting changes, occlusion, text overlays, etc. which the average histogram is vulnerable to.

The “Intersection” histogram (Int_Histogram) is obtained by computing for each bin j the minimum value over all the N frame/picture histograms in the group:

[image: image47.wmf].

255

,...,

0

]),

[

_

(

]

[

_

_

=

=

j

j

value

Histogram

j

value

Histogram

Int

i

i

min

For average and median histograms, each bin of each of the N histograms should be normalized by the total number of pixels in the histogram before aggregation. For intersection histogram, of the other hand, each bin should be normalized by the maximum bin value encountered before aggregation. After aggregation, the scalable color descriptor for the aggregated histogram is then computed as described in Clause 6.4.

ScalableColor
This element is specified in Clause 6.4.

7 Texture

Pictures of water, grass, a bed of flowers, or a pattern on a fabric, contain strong examples of image texture. Many natural and man-made objects are distinguished by their texture. Texture is a region property, as is
evidenced by these examples. While it is easy to visualize what one means by texture, there is no universally accepted formal definition of texture. One can think of a texture as consisting of some basic primitives (Julesz coined
the term “textons” to refer to these basic primitives), whose spatial distribution in the image creates the appearance of a texture. The texture descriptors facilitate browsing and similarity retrieval using the texture feature in image and video databases. Note that the following texture descriptors are extracted from the luminance component only. All the texture descriptors can be extracted from arbitrary shaped regions.
7.1 Homogeneous texture

The homogeneous texture descriptor characterizes the region texture using the energy and energy deviation in a set frequency channels. This is applicable for similarity based search and retrieval applications.

[image: image162.png]

Figure 19: Frequency layout for feature extraction.

The frequency space from which the texture features in the image are extracted is partitioned with equal angle of 30 degrees in angular direction and with octave division in radial direction. The partitions in the frequency domain are called the feature channels (called
[image: image48.wmf]i

C

). There are 30 feature channels as shown in Figure 19. In normalized frequency space (
[image: image49.wmf]1

0

£

£

w

), the center frequencies of the feature channels are spaced equally in 30 degrees in angular direction such that
[image: image50.wmf]r

r

´

°

=

30

q

, where r is angular index with
[image: image51.wmf]}

5

,

4

,

3

,

2

,

1

,

0

{

Î

r

. The angular width of all feature channels is 30 degrees. In the radial direction, the center frequencies of the feature channels are spaced in octave scale such that
[image: image52.wmf]{

}

4

,

3

,

2

,

1

,

0

,

2

0

Î

×

=

-

s

s

s

w

w

, where s is radial index and
[image: image53.wmf]0

w

 is the highest center frequency specified by ¾. The octave bandwidth of the feature channels in the radial direction is written as
[image: image54.wmf]{

}

4

,

3

,

2

,

1

,

0

,

2

0

Î

×

=

-

s

B

B

s

s

, where
[image: image55.wmf]0

B

 is the largest bandwidth specified by ½.

Each channel is numbered starting from the outermost band from the right to the left direction, and from higher to lower frequency bands. Therefore the feature channel (
[image: image56.wmf]i

C

) indexes i in Figure 19 are expressed as
[image: image57.wmf]1

6

+

+

´

=

r

s

i

. Note that DC term is denoted as
[image: image58.wmf]0

C

.

On top of the feature channels, the following 2D Gabor function is applied:

[image: image59.wmf](

)

(

)

(

)

ú

ú

û

ù

ê

ê

ë

é

-

-

×

ú

ú

û

ù

ê

ê

ë

é

-

-

=

2

2

2

2

,

2

exp

2

exp

r

s

r

s

r

s

P

G

q

r

s

q

q

s

w

w

q

,

w

,

[1]
The standard deviations of the Gabor function are determined by touching the Gabor function with its neighbor functions at half maximum (1/2) in both radial and angular directions. In the angular direction,
[image: image60.wmf]r

q

s

 has a constant value of
[image: image61.wmf]2

ln

2

/

15

o

. In the radial direction,
[image: image62.wmf]s

r

s

 depends on the octave bandwidth and is written as

[image: image63.wmf]2

ln

2

2

s

B

s

=

r

s

[2]

The following tables show parameters in the feature channels and the Gabor functions.

	Radial index (s)
	0
	1
	2
	3
	4

	Center frequency (
[image: image64.wmf]s

w

)
	
[image: image65.wmf]4

3

	
[image: image66.wmf]8

3

	
[image: image67.wmf]16

3

	
[image: image68.wmf]32

3

	
[image: image69.wmf]64

3

	Octave bandwidth (
[image: image70.wmf]s

B

)
	
[image: image71.wmf]2

1

	
[image: image72.wmf]4

1

	
[image: image73.wmf]8

1

	
[image: image74.wmf]16

1

	
[image: image75.wmf]32

1

	
[image: image76.wmf]s

r

s

	
[image: image77.wmf]2

ln

2

4

1

	
[image: image78.wmf]2

ln

2

8

1

	
[image: image79.wmf]2

ln

2

16

1

	
[image: image80.wmf]2

ln

2

32

1

	
[image: image81.wmf]2

ln

2

64

1

Table 19: Parameters of octave band in the radial direction.

	Angular index (r)
	0
	1
	2
	3
	4
	5

	Center frequency (
[image: image82.wmf]r

q

)
	
[image: image83.wmf]o

0

	
[image: image84.wmf]o

30

	
[image: image85.wmf]o

60

	
[image: image86.wmf]o

90

	
[image: image87.wmf]o

120

	
[image: image88.wmf]o

150

	Angular bandwidth
	
[image: image89.wmf]o

30

	
[image: image90.wmf]o

30

	
[image: image91.wmf]o

30

	
[image: image92.wmf]o

30

	
[image: image93.wmf]o

30

	
[image: image94.wmf]o

30

	
[image: image95.wmf]r

q

s

	
[image: image96.wmf]2

ln

2

2

30

o

	
[image: image97.wmf]2

ln

2

2

30

o

	
[image: image98.wmf]2

ln

2

2

30

o

	
[image: image99.wmf]2

ln

2

2

30

o

	
[image: image100.wmf]2

ln

2

2

30

o

	
[image: image101.wmf]2

ln

2

2

30

o

Table 20: Parameters of octave band in the angular direction.

Based on the frequency layout and the Gabor functions, the energy
[image: image102.wmf]i

e

 of the ith feature channel is defined as the log-scaled sum of the square of Gabor-filtered Fourier transform coefficients of an image:

[image: image103.wmf]]

1

[

log

10

i

i

p

e

+

=

 ,
[3]
where

[image: image104.wmf]ò

ò

+

+

=

=

×

=

1

0

360

0

2

,

0

0

)]

,

(

)

,

(

[

w

q

q

w

q

w

P

G

p

r

s

P

i

.
[4]
and
[image: image105.wmf](

)

q

w

,

P

 is the Fourier transform of an image represented in the polar frequency domain, i.e.
[image: image106.wmf](

)

)

sin

,

cos

(

,

q

w

q

w

q

w

F

P

=

 where
[image: image107.wmf](

)

y

x

F

,

 is the Fourier transform in the Cartesian coordinate system. The integration is over the entire frequency layout (the radial direction is normalized to (0,1]) except the DC part which is represented by the “+” sign in the integral index (i.e. 0+, 00+). Note that
[image: image108.wmf]1

6

+

+

´

=

r

s

i

. The energy deviation
[image: image109.wmf]i

d

 of the ith feature channel is defined as the log-scaled standard deviation of the square of Gabor-filtered Fourier transform coefficients of an image:

[image: image110.wmf]]

1

[

log

10

i

i

q

d

+

=

,
[5]
where

[image: image111.wmf](

)

(

)

[

]

{

}

ò

ò

+

+

+

=

=

-

×

=

1

0

360

0

2

2

0

,

,

,

w

q

q

w

q

w

i

P

i

p

P

G

q

r

s

.
[6]
Finally, the homogeneous texture descriptor consists of the average and the standard deviation of the image intensity, the energies
[image: image112.wmf]i

e

 and (optionally) the energy deviations
[image: image113.wmf]i

d

 of the feature channels.

7.1.1 DDL representation syntax

<complexType name=”HomogeneousTextureType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<sequence>

<element name=”Average” type=”mpeg7:unsigned8”/>

<element name=”StandardDeviation” type=”mpeg7:unsigned8”/>

<element name=”Energy” type=”mpeg7:textureListType”/>

<element name=”EnergyDeviation” type=” mpeg7:textureListType”

 minOccurs=”0”/>

</sequence>

</extension>

</complexContent>

</complexType>

<simpleType name="textureListType">

<restriction>

<simpleType>

<list itemType="mpeg7:unsigned8"/>

</simpleType>

<length value="30"/>

</restriction>

</simpleType>

7.1.2 Binary representation syntax

	HomogeneousTexture {
	Number of bits
	Mnemonic

	
energyDeviationFlag
	1
	bslbf

	
Average
	8
	uimsbf

	
StandardDeviation
	8
	uimsbf

	
for(k=0; k<30; k++) {
	
	

	

Energy[k]
	8
	uimsbf

	
}
	
	

	
if (energyDeviationFlag==1) {
	
	

	

for(k=0; k<30; k++) {
	
	

	

EnergyDeviation[k]
	8
	uimsbf

	
}
	
	

	}
	
	

7.1.3 Descriptor components semantics

energyDeviationFlag

This attribute, only present in the binary representation, indicates the feature layers used for texture description for similarity-based retrieval. The feature layers are base and enhancement layers. If energyDeviationFlag is set to ‘0’, only base layer consisting of mean and standard deviation of image intensity and energies of the 30 feature channels is used. If it is set to ‘1’, enhancement layer containing additionally 30 energy deviation feature values is used.

Average

This represents the average of image pixel intensity. Uniform quantization to 8 bits is applied with the following min/max values to obtain the representation.

	Min
	0

	Max
	255

StandardDeviation

This represents the standard deviation of image pixel intensity. Uniform quantization to 8 bits is applied with the following min/max values to obtain the representation.

	Min
	1.31

	Max
	109.48

Energy

This is a 1-D array that contains the energies computed from the feature channels. Since the number of feature channels is 30, the array has size 30. The elements (Energy [0], …, Energy [29]) represent energies from the 1st to the 30th feature channel accordingly. Uniform quantization to 8 bits is applied to each feature channel with the following min/max values for each channel to obtain the representation.

	Channel
	Min
	Max
	Channel
	Min
	Max
	Channel
	Min
	Max

	1
	11.70
	21.52
	11
	10.08
	20.16
	21
	7.59
	18.68

	2
	11.69
	19.95
	12
	10.43
	20.28
	22
	6.75
	19.79

	3
	11.90
	20.38
	13
	8.30
	20.82
	23
	7.80
	18.71

	4
	12.00
	22.13
	14
	8.07
	19.09
	24
	7.64
	18.88

	5
	12.00
	20.18
	15
	7.96
	20.84
	25
	6.55
	18.39

	6
	11.94
	20.00
	16
	7.94
	20.49
	26
	8.89
	18.01

	7
	9.93
	22.30
	17
	8.52
	20.76
	27
	8.89
	18.00

	8
	9.73
	20.32
	18
	8.67
	19.26
	28
	6.16
	18.08

	9
	9.73
	20.66
	19
	7.00
	19.37
	29
	8.81
	18.05

	10
	9.80
	21.46
	20
	7.86
	18.63
	30
	8.89
	17.96

EnergyDeviation

This is a 1-D array that contains the energy deviations computed from the feature channels. Since the number of feature channels is 30, the array has size 30. The elements (EnergyDeviation[0], …, EnergyDeviation[29]) represent energy deviations from the 1st to the 30th feature channel accordingly. Uniform quantization to 8 bits is applied to each feature channel with the following min/max values for each channel to obtain the representation.

	Channel
	Min
	Max
	Channel
	Min
	Max
	Channel
	Min
	Max

	1
	13.30
	24.69
	11
	11.90
	22.33
	21
	10.07
	21.28

	2
	13.31
	22.98
	12
	12.25
	22.23
	22
	8.91
	22.62

	3
	13.45
	23.89
	13
	10.39
	24.32
	23
	10.29
	21.77

	4
	13.61
	25.24
	14
	10.20
	21.62
	24
	10.15
	21.70

	5
	13.55
	24.28
	15
	10.21
	24.40
	25
	9.05
	21.10

	6
	13.44
	22.70
	16
	10.11
	23.80
	26
	11.75
	20.75

	7
	11.74
	25.64
	17
	10.65
	24.33
	27
	11.78
	20.79

	8
	11.56
	24.10
	18
	10.80
	21.69
	28
	8.65
	20.85

	9
	11.55
	22.69
	19
	9.28
	22.66
	29
	11.67
	20.77

	10
	11.61
	25.22
	20
	10.39
	21.33
	30
	11.74
	20.75

7.2 Texture browsing

This descriptor specifies a texture browsing descriptor. It relates to a perceptual characterization of texture, similar to a human characterization, in terms of regularity, coarseness and directionality. This representation is useful for browsing applications and coarse classification of textures.

7.2.1 DDL representation syntax

<complexType name=”TextureBrowsingType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<sequence>

<element name=”Regularity” >

<simpleType>

<restriction base=”string”>

<enumeration value=”irregular”/>

<enumeration value=”slightly irregular”/>

<enumeration value=”regular”/>

<enumeration value=”highly regular”/>

</restriction>

</simpleType>

</element>

<sequence minOccurs=”1” maxOccurs=”2”>

<element name=”Direction”/>

<simpleType>

<restriction base=”string”>

<enumeration value=”no directionality”/>

<enumeration value=”0 degree”/>

<enumeration value=”30 degree”/>

<enumeration value=”60 degree”/>

<enumeration value=”90 degree”/>

<enumeration value=”120 degree”/>

<enumeration value=”150 degree”/>

</restriction>

</simpleType>

</element>

<element name=”Scale”>

<simpleType>

<restriction base=”string”>

<enumeration value=”fine”/>

<enumeration value=”medium”/>

<enumeration value=”coarse”/>

<enumeration value=”very coarse”/>

</restriction>

</simpleType>

</element>

</sequence>

<sequence>

</extension>

</complexContent>

</complexType>

7.2.2 Binary representation syntax

	TextureBrowsing {
	Number of bits
	Mnemonic

	
ComponentNumberFlag
	1
	bslbf

	
Regularity
	2
	bslbf

	
for(k=0; k<=ComponentNumberFlag; k++) {
	
	

	

Direction
	3
	bslbf

	

Scale
	2
	bslbf

	
}
	
	

	}
	
	

7.2.3 Descriptor components semantics

ComponentNumberFlag

This is a flag that is present only in binary representation of the descriptor specifying the number of components in the descriptor. If it is equal to 0 then one Direction element and one corresponding Scale element is present, otherwise two of each are present.

Regularity

 This element captures the periodicity of the underlying basic texture elements (textons).The mapping between binary representation and semantics is provided in the following table and image examples are provided in Figure 20.

	Regularity
	Semantics

	00
	irregular

	01
	slightly regular

	10
	regular

	11
	highly regular

	
	 [image: image114.jpg]

	[image: image115.jpg]

	[image: image116.jpg]

	[image: image117.jpg]

	Regularity
	11
	10
	01
	00

Figure 20: Examples of Regularity.
Direction

This element represents the dominant direction(s) characterizing the texture directionality. 0 corresponds to a texture where no such direction can be assigned. Values between 1 and 6 indicate directions in steps of 30 degrees staring from 0, i.e. 0, 30, 60, 90, 120, 150 respectively as specified in the following table.

	Direction
	Semantics (degree of directionality)

	000
	no directionality

	001
	0 degree

	010
	30 degree

	011
	60 degree

	100
	90 degree

	101
	120 degree

	110
	150 degree

	111
	Not used

Scale

This element represents the coarseness of the texture associated with the corresponding dominant orientation(s) specified in the Direction element. The lower the Scale, the less coarse the pattern is. It is extracted based on the frequency layout described in Figure 19. Note that logarithmic scaling is used. The following table specifies the semantics and the corresponding (approximate) scale “s” in the frequency layout.

	Scale
	Semantics (scale “s”)

	00
	fine (0)

	01
	medium (1)

	10
	coarse (2)

	11
	very coarse (3,4)

7.3 Edge components histogram

The edge histogram descriptor represents the spatial distribution of five types of edges in local image regions. As shown in Figure 21, there are four directional edges and one non-directional edge in each local region called sub-image. The sub-image is a part of the original image and each sub-image is defined by dividing the image space into 4x4 non-overlapping blocks as shown in Figure 22. More specifically, there are 16 non-overlapping sub-images as shown in Figure 22 and for each sub-image we generate a local edge histogram with 5 bins. Since there are five types of edges for each sub-image, we have a total of 16*5=80 histogram bins. As shown in Figure 22, by further dividing the sub-image into image-blocks, edge type information can be extracted from the image-block.

[image: image118.wmf]a)

vertical b) horizontal c) 45 degree d) 135 degree e)non-directional

edge

edge

edge

edge

edge

Figure 21: Five types of edges.

[image: image119.wmf](0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

s

ub

-

image

i

mage

-

block

Figure 22: Definition of sub-image and image-block.

7.3.1 DDL representation syntax

<complexType name=”EdgeHistogramType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<sequence>

<element name=”BinCounts”>

<simpleType>

<restriction>

<simpleType>

<list itemType=”mpeg7:unsigned3”/>

</simpleType>

<length value=”80”/>

</restriction>

</simpleType>

</element>

</sequence>

</extension>

</complexContent>
</complexType>

7.3.2 Binary representation syntax

	EdgeHistogram {
	Number of bits
	Mnemonic

	
for(k=0; k<80; k++) {
	
	

	

BinCounts[k]
	3
	uimsbf

	
}
	
	

	}
	
	

7.3.3 Descriptor components semantics

BinCounts
Local edge histogram represents the distribution of 5 types of edges in a local area called a sub-image. Since the number of sub-images is fixed to 16 and each sub-image generates 5 histogram bins, we have 80 histogram bins. By visiting the sub-images in the raster scan order as shown in Figure 22, the semantics of each bin of BinCounts is defined as shown in Table 21.

	BinCounts[k]
	Semantics

	BinCounts[0]
	Vertical edges in sub-image (0,0)

	BinCounts[1]
	Horizontal edges in sub-image (0,0)

	BinCounts[2]
	45 degree edges in sub-image (0,0)

	BinCounts[3]
	135 degree edges in sub-image (0,0)

	BinCounts[4]
	Non-directional edges in sub-image (0,0)

	BinCounts[5]
	Vertical edges in sub-image (0,1)

	(
	(

	BinCounts[74]
	Non-directional edges in sub-image (3,2)

	BinCounts[75]
	Vertical edges in sub-image (3,3)

	BinCounts[76]
	Horizontal edges in sub-image (3,3)

	BinCounts[77]
	45 degree edges in sub-image (3,3)

	BinCounts[78]
	135 degree edges in sub-image (3,3)

	BinCounts[79]
	Non-directional edges in sub-image (3,3)

Table 21: Semantics of BinCounts.
The value for each histogram bin in Table 21 is related to the total number of image blocks with the corresponding edge type for each sub-image. These bin values are normalized by the total number of image blocks in the sub-image and are non-linearly quantized by quantization tables. Five quantisation tables for five different edge types are listed in Table 22, Table 23, Table 24, Table 25, and Table 26. Since 3 bits/bin are used, each quantization table has 8 levels.

	BinCounts
	Reconstruction value

	000
	0.010867

	001
	0.057915

	010
	0.099526

	011
	0.144849

	100
	0.195573

	101
	0.260504

	110
	0.358031

	111
	0.530128

Table 22: Quantization table for vertical bins.
	BinCounts
	Reconstruction value

	000
	0.012266

	001
	0.069934

	010
	0.125879

	011
	0.182307

	100
	0.243396

	101
	0.314563

	110
	0.411728

	111
	0.564319

Table 23: Quantization table for horizontal bins.
	BinCounts
	Reconstruction value

	000
	0.004193

	001
	0.025852

	010
	0.046860

	011
	0.068519

	100
	0.093286

	101
	0.123490

	110
	0.161505

	111
	0.228960

Table 24: Quantization table for 45 degree bins.
	BinCounts
	Reconstruction value

	000
	0.004174

	001
	0.025924

	010
	0.046232

	011
	0.067163

	100
	0.089655

	101
	0.115391

	110
	0.151904

	111
	0.217745

Table 25: Quantization table for 135 degree bins.
	BinCounts
	Reconstruction value

	000
	0.006778

	001
	0.051667

	010
	0.108650

	011
	0.166257

	100
	0.224226

	101
	0.285691

	110
	0.356375

	111
	0.450972

Table 26: Quantization table for non-directional bins.
8 Shape

Shape features relate to spatial arrangement of points (pixels) belonging to an object or a region. Shape descriptors can be divided into two broad classes: 2-dimensional (2D) and 3-dimensional (3D).
Two descriptors characterize different shape features of a 2D object or region. Region Shape descriptor captures the distribution of all pixels within a region. Contour Shape descriptor characterizes the shape properties of a contour of an object.

A shape of a 3D object can be characterized in two ways. The Shape3D descriptor provides an intrinsic shape characterization of 3D mesh models. Alternatively, the MultipleView descriptor combined with a 2D shape descriptor can be used. The MultipleView representation is convenient when 3D mesh model of the object is not known or when support for queries by 2D views of the 3D object is required.
8.1 Region shape

The shape of an object may consist of either a single region or a set of regions, as well as some holes in the object as illustrated in Figure 23(c). Since the region-based shape descriptor makes use of all pixels constituting the shape, it can describe any shape, i.e. not only a simple shape with a single connected region but also a complex shape that consists of several disjoint regions as illustrated in Figure 23(d) and (e).

[image: image120.png]YO

A

Figure 23: Examples of various shapes.

The region-based shape descriptor utilizes a set of ART (Angular Radial Transform) coefficients. The ART is a 2-D complex transform defined on a unit disk in polar coordinates,

[image: image121.wmf](

)

(

)

(

)

(

)

ò

ò

*

=

=

p

q

r

r

q

r

q

r

q

r

q

r

2

0

1

0

,

,

,

,

,

,

d

d

f

V

f

V

F

nm

nm

nm

.

Here,
[image: image122.wmf]nm

F

 is an ART coefficient of order n and m,
[image: image123.wmf])

,

(

q

r

f

 is an image function in polar coordinates, and
[image: image124.wmf])

,

(

q

r

nm

V

 is the ART basis function. The ART basis functions are separable along the angular and radial directions, i.e.,

[image: image125.wmf](

)

(

)

(

)

r

q

q

r

n

m

nm

R

A

V

=

,

.

The angular and radial basis functions are defined as follows:

[image: image126.wmf](

)

(

)

q

p

q

jm

A

m

exp

2

1

=

,

[image: image127.wmf](

)

(

)

î

í

ì

¹

=

=

0

cos

2

0

1

n

n

n

R

n

r

p

r

.

Twelve angular and three radial functions are used.

Figure 24 shows the real parts of the 2-D basis functions whose origins are at the centers of each image. The imaginary parts have similar shape to the corresponding real parts but with different phases. Note that the brighter the image, the higher the value.

[image: image128.png]

Figure 24: Real parts of the ART basis functions.

8.1.1 DDL representation syntax

<complexType name=”RegionShapeType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<element name=”ArtDE”>

<simpleType>

<restriction base=”mpeg7:listOfUnsigned4Type>

<length value=”35”/>

</restriction>
</simpleType>
</element>

</extension>

</complexContent>

</complexType>

8.1.2 Binary representation syntax

	RegionShape {
	Number of bits
	Mnemonic

	
for(k=0; k<35; k++) {
	
	

	

ArtDE[k]
	4
	uimsbf

	
}
	
	

	}
	
	

8.1.3 Descriptor components semantics

ArtDE

This is an array of 35 normalized and quantized magnitudes of the shape coefficients. The normalization is performed by dividing each of them by the magnitude of the largest coefficient. The relationship between the order of k and the order of radial and angular indices (n,m) is as follows:

	k
	0
	1
	2
	3
	4
	…
	30
	31
	32
	33
	34

	n
	1
	2
	0
	1
	2
	…
	1
	2
	0
	1
	2

	m
	0
	0
	1
	1
	1
	…
	10
	10
	11
	11
	11

The reconstruction values for dequantization of ART coefficients (inverse quantization table) are listed in Table 27.

	ArtDE
	Reconstruction value

	0000
	0.001763817

	0001
	0.005468893

	0010
	0.009438835

	0011
	0.013714449

	0100
	0.018346760

	0101
	0.023400748

	0110
	0.028960940

	0111
	0.035140141

	1000
	0.042093649

	1001
	0.050043696

	1010
	0.059324478

	1011
	0.070472849

	1100
	0.084434761

	1101
	0.103127662

	1110
	0.131506859

	1111
	0.192540857

Table 27: Reconstruction value for ART coefficients.
8.2 Contour shape

[image: image163.png]

The object contour shape descriptor describes a closed contour of a 2D object or region in an image or video sequence (see Figure 25).

Figure 25: A 2D visual object (region) and its corresponding shape

The object contour-based shape descriptor is based on the Curvature Scale Space (CSS) representation of the contour. This representation of contour shape is very compact, below 14 bytes in size on average.

In order to create a CSS description of a contour shape, Nsamples equidistant points are selected on the contour, starting from an arbitrary point on the contour and following the contour clockwise. The x-coordinates of the selected Nsamples points are grouped together and the y-coordinates are also grouped together into two series X, Y. The contour is then gradually smoothed by repetitive application of a low-pass filter with the kernel (0.25,0.5,0.25) to X and Y coordinates of the selected Nsamples equidistant contour points. As a result of the smoothing, the contour evolves and its concave parts gradually flatten-out, until the contour becomes convex. The filtering process is terminated when the contour becomes convex. A so-called CSS image can be associated with the contour evolution process. Figure 26 shows the evolution of a contour and the associated CSS image. The CSS image does not have to be explicitly extracted, but is useful to illustrate the CSS representation. It is a binary image in which horizontal coordinates (x_css) correspond to the indices of the contour points selected to represent the contour (1,…,Nsamples), and vertical-coordinates (y_css) correspond to the amount of filtering applied, defined as the number of passes of the filter. The CSS image is made up of horizontal lines, a line defined by y_css=k is computed from the smoothed contour resulting from k-passes of the filter. For each smoothed contour, the zero-crossings of its curvature function are computed. Contour curvature function zero-crossing points separate concave and convex parts of the contour. Each zero-crossing is marked on the horizontal line corresponding to the smoothed contour (y_css=k) and at the x_css location corresponding to the position of this zero-crossing along the contour. The CSS image has characteristic peaks. The coordinate values of the prominent peaks (x_css, y_css) in the CSS image are extracted. The peaks are ordered based on decreasing values of y_css, transformed using a non-linear transformation and quantized. In addition, the eccentricity and circularity of the contour are also calculated, quantized and stored.

In Figure 26, the left column shows the original contour and the contour at two different stages of the smoothing evolution process, after 20 and 80 passes of the filter. In the right column, the CSS image obtained from the evolution is shown. The contour smoothed by 20 passes of the filter has 8 curvature zero crossings (A, B, …, H), and these points are used to “construct” the CSS image at horizontal line y_css=20. The peaks in the CSS representation are shown in the figure.

[image: image129.png]contour evoloution CSS image

¥_css=80
—
H
contour after 80 iterations
= .
A __>CSS peaks
cnntn\lr al'ter 20 lterzum& i
Al IBC| |D EF: {GH y_ess=20

\«3

original contour

Figure 26: CSS Image Formation.

8.2.1 DDL representation syntax

<complexType name=”ContourShapeType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<element name=”GlobalCurvatureVector”
 type=”mpeg7:curvatureVectorType”/>

<element name=”PrototypeCurvatureVector”
 type=”mpeg7:curvatureVectorType” minOccurs=”0”
/>

<element name=”HighestPeak” type=”mpeg7:unsigned7”/>

<element name=”Peak” maxOccurs=”62”>

<complexType>

<element name=”xpeak” type=”mpeg7:unsigned6”/>

<element name=”ypeak” type=”mpeg7:unsigned3”/>

</complexType>

</element>

<attribute name=”numberOfPeaks” type=”mpeg7:unsigned6”/>

</extension>

</complexContent>

</complexType>

<simpleType name=”curvatureVectorType”>

<restriction base=”mpeg7:listOfUnsigned6Type”>

<length value=”2”/>

</restriction>

</simpleType>

8.2.2 Binary representation syntax

	ContourShape {
	Number of bits
	Mnemonic

	
numberOfPeaks
	6
	uimsbf

	
GlobalCurvatureVector
	2*6
	uimsbf

	
if (numberOfPeaks != 0)
	
	

	

PrototypeCurvatureVector
	2*6
	uimsbf

	
HighestPeakY
	7
	uimsbf

	
for (k=1; k<numberOfPeaks; k++) {
	
	

	

PeakX[k]
	6
	uimsbf

	

PeakY[k]
	3
	uimsbf

	
}
	
	

	}
	
	

8.2.3 Descriptor components semantics

numberOfPeaks

This attribute specifies the number of peaks in the CSS image used for the shape definition. For convex contours there are no peaks in the CSS image and this attribute takes value 0.

GlobalCurvatureVector

This element specifies global parameters of the contour, namely the Eccentricity and Circularity.

· The calculation of Circularity is as follows:

[image: image130.wmf]area

perimeter

y

circularit

2

=

.

For example, a circle has Circularity of

[image: image131.wmf].

4

)

2

(

2

2

p

p

p

=

=

r

r

y

circularit

circle

GlobalCurvatureVector[0] is obtained by uniformly quantizing the circularity to 6 bits in the range [12-110]. If the circularity value calculated is above 110, the value is clipped to 110.

· The calculation of Eccentricity is as follows:

[image: image132.wmf]å

=

-

=

N

k

c

k

y

y

i

1

2

02

)

(

[image: image133.wmf]å

=

-

-

=

N

k

c

k

c

k

y

y

x

x

i

1

11

)

)(

(

[image: image134.wmf]å

=

-

=

N

k

c

k

x

x

i

1

2

20

)

(

where N is the number of points inside the contour shape, and (xc,yc) is the center of mass of the shape. From these equations, we then calculate the Eccentricity as:

[image: image135.wmf]2

11

02

20

2

02

2

20

02

20

2

11

02

20

2

02

2

20

02

20

4

2

4

2

i

i

i

i

i

i

i

i

i

i

i

i

i

i

ty

eccentrici

+

-

+

-

+

+

-

+

+

+

=

GlobalCurvatureVector[1] is obtained by uniformly quantizing eccentricity to 6 bits in the range [1-10]. If the eccentricity value calculated is above 10, the value is clipped to 10.

PrototypeCurvatureVector

This element specifies the eccentricity and circularity of the so-called prototype contour. The prototype contour is defined as the curve smoothed by means of filtering until it becomes convex. A convex contour can be obtained by smoothing of the original contour by means of repetitive application of the normative filter, where the number of filter passes corresponds to the highest peak. Circularity and eccentricity are calculated from the convex contour and represented (quantized) in the same way as for the GlobalCurvatureVector.

HighestPeakY

This element represents the parameters of the filter corresponding to the highest peak (highest peak height). It is calculated using the following formula:

[image: image136.wmf][

]

[

]

6

.

0

2

0

_

*

8

.

3

0

÷

÷

ø

ö

ç

ç

è

æ

=

Nsamples

css

y

ypeak

,

where y_css[0] is the number of passes of the binomial filter with the kernel (0.25,0.50,0.25) corresponding to the highest peak and Nsamples is the number of the equidistant points on the contour which were used as input to the filtering process. HighestPeakY is obtained by uniformly quantizing ypeak[0] to 7 bits in the range [0-1.7].

PeakX[k], PeakY[k]
These elements represent the parameters of the remaining prominent peaks (0<k<63). As a non-normative guidance, a peak can be considered prominent if its height after transformation is greater than 0.05*ypeak[0]. The peaks are oriented in the decreasing order of the peak height component values. The precise semantics is as follows.

xpeak[k] is the normalized distance along the contour between two points on the contour P[0] and P[k], where point P[0] corresponds to the position on the contour of the highest peak and P[k] corresponds to the position of the k-th peak. The distance on the contour between P[0] and P[k] is measured clockwise and is normalized by the length of the contour. PeakX[k] is obtained by uniformly quantizing the normalized distance in the range [0-1] to 6 bits.

ypeak[k] represents the transformed height of the k-th peak. It is calculated using the following formula:

[image: image137.wmf][

]

[

]

6

.

0

2

_

*

8

.

3

÷

÷

ø

ö

ç

ç

è

æ

=

Nsamples

k

css

y

k

ypeak

,
where y_css[k] is the number of passes of the binomial filter with the kernel (0.25, 0.5, 0.25) corresponding to the k-th peak, and Nsamples is the number of the equidistant points on the contour which were used as input to the filtering process. PeakY[k] is obtained by uniformly quantizing ypeak[k] in the range [0, ypeak[k-1]] to 3 bits.

8.3 Shape 3D

The Shape 3D Descriptor provides an intrinsic shape description of 3D mesh models. It exploits some local attributes of the 3D surface.

The shape index, introduced by Koenderink, is defined as a function of the two principal curvatures. Let p be a point on the 3D surface. Let us denote by
[image: image138.wmf]1

p

k

and
[image: image139.wmf]2

p

k

 the principal curvatures associated with point p. The shape index at point p, denoted by Ip, is defined as:

[image: image140.wmf]2

1

2

1

arctan

1

2

1

p

p

p

p

p

k

k

k

k

I

-

+

-

=

p

 , with
[image: image141.wmf]2

1

p

p

k

k

³

.

By definition, the shape index value is in the interval [0,1] and is not defined for planar surfaces.

The shape spectrum of the 3D mesh is the histogram of the shape indices (Ip‘s) calculated over the entire mesh.

8.3.1 DDL representation syntax

<complexType name=”Shape3DType” final=”#all”>
<complexContent>
<extension base=”mpeg7:VisualDType”>
<sequence>
<element name=”Spectrum”>
<simpleType>

<restriction”>

<simpleType>

<list itemType=”mpeg7:unsigned12”/>

</simpleType>

<maxLength value=”255”/>

</restriction>

</simpleType>

</element>

<element name=”PlanarSurfaces” type=”mpeg7:unsigned12”/>

<element name=”SingularSurfaces” type=”mpeg7:unsigned12”/>

</sequence>

<attribute name=”numberOfBins” type=”mpeg7:unsigned8”/>

<attribute name=”bitsPerBin” type=”mpeg7:unsigned4”/>

</extension>

</complexContent>
</complexType>

8.3.2 Binary representation syntax

	Shape3D {
	Number of bits
	Mnemonic

	
numberOfBins
	8
	uimsbf

	
bitsPerBin
	4
	uimsbf

	
for(k=0; k<numberOfBins; k++)
	
	

	

Spectrum[k]
	1-12
	uimsbf

	
PlanarSurfaces
	1-12
	uimsbf

	
SingularSurfaces
	1-12
	uimsbf

	}
	
	

8.3.3 Descriptor components semantics

numberOfBins

The number of bins of the Shape3D descriptor representation. The recommended value is 100 bins.

bitsPerBin

The number of bits used for uniform quantization of the descriptor values. The recommended value is 12. The code “0000” and “1101” to “1111” are forbidden.

Spectrum

The values of the 3D shape spectrum. Spectrum[k] contains the relative area of all the 3D mesh surface regions of shape index lying in the interval [k/numberOfBins, (k+1)/numberOfBins) quantized uniformly to bitsPerBin bits.

PlanarSurfaces

The relative area of planar surface regions of the mesh, with respect to the entire area of the 3D mesh. It is expressed as a ratio in the range between 0 and 1 with uniform quantization to bitsPerBin bits.

SingularSurfaces

The relative area of all the singular polygonal components, with respect to the entire area of the 3D mesh. A face is said to be singular if reliable estimation of the descriptor is not possible (border polygons). It is expressed as a ratio in the range between 0 and 1 with uniform quantization to bitsPerBin bits.

9 Motion

Motion in a sequence of 2D images can be induced by camera motion, one or several objects moving in the scene, or both. Four descriptors characterize various aspects of motion. Camera Motion describes a set of basic camera operations such as, for example, panning and tilting. Motion of a key point (pixel) from a moving object or region can be characterized by Motion Trajectory descriptor. The Parametric Motion descriptor characterizes an evolution of an arbitrarily shaped region over time in terms of a 2D geometric transformation. Finally. Motion Activity captures the pace of the motion in the sequence, as perceived by the viewer.

All motion descriptors except for the Camera Motion can be applied to regions of arbitrary shape.
9.1 Camera motion

This descriptor characterizes 3-D camera motion parameters. It is based on 3-D camera motion parameter information, which can be automatically extracted or generated by capture devices.

The camera motion descriptor supports the following well-known basic camera operations (see Figure 27): fixed, panning (horizontal rotation), tracking (horizontal transverse movement, also called traveling in the film industry), tilting (vertical rotation), booming (vertical transverse movement), zooming (change of the focal length), dollying (translation along the optical axis), and rolling (rotation around the optical axis).

[image: image142.wmf]Track left

Track right

Boom up

Boom down

Dolly

backward

Dolly

forward

[image: image143.wmf]Pan right

Pan left

Tilt up

Tilt down

Roll

Figure 27: (a) Camera track, boom, and dolly motion modes, (b) Camera pan, tilt and roll motion modes.

The sub-shots for which all frames are characterized by a particular type of camera motion, which can be single or mixed, determine the building blocks for the camera motion descriptor. Each building block is described by its start time, the duration, the speed of the induced image motion, the fraction of time of its duration compared with a given temporal window size, and the focus-of-expansion (FOE) (focus-of-contraction – FOC). The Descriptor represents the union of these building blocks, and it has the option of describing the mixture or non-mixture of different camera motion types.

The mixture mode captures the global information about the camera motion parameters, disregarding detailed temporal information, by jointly describing multiple motion types, even if these motion types occur simultaneously. On the other hand, the non-mixture mode captures the notion of pure motion type and their union within certain time interval. The situations where multiple motion types occur simultaneously are described as a union of the description of pure motion types. In this mode of description, the time window of a particular elementary segment can overlap with time window of another elementary segment.

9.1.1 DDL representation syntax

<complexType name=”CameraMotionType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<sequence minOccurs=”0” maxOccurs=”unbounded”>

<element name=”Segment” type=”mpeg7:CameraMotionSegmentType”/>
</sequence>

</extension>

</complexContent>

</complexType>
<complexType name=”CameraMotionSegmentType”>

<sequence>

<element name=”Time” type=”mpeg7:MediaTimeType”/>

<element name=”FocusOfExpansion” type=”mpeg7:FocusOfExpansionType”

 minOccurs=”0”/>

</sequence>
</complexType>
<complexType name=”MixtureCameraMotionSegmentType”>

<complexContent>

<extension base=”mpeg7:CameraMotionSegmentType”>

<sequence>

<element name=”FractionalPresence”

type=”mpeg7:FractionalPresenceType”/>

<element name=”AmountOfMotion”

type=”mpeg7:MixtureAmountOfMotionType”/>

</sequence>
</extension>

</complexContent>
</complexType>
<complexType name=”NonMixtureCameraMotionSegmentType”>

<complexContent>

<extension base=”mpeg7:CameraMotionSegmentType”>

<sequence>

<element name=”AmountOfMotion”

type=”mpeg7:NonMixtureAmountOfMotionType”/>

</sequence>
</extension>

</complexContent>
</complexType>
<complexType name=”FocusOfExpansionType”>

<sequence>

<element name=”HorizontalPosition” type=”float”/>

<element name-“VerticalPosition” type=”float”/>

</sequence>

</complexType>

</complexType name=”FractionalPresenceType”>

<sequence>

<element name=”TRACK_LEFT” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”TRACK_RIGHT” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”BOOM_DOWN” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”BOOM_UP” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”DOLLY_FOWARD” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”DOLLY_BACKWARD” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”PAN_LEFT” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”PAN_RIGHT” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”TILT_DOWN” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”TILT_UP” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”ROLL_CLOCKWISE” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”ROLL_ANTICLOCKWISE” type=”mpeg7:unsigned7”
 minOccurs=”0”/>
<element name=”ZOOM_IN” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”ZOOM_OUT” type=”mpeg7:unsigned7” minOccurs=”0”/>
<element name=”FIXED” type=”mpeg7:unsigned7” minOccurs=”0”/>
</sequence>

</complexType>

<complexType name=”MixtureAmountOfMotionType”>

<sequence>

<element name=”TRACK_LEFT” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”TRACK_RIGHT” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”BOOM_DOWN” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”BOOM_UP” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”DOLLY_FOWARD” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”DOLLY_BACKWARD” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”PAN_LEFT” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”PAN_RIGHT” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”TILT_DOWN” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”TILT_UP” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”ROLL_CLOCKWISE” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”ROLL_ANTICLOCKWISE” type=”mpeg7:unsigned11”

 minOccurs=”0”/>
<element name=”ZOOM_IN” type=”mpeg7:unsigned11” minOccurs=”0”/>
<element name=”ZOOM_OUT” type=”mpeg7:unsigned11” minOccurs=”0”/>

</sequence>

</complexType>

<complexType name=”NonMixtureAmountOfMotionType”>

<sequence>

<element name=”TRACK_LEFT” type=”mpeg7:unsigned11”/>
<element name=”TRACK_RIGHT” type=”mpeg7:unsigned11”/>
<element name=”BOOM_DOWN” type=”mpeg7:unsigned11”/>
<element name=”BOOM_UP” type=”mpeg7:unsigned11”/>
<element name=”DOLLY_FOWARD” type=”mpeg7:unsigned11”/>
<element name=”DOLLY_BACKWARD” type=”mpeg7:unsigned11”/>
<element name=”PAN_LEFT” type=”mpeg7:unsigned11”/>
<element name=”PAN_RIGHT” type=”mpeg7:unsigned11”/>
<element name=”TILT_DOWN” type=”mpeg7:unsigned11”/>
<element name=”TILT_UP” type=”mpeg7:unsigned11”/>
<element name=”ROLL_CLOCKWISE” type=”mpeg7:unsigned11”/>
<element name=”ROLL_ANTICLOCKWISE” type=”mpeg7:unsigned11”/>
<element name=”ZOOM_IN” type=”mpeg7:unsigned11”/>
<element name=”ZOOM_OUT” type=”mpeg7:unsigned11”/>
<elment name=”FIXED”/>

</sequence>

</complexType>

9.1.2 Binary representation syntax

	CameraMotion {
	Number of bits
	Mnemonic

	
LoopSegments
	See Systems CD
	UInt_VLC

	
for(k=0;k<loopSegments;k++) {
	
	

	

Segment[k]
	
	CameraMotionType_Polymorphism

	
}
	
	

	}
	
	

	CameraMotionType_Polymorphism {
	
	

	
xsiTypeID
	1
	bslbf

	
if(xsiTypeID==0)
	
	

	

CONTENTMODEL
	
	MixtureCameraMotionSegmentType

	
else if(xsiTypeID==1)
	
	

	

CONTENTMODEL
	
	NonMixtureCameraMotionSegmentType

	}
	
	

	MixtureCameraMotionSegmentType {
	
	

	
Time
	See 15938-5
	MediaTimeType

	
FlagFOE
	1
	bslbf

	
if(FlagFOE)
	
	

	

FocusOfExpansion
	
	FocusOfExpansionType

	
FractionalPresence
	
	FractionalPresenceType

	
AmountOfMotion
	
	MixtureAmountOfMotionType

	}
	
	

	NonMixtureCameraMotionSegmentType {
	
	

	
Time
	See 15938-5
	MediaTimeType

	
FlagFOE
	1
	bslbf

	
if(FlagFOE)
	
	

	

FocusOfExpansion
	
	FocusOfExpansionType

	
AmountOfMotion
	
	NonMixtureAmountOfMotionType

	}
	
	

	FocusOfExpansionType {
	
	

	
HorizontalPosition
	32
	fsbf

	
VerticalPosition
	32
	fsbf

	}
	
	

	FractionalPresenceType {
	
	

	
FlagFP_TL
	1
	bslbf

	
if(FlagFP_TL==1)
	
	

	

TRACK_LEFT
	7
	uimsbf

	
FlagFP_TR
	1
	bslbf

	
if(FlagFP_TR==1)
	
	

	

TRACK_RIGHT
	7
	uimsbf

	
FlagFP_BD
	1
	bslbf

	
if(FlagFP_BD==1)
	
	

	

BOOM_DOWN
	7
	uimsbf

	
FlagFP_BU
	1
	bslbf

	
if(FlagFP_BU==1)
	
	

	

BOOM_UP
	7
	uimsbf

	
FlagFP_DF
	1
	bslbf

	
if(FlagFP_DF==1)
	
	

	

DOLLY_FORWARD
	7
	uimsbf

	
FlagFP_DB
	1
	bslbf

	
if(FlagFP_DB==1)
	
	

	

DOLLY_BACKWARD
	7
	uimsbf

	
FlagFP_PL
	1
	bslbf

	
if(FlagFP_PL==1)
	
	

	

PAN_LEFT
	7
	uimsbf

	
FlagFP_PR
	1
	bslbf

	
if(FlagFP_PR==1)
	
	

	

PAN_RIGHT
	7
	uimsbf

	
FlagFP_TD
	1
	bslbf

	
if(FlagFP_TD==1)
	
	

	

TILT_DOWN
	7
	uimsbf

	
FlagFP_TU
	1
	bslbf

	
if(FlagFP_TU==1)
	
	

	

TILT_UP
	7
	uimsbf

	
FlagFP_RC
	1
	bslbf

	
if(FlagFP_RC==1)
	
	

	

ROLL_CLOCKWISE
	7
	uimsbf

	
FlagFP_RU
	1
	bslbf

	
if(FlagFP_RA==1)
	
	

	

ROLL_ANTICLOCKWISE
	7
	uimsbf

	
FlagFP_ZI
	1
	bslbf

	
if(FlagFP_ZI==1)
	
	

	

ZOOM_IN
	7
	uimsbf

	
FlagFP_ZO
	1
	bslbf

	
if(FlagFP_ZO==1)
	
	

	

ZOOM_OUT
	7
	uimsbf

	}
	
	

	MixtureAmountOfMotionType {
	
	

	
FlagAM_TL
	1
	bslbf

	
if(FlagAM_TL==1)
	
	

	

TRACK_LEFT
	11
	uimsbf

	
FlagAM_TR
	1
	bslbf

	
if(FlagAM_TR==1)
	
	

	

TRACK_RIGHT
	11
	uimsbf

	
FlagAM_BD
	1
	bslbf

	
if(FlagAM_BD==1)
	
	

	

BOOM_DOWN
	11
	uimsbf

	
FlagAM_BU
	1
	bslbf

	
if(FlagAM_BU==1)
	
	

	

BOOM_UP
	11
	uimsbf

	
FlagAM_DF
	1
	bslbf

	
if(FlagAM_DF==1)
	
	

	

DOLLY_FORWARD
	11
	uimsbf

	
FlagAM_DB
	1
	bslbf

	
if(FlagAM_DB==1)
	
	

	

DOLLY_BACKWARD
	11
	uimsbf

	
FlagAM_PL
	1
	bslbf

	
if(FlagAM_PL==1)
	
	

	

PAN_LEFT
	11
	uimsbf

	
FlagAM_PR
	1
	bslbf

	
if(FlagAM_PR==1)
	
	

	

PAN_RIGHT
	11
	uimsbf

	
FlagAM_TD
	1
	bslbf

	
if(FlagAM_TD==1)
	
	

	

TILT_DOWN
	11
	uimsbf

	
FlagAM_TU
	1
	bslbf

	
if(FlagAM_TU==1)
	
	

	

TILT_UP
	11
	uimsbf

	
FlagAM_RC
	1
	bslbf

	
if(FlagAM_RC==1)
	
	

	

ROLL_CLOCKWISE
	11
	uimsbf

	
FlagAM_RU
	1
	bslbf

	
if(FlagAM_RA==1)
	
	

	

ROLL_ANTICLOCKWISE
	11
	uimsbf

	
FlagAM_ZI
	1
	bslbf

	
if(FlagAM_ZI==1)
	
	

	

ZOOM_IN
	11
	uimsbf

	
FlagAM_ZO
	1
	bslbf

	
if(FlagAM_ZO==1)
	
	

	

ZOOM_OUT
	11
	uimsbf

	}
	
	

	NonMixtureAmountOfMotionType {
	
	

	
FlagAM_TYPE
	1
	bslbf

	
if(FlagAM_TYPE==0)
	
	

	

TRACK_LEFT
	11
	uimsbf

	
else if(FlagAM_TYPE==1)
	
	

	

TRACK_RIGHT
	11
	uimsbf

	
else if(FlagAM_TYPE==2)
	
	

	

BOOM_DOWN
	11
	uimsbf

	
else if(FlagAM_TYPE==3)
	
	

	

BOOM_UP
	11
	uimsbf

	
else if(FlagAM_TYPE==4)
	
	

	

DOLLY_FORWARD
	11
	uimsbf

	
else if(FlagAM_TYPE==5)
	
	

	

DOLLY_BACKWARD
	11
	uimsbf

	
else if(FlagAM_TYPE==6)
	
	

	

PAN_LEFT
	11
	uimsbf

	
else if(FlagAM_TYPE==7)
	
	

	

PAN_RIGHT
	11
	uimsbf

	
else if(FlagAM_TYPE==8)
	
	

	

TILT_DOWN
	11
	uimsbf

	
else if(FlagAM_TYPE==9)
	
	

	

TILT_UP
	11
	uimsbf

	
else if(FlagAM_TYPE==10)
	
	

	

ROLL_CLOCKWISE
	11
	uimsbf

	
else if(FlagAM_TYPE==11)
	
	

	

ROLL_ANTICLOCKWISE
	11
	uimsbf

	
else if(FlagAM_TYPE==12)
	
	

	

ZOOM_IN
	11
	uimsbf

	
else if(FlagAM_TYPE==13)
	
	

	

ZOOM_OUT
	11
	uimsbf

	}
	
	

9.1.3 Descriptor components semantics

LoopSegments
This element, only present in binary representation, represents the number of segments contained in the description.

XsiTypeID

This flag specifies the description mode (0=non-mixture, 1=mixture)

Time

This element specifies the time interval to which the Camera Motion descriptor applies.

FlagFOE
This flag, which is only present in the binary representation, indicates whether the focus of expansion is present (0=not present, 1=present).

HorizontalPosition, VerticalPosition
These elements represent the coordinates of the foxus of expansion (FOE) or focus of contraction (FOC), which is the point in the image from/to which all image velocity vectors diverge (FOE) or converge (FOC). The FOE (FOC) can be used to describe points in the scene on which the viewer should focus his attention, such as a news anchor person or an athlete. The FOE(FOC) makes sense when a zoom/dolly motion type is present. The coordinates of the focus of expansion/contraction are expressed using normalized coordinates.

FractionalPresence
In the mixture mode, for each camera motion type, the fractional presence represents the length of time for which the given motion type occurs as a fraction of the total time of the video item being described. The values of the fields of FractionalPresence (TRACK_LEFT, …) are real numbers between 0 and 1 quantized using a 7 bits uniform quantization (0 corresponds to 0.0, 127 corresponds to 1.0).

For each motion type, a binary flag (FlagFP_TL, …) specifies if the fractional presence of the given motion type is present (0=not present, 1=present).

AmountOfMotion
This element describes “how much” of track, boom, dolly, pan, tilt, roll and zoom there is in the image and depends on the camera parameters along time. For each motion type, the amount of motion is defined as the average (over the total time of the video item described) fraction of the image (an area expressed in normalized coordinates) that was uncovered or covered due to the given camera motion type.

In the mixture mode, all fields in AmountOfMotion are optional. In non-mixture mode, only one field must be specified. One can note that in any mode, the amount of “fixed” motion is obligatorily equal to 0 and is thus not specified. The values of the fields of AmountOfMotion (TRACK_LEFT, …) are real numbers between 0 and 1 quantized using 11 bits uniform quantization (0 corresponds to 0.0, 2047 corresponds to 1.0).

In the case of mixture description (MixtureAmountOfMotion), for each motion type, a binary flag (FlagAM_TL, …) specifies if the amount of motion corresponding to the given motion type is present.

In the case of non-mixture description, a single motion type is present and signaled by a 4-bit vector called FlagAM_TYPE, as defined in the following table.

	FlagAM_TYPE
	Motion type

	0000
	TRACK_LEFT

	0001
	TRACK_RIGHT

	0010
	BOOM_DOWN

	0011
	BOOM_UP

	0100
	DOLLY_FORWARD

	0101
	DOLLY_BACKWARD

	0110
	PAN_LEFT

	0111
	PAN_RIGHT

	1000
	TILT_DOWN

	1001
	TILT_UP

	1010
	ROLL_CLOCKWISE

	1011
	ROLL_ANTICLOCKWISE

	1100
	ZOOM_IN

	1101
	ZOOM_OUT

	1110
	FIXED

	1111
	reserved

9.2 Motion trajectory

Motion Trajectory is a high-level feature associated with a moving region, defined as a spatio-temporal localization of one of its representative points (such as the centroid).

9.2.1 DDL representation syntax

<complexType name=”MotionTrajectoryType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<sequence>

<choice>

<element name=”TrajCoordRef”
>

<complexType content=”empty”>

<attribute name=”coordRef” type=”IDREF”/>

<attribute name=”spatialReference” type=”boolean”

use=”required”/>

</complexType>

</element>

<element name=”TrajCoordDef”
>

<complexType content=”empty”>

<attribute name=”Units” use=”required”>

<simpleType>

<restriction base=”string”>

<enumeration value=”pictureHeight”/>

<enumeration value=”pictureWidth”/>

<enumeration

value=”pictureWidthAndHeight”/>

<enumeration value=”meter”/>

</restriction>

</simpleType>

</attribute>

<attribute name=”xRepr” type=”positiveInteger”/>

<attribute name=”yRepr” type=”positiveInteger”/>

<attribute name=”zRepr” type=”positiveInteger”/>

</complexType>

</element>
</choice>

<element name=”TrajParams”

type=”mpeg7:TemporalInterpolationType”/>

</sequence>

<attribute name=”cameraFollows” type=”boolean” use=”optional”/>

</extension>

</complexContent>

</complexType>

9.2.2 Binary representation syntax

	MotionTrajectory {
	Number of bits
	Mnemonic

	
cameraFollows
	2
	bslbf

	
CoordFlag
	1
	bslbf

	
if(CoordFlag) {
	
	

	

coordRef
	
	UTF-8

	

spatialReference
	1
	bslbf

	
}
	
	

	
else {
	
	

	

Units
	2
	bslbf

	

CoordCodingLength
	1
	bslbf

	

if(CoordCodingLength) {
	
	

	

xRepr
	8
	uimsbf

	

yRepr
	8
	uimsbf

	

zRepr
	8
	uimsbf

	

}
	
	

	
}
	
	

	
TrajParams
	ld(TemporalInterpolation)
	TemporalInterpolationType

	}
	
	

9.2.3 Descriptor components semantics

cameraFollows
This attribute specifies whether the camera follows the object in situations where the moving region can be associated with a meaningful object. If it is not present in the DDL instantiation, the notion is not specified by the descriptor. For binary representation, the meaning of the bits is as follows:

	cameraFollows
	Meaning

	00
	Information not specified

	01
	Reserved

	10
	Camera does not follow object

	11
	Camera follows object

CoordFlag

This element, which is only present in the binary representation, specifies whether coordinates system and units are specified by referencing a spatial coordinate system descriptor, or by instantiating a minimal set of fields in the Trajectory description.

If it is set to 1, reference to the adequate coordinate system descriptor instantiation follows (Spatial2DCoordinateSystem in the 2-D case), together with the spatialReference associated to it.

If it is set to 0, the type of spatial units used for expressing the spatial coordinates of the keypoints follows together (optionally) with the binary coding lengths used for their instantiations. In the 3-D case, the unit of trajectory values is meter.

Also, when coordFlag is set to 0:

· when Trajectory is 2-dimensional, it is implicit and mandatory that the spatial coordinate system used for the coordinate values has its origin at the top left corner of the image, x-axis horizontal pointing right, y-axis vertical pointing down.

· when Trajectory is 3-dimensional, the coordinate system is local to the trajectory and is defined as follows:

· its origin O is the first keypoint P0 of the trajectory, which always has (0,0,0) coordinates.

· the (Oz) axis is defined as the line going through P0 and the next keypoint in the trajectory (different from P0): P1, which always has (0,0,dist(P0 ,P1)) as its coordinates, the distance being in meters. (Oz) is oriented from P0 to P1.

· let H be the orthogonal projection of the next keypoint P2 in the trajectory (not belonging to (Oz)) on the plane perpendicular to (Oz) passing through O. Axis (Ox) is defined as (OH), oriented from O to H. P2 always has (x2,0,z2) as its coordinates, x2>0.

· axis (Oy) is finally uniquely determined to form a “direct” oriented coordinate axis.

coordRef
This attribute references a spatial coordinate system descriptor (the Spatial2DCoordinateSystem descriptor in the 2-D case) that defines the units and coordinate system used to express the coordinates values in the trajectory. The syntax and semantics of the Spatial2DCoordinateSystem are described in Clause 5.4.

If coordRef is used, the Units element below is not used, and thus the trajectory coordinates units should be defined using the referenced spatial coordinate system. Note that Clause 5.4 proposes “pixel” as one possible unit, but it is not a recommended unit in this context as it makes trajectory depend on the scale of the images.

spatialReference

This attribute, which is required in cases where the Spatial2DcoordinateSystem is used, indicates if the coordinates values are given with respect to the local coordinate system (flag set to 1), or the integrated one (flag set to 0) (see Clause 5.4).

Units
This element specifies the spatial units used to express the trajectory coordinates values, which are instantiated via TemporalInterpolation (see Clause 5.5). They can be either pixels normalized by pictures width and height in horizontal and vertical dimensions respectively, or pixels normalized by picture height, or pixels normalized by picture width, or meters (for 3D applications).

The units specification is binary encoded as defined in the following look-up table:

	PictureWidth and PictureHeight
	00

	PictureHeight
	01

	PictureWidth
	10

	Meter
	11

CoordCodingLength

This element, which is only present in the binary representation, is a 1-bit flag specifying whether the length in bits of each coordinate value encoding should be different than the default 32 bits. If it is set to “1”, the specification of the bit length follows for each coordinate (x,y,z). If it is set to “0”, it means that 32 bits are used to encode all coordinate values in all dimensions.

xRepr, yRepr, zRepr

If CoordCodingLength is set to “1”, these 3 elements are integers that specify the number of bits on which each x, y and z coordinate values are represented in the binary instantiation. All x-coordinate values are encoded on xRepr bits, and similarly for y and z.

TrajParams
This element specifies the spatio-temporal key-points and interpolations used to express the trajectory data. Its syntax and semantics follow Clause 5.5.

The different elements of TemporalInterpolation should be used to express the MotionTrajectory parameters as follows (see Clause 5.5). The TimeInterval is the overall time interval on which the trajectory is defined. Dimension is its spatial dimension (2D or 3D). KeyPointNum is the number of keypoints used to define the trajectory, KeyTimePoint being their temporal positions and KeyValue their spatial positions for each spatial dimension (fa and f(t) in Table 28). DefaultFunction and Type characterize the type of interpolation done between the keypoints. Finally, the relation between speed, acceleration and the interpolation parameters is shown in Table 28.

	Trajectory Interpolation
	Speed, Acceleration and Interpolation Parameters

	(none)
	N/A

	
[image: image144.wmf](

)

(

)

a

a

a

t

t

v

f

t

f

-

+

=

	c1=va

	
[image: image145.wmf](

)

(

)

2

2

1

)

(

a

a

a

a

a

t

t

a

t

t

v

f

t

f

-

+

-

+

=

	 c1=va, c2=1/2aa

Table 28: Mapping between Temporal Interpolation and Motion Trajectory.
where t represents time, f(t) the spatial position at time t, fa the spatial position at time ta, va and aa the velocity and acceleration, considered constant between ta and t. Such a trajectory model is applied to each trajectory dimension independently, on N intervals defined by N+1 keypoints.

· The dimensions used shall be 2 (for 2-D x,y trajectory) or 3 (for 3-D x,y,z trajectory).

9.3 Parametric motion

This descriptor addresses the motion of objects in video sequences, as well as global motion. If it is associated with a region, it can be used to specify the relationship between two or more feature point motion trajectories according to the underlying motion model. The descriptor characterizes the evolution of arbitrarily shaped regions over time in terms of a 2-D geometric transform.

The parametric models the descriptor expresses are:

· Translational models:
vx(x, y) = a1
vy(x, y) = a2
· Rotation/scaling models:
vx(x, y) = a1 + a3x + a4y
vy(x, y) = a2 - a4x + a3y

· Affine models:
vx(x, y) = a1 + a3x + a4y
vy(x, y) = a2 + a5x + a6y

· Perspective models:
vx(x, y) = (a1 + a3 x +a4 y) / (1 + a7 x +a8 y)
vy(x, y) = (a2 + a5 x +a6 y) / (1 + a7 x +a8 y)

· Quadratic models:
vx(x, y) = a1 + a3 x + a4 y + a7 xy + a9 x2 + a10 y2
vy(x, y) = a2 + a5 x + a6 y + a8 xy + a11 x2 + a12 y2
where vx(x, y) and vy(x, y) represent the x and y displacement components of the pixel at coordinates (x, y). The descriptor should be associated with a spatio-temporal region. Therefore, along with the motion parameters, spatial and temporal information is provided.

9.3.1 DDL representation syntax

<complexType name=”ParametricMotionType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<sequence>

<element name=”Duration” type=”mpeg7:MediaIncrDurationType”/>

<choice>
<element name=”ParMotionCoordRef”>

<complexType content=”empty”>

<attribute name=”coordRef” type=”IDREF”/>

<attribute name=”spatialReference” type=”boolean”

use=”required”/>

</complexType>

</element>

<element name=”ParMotionCoordDef”>

<complexType>
<element name=”OriginX” type=”float”/>

<element name=”OriginY” type=”float”/>

</complexType>
</element>

</choice>

<element name=”Parameters”>

<simpleType>

<list itemType=”float”/>

</simpleType>
</element>

</sequence>

<attribute name=”motionModel” type=”mpeg7:unsigned3”/>

</extension>

</complexContent>

</complexType>

9.3.2 Binary representation syntax

	ParametricMotion {
	Number of bits
	Mnemonic

	
motionModel
	3
	bslbf

	
CoordFlag
	1
	bslbf

	
if(coordFlag) {
	
	

	

coordRef
	
	UTF-8

	

spatialReference
	1
	bslbf

	
}
	
	

	
else {
	
	

	

OriginX
	32
	fsbf

	

OriginY
	32
	fsbf

	
}
	
	

	
Duration
	See 15938-5
	MediaIncrDurationType

	
for(k=0; k<NumberOfParameters; k++) {
	
	

	

Parameters[k]
	32
	bslbf

	
}
	
	

	}
	
	

9.3.3 Descriptor components semantics

motionModel

This attribute specifies the model type used in description. The possible values are as follows:

	motionModel
	NumberOfParameters
	Meaning

	000
	2
	Translational

	001
	4
	Rotation/scaling

	010
	6
	Affine

	011
	8
	Perspective

	100
	12
	Quadratic

	101-111
	reserved
	Reserved

Table 29: Relation between motionModel and NumberOfParameters.
CoordFlag

This attribute specifies if coordinate system is specified either by referencing the Spatial2DcoordinateSystem descriptor, or by instantiating originX and originY in the ParametricMotion description.

If it is set to “1”, reference to the adequate Spatial2DcoordinateSystem follows. If it is set to “0”, coordinates origin instantiations are embedded (OriginX and OriginY).

CoordRef
This field references the Spatial2DcoordinateSystem descriptor that defines the units and coordinate system used to express the motion parameters. Its syntax and semantics are described in Clause 5.4.

spatialReference

The spatialReference flag indicates if the motion parameter values are given either with respect to the local coordinate system (flag set to 1), or the integrated one (flag set to 0) (see Clause 5.4).
OriginX, OriginY
These are the coordinates of the origin of the spatial reference, with respect to the image coordinates.

Duration
This element specifies the length of the time interval that the descriptor is associated with.

Parameters
This is an array of floating point numbers that keeps the values of the model parameters. Its size depends on the considered motion model as specified by numberOfParameters.

9.4 Motion activity

A human watching a video or animation sequence perceives it as a slow sequence, fast paced sequence, action sequence etc. The activity descriptor captures this intuitive notion of “intensity of action” or “pace of action” in a video segment. Examples of high activity include scenes such as “goal scoring in a soccer match”, “scoring in a baseball game”, “a high speed car chase”, etc. On the other hand, scenes such as “news reader shot”, “an interview scene”, “a still shot” etc. are perceived as low action shots. Video content in general spans the gamut from high to low activity, therefore we need a descriptor that enables us to accurately express the activity of a given video sequence/shot and comprehensively covers the aforementioned gamut. The activity descriptor can be used in diverse applications such as content repurposing, surveillance, fast browsing, video abstracting, video editing, content based querying etc.

The activity descriptor includes the following five attributes:

· Intensity of Activity. A high value of intensity indicates high activity while a low value of intensity indicates low activity. For example, a still shot has a low intensity of activity while a “fast break” basketball shot has a high intensity of activity.

· Direction of Activity. While a video shot may have several objects with different activities, we can often identify a dominant direction. The direction element expresses the dominant direction of the activity if any.

· Spatial Distribution of Activity indicates whether the activity is spread across many regions or restricted to one large region. It is an indication of the number and size of “active” regions in a frame. For example, a talking head sequence would have one large active region, while an aerial shot of a busy street would have many small active regions.

· Spatial Localization of Activity expresses spatial distribution of motion intensities over the duration of the video segment/shot. For example, a video segment/shot that has high motion activity in the left side can be categorized/retrieved.

· Temporal Distribution of Activity expresses the variation of activity over the duration of the video segment/shot. In other words, whether the activity is sustained throughout the duration of the sequence or confined to a part of the duration.

9.4.1 DDL representation syntax

<complexType name=”MotionActivityType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<element name=”Intensity”>

<simpleType>

<restriction base=”positiveInteger”>

<minInclusive value=”1”/>

<maxInclusive value=”5”/>

</restriction>

</simpleType>

</element>
<element name=”DominantDirection” type=”mpeg7:unsigned3”

 minOccurs=”0”/>

<element name=”SpatialDistributionParameters” minOccurs=”0”>

<complexType>

<element name=”Nsr” type=”mpeg7:unsigned6”/>

<element name=”Nmr” type=”mpeg7:unsigned5”/>

<element name=”Nlr” type=”mpeg7:unsigned5”/>

</complexType>

</element>

<element name=”SpaLocNumber”
 minOccurs=”0”>

<simpleType>

<restriction base=”positiveInteger”>

<enumeration value=”4”/>

<enumeration value=”16”/>

<enumeration value=”64”/>

<enumeration value=”256”/>

</restriction>

</simpleType>

</element>

<element name=”SpatialLocalizationParameters”

 minOccurs=”0” >

<simpleType>

<restriction>

<simpleType>

<list itemType=”mpeg7:unsigned3”/>

</simpleType>

<length value=”5”/>

</restriction>

</simpleType>

</element>

<element name=”TemporalParameters” minOccurs=”0”>

<simpleType>

<restriction>

<simpleType>

<list itemType=”mpeg7:unsigned6”/>

</simpleType>

<length value=”5”/>

</restriction>

</simpleType>

</element>

</extension>

</complexContent>

</complexType>

9.4.2 Binary representation syntax

	MotionActivity {
	Number of bits
	Mnemonic

	
Intensity
	3
	uimsbf

	
DirectionFlag
	1
	bslbf

	
SpatialDistributionFlag
	1
	bslbf

	
SpatialLocalizedDistributionFlag
	1
	bslbf

	
TemporalDistributionFlag
	1
	bslbf

	
if(DirectionFlag == 1) {
	
	

	

DominantDirection
	3
	uimsbf

	
if(SpatialDistributionFlag == 1) {
	
	

	

SpatialDistributionParameters={Nsr,Nmr,Nlr}
	6,5,5
	uimsbf

	
if(SpatialLocalizedDistributionFlag==1) {
	
	

	

SpaLocNumber
	2
	uimsbf

	

for(k=0; k<SpaLocNumber; k++)
	
	

	

SpatialLocalizationParameter
	3
	uimsbf

	
}
	
	

	
if(TemporalDistributionFlag == 1) {
	
	

	

TemporalParameters={N0,N1,N2,N3,N4}
	5*6
	uimsbf

	}
	
	

9.4.3 Descriptor components semantics

Intensity

This attribute is expressed as a 3-bit integer lying in the range [1,5]. The value of 1 specifies the lowest intensity, whereas the value of 5 specifies the highest intensity. Intensity is defined as the standard deviation of motion vector magnitudes, appropriately normalized by the frame resolution and appropriately quantized as per frame resolution. This is illustrated in the pseudo-code below.

/* Pseudo-code to quantize standard deviation using thresholds optimised for test set consisting of MPEG-1 footage. The quantisation is to 5 levels as follows:
1 – very low activity
2 – low activity
3 – medium activity
4 – high activity
5 – very high activity
*/

if(std_dev<t1)

intensity = 1;
else if(std_dev<t2)

intensity = 2;
else if(std_dev<t3)

intensity = 3;
else if(std_dev<t4)

intensity = 4;
else

intensity = 5;

Where the thresholds t1, t2, t3, t4 are calculated as follows:

t1 = 0.257*l/F

t2 = 0.706*l/F

t3 = 1.280*l/F

t4 = 2.111*l/F

where the diagonal length l is given by l=sqrt(w*w + h*h), and F is the frame rate in frames/second.
In the above pseudo-code, std_dev refers to the standard deviation of motion vector magnitudes. This measure indicates the coherence of motion vector magnitudes contained in the video sequences. It is calculated as follows:
w = frame_width;
h = frame_height;
mv_x[i] = horizontal_motion_vector (for i-th block);
mv_y[i] = vertical_motion_vector (for i-th block);

for(i=0; i<h*w; i++) {

mv_mag = sqrt(mv_x[i]*mv_x[i] + mv_y[i]*mv_y[i]);

mv_sum += mv_mag;

mv_sqr = mv_mag*mv_mag;
}

avg = mv_sum/(h*w);
std_dev = sqrt((mv_sqr/(h*w)) – avg*avg);

DirectionFlag

A 1-bit flag, which is only present in the binary representation, indicating whether or not direction is specified: 1 if specified, 0 if not.

SpatialDistributionFlag

A 1-bit flag, which is only present in the binary representation, indicating whether or not spatial distribution is specified: 1 if specified, 0 if not.

SpatialLocalizedDistributionFlag

A 1-bit flag, which is only present in the binary representation, indicating whether or not spatial localized activity distribution is specified: 1 if specified, 0 if not.

TemporalDistributionFlag

A 1-bit flag, which is only present in the binary representation, indicating whether or not temporal distribution is specified: 1 if specified, 0 if not.

DominantDirection

This attribute expresses the dominant direction and can be expressed as an angle between 0 and 360 degrees. It is defined as shown in the following pseudo-code:

int quantize_angle(float f_angle) {
 int direction;

 /* quantize angle using uniform 3 bit quantization
 over 0-360 degrees i.e. 0,45,90,135,180,225,270,315 */
 if((f_angle>=-22.5)&&(f_angle<22.5)) direction=0;
 else if((f_angle>=22.5)&&(f_angle<67.5)) direction=1;
 else if((f_angle>=67.5)&&(f_angle<112.5)) direction=2;
 else if((f_angle>=112.5)&&(f_angle<157.5)) direction=3;
 else if((f_angle>=157.5)&&(f_angle<202.5)) direction=4;
 else if((f_angle>=202.5)&&(f_angle<247.5)) direction=5;
 else if((f_angle>=247.5)&&(f_angle<292.5)) direction=6;
 else if((f_angle>=292.5)&&(f_angle<337.5)) direction=7;

 return direction;
}

SpatialDistributionParameters (Nsr, Nmr, Nlr)

This element consists of three fields: Nsr, Nmr and Nlr, which contain the numbers of short, medium and long runs of zeros, respectively..
Short, medium and long runs of zeros are elements of the motion activity descriptor that provide information about the number and size of active objects in the scene. Their values are extracted from the thresholded motion vector magnitude matrix, which has elements for each block indexed by (i,j). Each run is obtained by recording the length of zero runs in a raster scan order over this matrix. The thresholded motion vector magnitude matrix is given by:

[image: image146.wmf]ï

î

ï

í

ì

³

=

otherwise

,

0

)

,

(

if

),

,

(

)

,

(

avg

mv

mv

mv

thresh

mv

C

j

i

C

j

i

C

j

i

C

Let the horizontal and vertical motion vectors for block (i,j) be given by vx,ij, and vy,ij, respectively. Then, for each object or frame the “activity matrix” Cmv is defined as:

[image: image147.wmf]{

}

)

,

(

j

i

v

C

mv

=

 where
[image: image148.wmf]2

,

2

,

)

,

(

ij

y

ij

x

v

v

j

i

v

+

=

for inter blocks and
[image: image149.wmf]0

)

,

(

=

j

i

v

for intra blocks

and the average motion vector magnitude for an MxN frame is defined as:

[image: image150.wmf]å

å

-

=

-

=

=

1

0

1

0

)

,

(

1

M

i

N

i

mv

avg

mv

j

i

C

MN

C

From the thresholded motion vector magnitude matrix, the zero run-lengths are classified into three categories, short, medium and long, which are normalized with respect to the frame width. Short runs are defined as runs that are less than 1/3 of the frame width. Medium runs are defined to be greater than 1/3 of the frame width and less than 2/3 of the frame width. Long runs are defined to be greater than 2/3 of the frame width. If a long run is longer than the width of a frame, the number of long runs contained in it is equal to the integral part of the length of the run divided by the width of the frame.

SpaLocNumber
This element indicates the number of the spatial localized activity parameters and associated grid division of the video frames. The encoding for 2-bit binary representation is specified in table below.
	SpaLocNumber
	Meaning

	00
	4 (=2x2)

	01
	16 (=4x4)

	10
	64 (=8x8)

	11
	256 (=16x16)

SpatialLocalizationParameter(s)
This element specifies the relative activity of each rectangular region defined by SpaLocNumber. The activity for each region is defined as the average of motion sample magnitudes in each region. Relative activity is the ratio of activity of the region to the sum of activities in the shot. The relative activity is uniformly quantized with the stepsize Q=2/(SpaLocNumber*8), i.e. the value of 0 represents the range of [0,Q), the value of 6 represents the range of [6Q,7Q) and the value of 7 represents the range above 7Q. SpatialLocalizationParameters are ordered from left to right and from top to bottom.

TemporalParameters

This is a histogram consisting of 5 bins, where histogram bins N0, N1, N2, N3, and N4 correspond to Intensity value of 1, 2, 3, 4, and 5 respectively. The histogram expresses the relative frequency of different levels of activity in the sequence as defined by the intensity element above. Each value is the percentage of occurrences of each quantized intensity level.

10 Localization

This section provides localization tools to indicate regions of interest in spatial (RegionLocator) and spatio-temporal (SpatioTemporalLocator) domains.

10.1 Region locator

This descriptor enables localization of regions within images or frames by specifying them with a brief and scalable representation of a Box or a Polygon.

10.1.1 DDL representation syntax

<complexType name=”RegionLocatorType” final=”#all”>

<sequence>

<element name=”Box” type=”mpeg7:BoxType”
 minOccurs=”0” maxOccurs=”unbounded”/>
<element name=”Poly” type=”mpeg7:PolyType”

 minOccurs=”0” maxOccurs=”unbounded”/>

</sequence>
<attribute name=”CoordRef” type=”IDREF”/>

<attribute name=”spatialReference” type=”boolean”

use=”default” value=”true”/>

</complexType>
<complexType name=”BoxType”>

<sequence>

<element name=”Coords” type=”mpeg7:IntegerMatrixType”/>

</sequence>

<attribute name=”unlocatedRegion” type=”boolean”

use=”default” value=”true”/>

</complexType>

<complexType name=”PolyType”>

<sequence>

<element name=”Coords” type=”mpeg7:IntegerMatrixType”/>

</sequence>

<attribute name=”unlocatedRegion” type=”boolean”

use=”default” value=”true”/>

</complexType>

10.1.2 Binary representation syntax

	RegionLocator {
	Number of bits
	Mnemonic

	
CoordFlag
	1
	bslbf

	
If(CoordFlag) {
	
	

	

coordRef

	
	UTF-8

	

spatialReference
	1
	bslbf

	
} else {
	
	

	

XRepr
	8
	uimsbf

	

YRepr
	8
	uimsbf

	
}
	
	

	
ContainedLocatorTypes
	2
	bslbf

	
if(ContainedLocatorTypes&1) {
	
	

	

NumOfBoxes
	
	vluimsbf

	

for(j=0;j<NumOfBoxes;j++) {
	
	

	

unlocatedRegion
	1
	bslbf

	

Use3P
	1
	bslbf

	

for(k=0;k<2+Use3P;k++) {
	
	

	

PixelX[k]
	if(CoordFlag) ceil(ld(xSrcSize))

else XRepr
	uimsbf

	

PixelY[k]
	if(CoordFlag) ceil(ld(ySrcSize))

else YRepr
	uimsbf

	

}
	
	

	

}
	
	

	
}
	
	

	
if(ContainedLocatorTypes&2) {
	
	

	

NumOfPolygons
	
	vluimsbf

	

for(j=0;j<NumOfPolygons;j++) {
	
	

	

unlocatedRegion
	1
	bslbf

	

NumOfVertices
	
	vluimsbf

	

FirstVertexX
	if(CoordFlag) ceil(ld(xSrcSize))

else XRepr
	uimsbf

	

FirstVertexY
	if(CoordFlag) ceil(ld(ySrcSize))

else YRepr
	uimsbf

	

XDynamicRange
	4
	uimsbf

	

YDynamicRange
	4
	uimsbf

	

for(k=0;k<NumOfVertices;k++) {
	
	

	

Octant
	3
	bslbf

	

MajorComponent[k]
	XDynamicRange or YDynamicRange
	uimsbf

	

MinorComponent[k]
	ld(min(MajorComponent[k],
 DynamicRange(MinorComponent)))
	uimsbf

	

}
	
	

	

}
	
	

	
}
	
	

	}
	
	

10.1.3 Descriptor components semantics

CoordFlag
This flag is only present in the binary representation. If set to 1, it specifies that a reference to a coordinate system is present. If the CoordFlag is set to 0, the implicit pixel-based reference system is used and XRepr and YRepr are specified within this descriptor.
coordRef
A reference to a 2D coordinate system. In the DDL representation the referencing is based on ID/IDREF. In the binary representation IDRef is encoded using UTF-8 standard,In this coordinate system the values of xSrcSize and ySrcSize are specified.
spatialReference

The spatialReference flag indicates if the motion parameter values are given either with respect to the local coordinate system (imageLocal, or flag set to 1), or the integrated one (nonImageLocal, or flag set to 0, see Clause 5.4).
XRepr, YRepr
Number of bits to code image width and height.

Coords
Specifies the coordinates of the vertices by using integer matrix datatype. The first row of this matrix contains the x, the second row the y coordinates of the vertices. In case of the Box, the specification of three points is estimated. If two points are specified, the edges of the box are assumed to be parallel to the edges of the image.

In case of a polygon only the first coordinate in each row uses absolute x and y coordinate values. All following coordinates are specified by the values (x and (y, which are the differences from the x and y coordinates of the previous vertex.
The matrix is represented by binary representation with:

· XRepr, YRepr to specify the binary coordinate representation if no CoordRef is present.

· The first value of each row of the matrix is encoded in FirstVertexX and FirstVertexY.

· XDynamicRange is determined as follows:
· the largest (value of the first row of the “Coords” matrix is chosen. Then XDynamic range is specified by XDynamicRange=ceil(ld((xmax)).

· The YDynamicRange is determined as follows:

· the largest (value of the first row of the “Coords” matrix is chosen. Then XDynamic range is specified by XDynamicRange=ceil(ld((xmax)).
· The values of the first and second row excluding the first value of each row are binary encoded by the octant, MajorComponent and MinorComponent.

ContainedLocatorTypes
Two bits specifying what locator types are present: “00” reserved, “01” for boxes, “10” for polygons, “11” for boxes and polygons.
Box
Descriptor specifying a 2-D box.

NumOfBoxes
Number of boxes this descriptor is composed of.

unlocatedRegion
If this flag is set to “0”, the box or polygon locates the inner region including the pixels of the polygon. If it is set to “1”, the box or polygon locates a region which does not belong to the located region including the pixels of the polygon. If more than one box or polygon are specified, the regions are overlaid in the order in which they are stored in the bitstream. Thus, a previously “unlocated” region can again be located by sending a polygon surrounding it and sending its “unlocatedRegion” flag to “0”.
Use3P
Specifies if two (“0”) or three (“1”) points are used.

PixelX, PixelY
Coordinate values of one point in X and Y dimension.

Poly
Descriptor specifying a 2-D polygon.

NumOfPolygons
Number of polygons this descriptor is composed of.

NumOfVertices
Number of vertices the polygon is composed of.

FirstVertexX, FirstVertexY
Absolute-addressed coordinates of first vertex.

XDynamicRange, YDynamicRange
XDynamicRange and YDynamicRange specify the number of bits used for the binary representation of the MajorComponent and the MinorComponent as specified below.
Octant
Octant the encoded segment lies in. This is coded on three bits as follows:

	Octant
	Meaning

	0
	(x>y) && (y>=0)

	1
	(x<=-y) && (y>0)

	2
	(x>=-y) && (y<0)

	3
	(x<y) && (y<=0)

	4
	(x>0) && (y>=x)

	5
	(x>=0) && (y<-x)

	6
	(x<=0) && (y>-x)

	7
	(x<0) && (y<=x)

MajorComponent
This is the absolute value of the bigger coordinate component with respect to its absolute value. Which of the X and Y component is the major component and its sign is signaled by sending the octant in advance (MajorComponent is the X coordinate if octant ({0,1,2,3}, else the Y coordinate is the MajorComponent). According to the coordinate this representation is coded with X- or YDynamicRange bits.

MinorComponent
This is the absolute value of the smaller coordinate component with respect to its absolute value. Which of the X and Y component is the minor component and its sign is also signaled by sending the octant in advance (MinorComponent is the X coordinate if octant ({4,5,6,7}, else the Y coordinate is the MinorComponent). This representation is coded with the smaller number of bits necessary: either the bits needed for the representation of the major component or the number of bits specified in the DynamicRange value of the minor component.

10.2 Spatio-temporal locator

The SpatioTemporalLocator describes spatio-temporal regions in a video sequence and provides localization functionality especially for hypermedia applications. It consists of FigureTrajectory and ParameterTrajectory.

The SpatioTemporalLocator describes moving regions in multiple frames by one or several sets of a reference region and its motion. FigureTrajectory and ParameterTrajectory describe a set of reference regions and their motions. The two description schemes are selected according to moving object conditions. In general, if a moving region is rigid and the motion model is known, ParameterTrajectory is preferable due to its compactness. On the other hand, if a moving region is non-rigid, FigureTrajectory with a polygon is suitable.

[image: image151.wmf]Reference Region

Reference Region

Motion

Motion

Reference Region

Motion

Figure 28: Spatio-Temporal Region.
10.2.1 DDL representation syntax

<complexType name=”SpatioTemporalLocatorType” final=”#all”>

<sequence>

<choice maxOccurs=”unbounded”>

<element name=”FigureTrajectory”

 type=”mpeg7:FigureTrajectoryType”/>

<element name=”ParameterTrajectory”

 type=”mpeg7:ParameterTrajectoryType”/>

</choice>

</sequence>

<attribute name=”coordRef” type=”IDREF”/>

<attribute name=”spatialReference” type=”boolean”

use=”default” value=”true”/>
</complexType>

10.2.2 Binary representation syntax

	SpatioTemporalLocator {
	Number of bits
	Mnemonic

	
CoordFlag
	1
	bslbf

	
if(CoordFlag) {
	
	

	

coordRef
	
	UTF-8

	

spatialReference
	1
	bslbf

	
}
	
	

	
NumberOfReferenceRegions
	
	vluimsbf

	
for(k=0; k<NumberOfReferenceRegions; k++) {
	
	

	

TypeOfTrajectory[k]
	1
	bslbf

	

if(TypeOfTrajectory==”0”)
	
	

	

FigureTrajectory[k]
	See clause 10.2.4.2
	

	

else
	
	

	

ParameterTrajectory[k]
	See clause 10.2.5.2
	

	
}
	
	

	}
	
	

10.2.3 Datatype components semantics

CoordFlag

This element specifies if coordinates systems are specified by referencing the Spatial2DcoordinateSystem descriptor, or the default coordinate system is used.

If it is set to “1”, reference to the adequate Spatial2DcoordinateSystem follows. If it is set to “0”, default coordinate system is used.

In the default coordinate system: the origin is top-left corner of the image, the unit for both horizontal and vertical axis is ‘pixel’, the type of the coordinate system is ‘local’.
coordRef
This element references the Spatial2DcoordinateSystem descriptor that defines the units and coordinate system used to express the coordinates. Its syntax and semantics are described in Clause 5.4.

It is mainly useful to specify an absolute reference taking into account global motion, in which the coordinates can be expressed. If it is present, units should be defined using the Spatial2DcoordinateSystem. If not present, local coordinate system is used.

spatialReference

The spatialReference flag indicates if the coordinates values are given either with respect to the local coordinate system (imageLocal, or flag set to 1), or with respect to the integrated one (nonImageLocal or flag set to 0) (see Clause 5.4).
NumberOfReferenceRegions
This field, which is only present in the binary representation, specifies the number of reference regions.

TypeOfTrajectory
This flag, which is only present in the binary representation, specifies the descriptor used to describe the trajectory. If set to 0, FigureTrajectory is used, if set to 1, ParameterTrajectory is used.

FigureTrajectory
This element is specified in clause 10.2.4.

ParameterTrajectory
This element is specified in clause 10.2.5.

10.2.4 FigureTrajectoryType

FigureTrajectoryType describes a spatio-temporal region by trajectories of the representative points of a reference region. Reference regions are represented by three kinds of figures: rectangles, ellipses and polygons. For rectangles and polygons, the representative points are their vertices. Although there are four vertices for a rectangle, only three of them are described because the fourth one can be easily calculated. For ellipses, three vertices of their circumscribing rectangles are selected as the representative points.

The trajectories are interpolated using the TemporalInterpolation descriptor. For this datatype, the reference region description is omitted because the TemporalInterpolation descriptor can directly express the representative points of figures.

[image: image152.wmf]

TemporalInterpolationD

TemporalInterpolationD

TemporalInterpolationD

Figure 29: Motion descriptions for FigureTrajectory.

10.2.4.1 DDL representation syntax

<complexType name=“FigureTrajectoryType” final=”#all”>

<sequence>

<element name=”Time” type=”MediaTimeType”/>

<element name=”Vertices” type=”mpeg7:TemporalInterpolationType”

minOccurs=”3” maxOccurs=”unbounded”/>

<element name=”Depth” type=”mpeg7:TemporalInterpolationType”

minOccurs=”0”/>

</sequence>

<attribute name=”type” type=”unsigned6” use=”required”/>

</complexType>

10.2.4.2 Binary representation syntax

	FigureTrajectory {
	Number of bits
	Mnemonic

	
Time
	See 15938-5
	

	
type
	6
	uimsbf

	
for(i=0;i<NumOfVertices;i++) {

	
	

	

Vertices[i]
	see Clause 5.5.2
	

	
}
	
	

	
DepthFlag
	1
	bslbf

	
if(DepthFlag==1) {
	
	

	

Depth
	See Clause 5.5.2
	

	
}
	
	

	}
	
	

10.2.4.3 Descriptor components semantics

Time
This element specifies the start time and duration of a described spatio-temporal region. It is specified in the 15938-5.

Vertices
This element specifies a trajectory of each vertex using the TemporalInterpolation descriptor.

Depth
This element exists only when the depth information is available. Depth information is the distance between the focal point of the camera and the nearest surface point of the object. The depth unit is "meter". The sequence of depth values is described by the TemporalInterpolation descriptor.

type
This is a 6-bit integer in the range [0-63] that specifies the type of the reference region. The following table shows the relations between the value of type, the type of the figure and NumOfVertices (the number of vertices described in the descriptor). Each vertex trajectory is described by the TemporalInterpolation descriptor. Vertices must be always continuous and ordered clockwise. For “rectangle” and “ellipse” three vertices are specified as explained above. For “polygon”, the number of vertices is specified by the value of type and all vertices are described in the 15938-5.

	type
	Figure
	NumOfVertices

	0
	Forbidden
	-

	1
	Rectangle
	3

	2
	Ellipse
	3

	3-63
	polygon
	Value of type

[image: image153.wmf]V

1

V

2

V

3

V

4

[image: image154.wmf]V

1

V

2

V

3

V

4

[image: image155.wmf]V

1

V

2

V

3

V

4

V

5

V

6

V

k

Figure 30: Representative points of rectangle, ellipse and polygon.
NumOfVertices
This number is derived from the value of type and represents the number of vertices present in description.

depthFlag
This flag, which is only present in the binary representation, signals the presence of Depth. If it is equal to 1, Depth is contained in the descriptor.

10.2.5 ParameterTrajectoryType

ParameterTrajectoryType describes a spatio-temporal region by a reference region and trajectories of motion parameters. Reference regions are described using the RegionLocator descriptor. Motion parameters and parametric motion model specify a mapping from the reference region to a region of an arbitrary frame. The trajectories of the motion parameters are interpolated and described using the TemporalInterpolation descriptor.

[image: image156.wmf]

Motion

Motion Parameters

time

a

1

a

2

a

3

a

4

TemporalInterpolationD

Figure 31: Motion descriptions for ParameterTrajectory.

10.2.5.1 DDL representation syntax

<complexType name=”ParameterTrajectoryType” final=”#all”>

<sequence>
 <element name=”Time” type=”mpeg7:MediaTimeType”/>
 <element name=”Location” type=”mpeg7:RegionLocatorType”/>
 <element name=”Parameters” type=”mpeg7:TemporalInterpolationType”/>
 <element name=”Depth” type=”mpeg7:TemporalInterpolationType”
minOccurs=”0”/>

</sequence>
<attribute name=”motionModel” type=”unsigned3” use=”required”/>
<attribute name=”ellipseFlag” type=”boolean” use=”default” value=”false”/>

</complexType>

10.2.5.2 Binary representation syntax

	ParameterTrajectory {
	Number of bits
	Mnemonic

	
motionModel
	3
	uimsbf

	
ellipseFlag
	1
	bslbf

	
Time
	See 15938-5
	

	
Location
	See Clause 10.1.2
	

	
Parameters
	see Clause 5.5.2
	

	
DepthFlag
	1
	bslbf

	
if(DepthFlag) {
	
	

	

Depth
	see Clause 5.5.2
	

	
}
	
	

	}
	
	

10.2.5.3 Datatype components semantics

motionModel

This is a 3-bit integer that specifies the type of the motion model. The following table shows the relations between the value of MotionModel, parametric motion model and the number of parameters described in the descriptor. The number of parameters of the motion model specifies the dimension of the Parameters element. Definitions of motion models and their parameters are explained in clause 9.3.

	MotionModel
	Parametric motion model
	Number of parameters

	0
	Translation
	2

	1
	Rotation/scaling
	4

	2
	Affine
	6

	3
	Perspective
	8

	4
	parabolic
	12

	5-7
	reserved
	N/a

ellipseFlag
This flag is meaningful only when a box is used in the RegionLocator. If it is set to 0, the reference region is a rectangle represented by the box. If set to 1, the reference region is an ellipse and the box specifies the circumscribing rectangle of the ellipse. When a polygon is used as a reference region, this flag does not carry any meaning.

Time
This element specifies the start time and duration of a described spatio-temporal region. It is specified in the 15938-5.

Location
This element specifies a reference region and its structure as specified in clause 10.1. When RegionLocator represents a box, the ellipseFlag should be referred. If ellipseFlag is “1”, the box specifies a circumscribing rectangle of a reference region (ellipse).

Parameters

This element specifies the trajectory of the region locator using the parametric motion model. The time evolution of the motion parameters is described using the TemporalInterpolation descriptor (see clause 5.5).

DepthFlag
This flag, which is only present in the binary representation, signals the presence of Depth. If it is equal to 1, Depth is contained in the descriptor.

Depth
This element exists only when the depth information is available. Depth information is the distance between the focal point of the camera and the nearest surface point of the object. The depth unit is "meter". The sequence of depth values is described by the TemporalInterpolation descriptor.
11 Others

This clause defines other descriptors and consists of the face descriptor.
11.1 Face recognition

The FaceRecognition descriptor represents the projection of a face vector onto a set of 49 basis vectors which span the space of possible face vectors.

11.1.1 DDL representation syntax

<complexType name=”FaceRecognitionType” final=”#all”>

<complexContent>

<extension base=”mpeg7:VisualDType”>

<element name=”Feature”>

<simpleType>

<restriction>

<simpleType>

<list itemType=”mpeg7:unsigned5”/>

</simpleType>

<length value=”48”/>

</restriction>

</simpleType>

</element>

</extension>

</complexContent>

</complexType>

11.1.2 Binary representation syntax

	FaceRecognition {
	Number of bits
	Mnemonic

	
for(k=0; k<48; k++)
	
	

	

Feature[k]
	5
	uimsbf

	}
	
	

11.1.3 Descriptor components semantics

The FaceRecognition descriptor is extracted from a normalized face image. This normalized face image is obtained by scaling of the original image to56 lines with 46 luminance values in each line. The center of the two eyes in each face image should be located on the 24th row and the 16th and 31st column for the right and left eye respectively. This normalized image is the used to extract the one-dimensional face vector (which consists of the luminance values from the normalized face image arranged into a one-dimensional vector using a column-wise raster scan starting at the top-left corner of the image and finishing at the bottom-right corner of the image.

The FaceRecognition feature set is then calculated by projecting the one-dimensional face vector (onto the space defined by the basis matrix U which is specified in Annex A.1. The features are given by the vector W where
[image: image157.wmf](

)

Y

-

L

=

T

U

W

 and (is the mean face vector specified in Annex A.2.

The features are then normalized and clipped using the equation:

[image: image158.wmf]ï

î

ï

í

ì

>

-

<

-

=

otherwise

,

/

127

/

,

127

128

/

,

128

Z

w

Z

w

if

Z

w

if

w

i

i

i

i

where Z=16384 is the normalization constant. Then all the features are re-quantized linearly as follows:

[image: image159.wmf]16

8

/

'

+

=

i

i

w

w

Feature

The elements Feature[0], …, Feature[7] represent the projection of a face vector onto a space defined by the 17th—24th columns of the basis matrix U. Each element is stored as a 5-bit unsigned integer.









number (i)

channel

Channel (Ci)

0

29

28

27

26

25

30

18

17

12

11

6

5

4

3

24

23

22

21

20

19

16

15

14

10

9

8

13

7

2

1

number (i)

channel

Channel (Ci)

0

29

28

27

26

25

30

18

17

12

11

6

5

4

3

24

23

22

21

20

19

16

15

14

10

9

8

13

7

2

1

PAGE
54
(ISO/IEC 2001 - All rights reserved

_1021827568.unknown

_1022305286.doc

5 linear interpolations

25 real data

2 quadratic interpolations

time t

x coordinate

_1016286710.unknown

_1016286799.unknown

_1016286831.unknown

_1016287290.unknown

_1016287951.unknown

_1016286813.unknown

_1016286742.unknown

_1016286659.unknown

_1016286696.unknown

_1016286646.unknown

_1035983230.unknown

_1041693160.doc

Origin

coordPoint

coordPoint

Local image

srcpixel

srcpixel

X axis

_1012756612

_1041947679.unknown

_1042033030.unknown

_1042033164.unknown

_1046156842.unknown

_1046156882.unknown

_1046156847.unknown

_1046156155.unknown

_1042033100.unknown

_1041947699.unknown

_1041947715.unknown

_1041948333.unknown

_1041947689.unknown

_1041947592.unknown

_1041947627.unknown

_1041947658.unknown

_1041693229.doc

Origin

srcpixel

coordPoint

coordPoint

Local image

srcpixel

srcpixel

X axis

coordPoint

_1012756612

_1036934296.unknown

_1041419361.doc

Origin

coordPoint

Local image

srcpixel

X axis

_1012756612

_1041439555.unknown

_1041442653.unknown

_1041424722.doc

segments

(time frame provided by segment DS)

t

0

t

1

t

2

t

N

t

e

n

d

motion parameter

sets

N = number of motion parameter sets

time stamps

. . . .

_1040593913.unknown

_1036934297.unknown

_1036411052.unknown

_1036411805.unknown

_1036842370.unknown

_1036852026.unknown

_1036852075.unknown

_1036846945.unknown

_1036842359.unknown

_1036652934.unknown

_1036411146.unknown

_1035983242.unknown

_1035983270.unknown

_1035983235.unknown

_1024233083.unknown

_1025589633.unknown

_1035983105.unknown

_1035983125.unknown

_1035983222.unknown

_1035983117.unknown

_1025589652.unknown

_1034060235.unknown

_1035362475.doc

key point #3�

�

KeyValue �

“14.1”�

�

type �

“secondOrder”�

�

param�

“3.1”�

�

key point #0�

�

KeyValue �

“18.6”�

�

type �

“startPoint”�

�

key point #2�

�

KeyValue �

“12.2”�

�

type �

“firstOrder”�

�

key point #1�

�

KeyValue �

“23.8”�

�

type �

“secondOrder”�

�

param�

“-2.0”�

�

_1025589665.unknown

_1025589642.unknown

_1025586119.unknown

_1025586366.unknown

_1025586562.unknown

_1025586577.unknown

_1025586505.unknown

_1025586303.unknown

_1025414638.unknown

_1025414658.unknown

_1025414709.unknown

_1024987000.doc

a) vertical b) horizontal c) 45 degree d) 135 degree e)non-directional

 edge edge edge edge edge

_1022519017.unknown

_1023804415.unknown

_1024230975.unknown

_1022587652.unknown

_1022587708.unknown

_1022519426.unknown

_1022518976.unknown

_1022519008.unknown

_1022518927.unknown

_1021827577.unknown

_1021827581.unknown

_1021827585.unknown

_1021828156.unknown

_1022142915.unknown

_1022145026.unknown

_1021829560.unknown

_1021827588.unknown

_1021827594.unknown

_1021827583.unknown

_1021827584.unknown

_1021827582.unknown

_1021827579.unknown

_1021827580.unknown

_1021827578.unknown

_1021827573.unknown

_1021827575.unknown

_1021827576.unknown

_1021827574.unknown

_1021827570.unknown

_1021827571.unknown

_1021827569.unknown

_1021827546.unknown

_1021827560.unknown

_1021827564.unknown

_1021827566.unknown

_1021827567.unknown

_1021827565.unknown

_1021827562.unknown

_1021827563.unknown

_1021827561.unknown

_1021827555.unknown

_1021827558.unknown

_1021827559.unknown

_1021827557.unknown

_1021827548.unknown

_1021827553.unknown

_1021827547.unknown

_1021447018.unknown

_1021827540.unknown

_1021827543.unknown

_1021827545.unknown

_1021827542.unknown

_1021464176.unknown

_1021464197.unknown

_1021464168.unknown

_1019657321.unknown

_1021402877.unknown

_1021402889.unknown

_1021435435.doc

Coordinate system of Reference image

srcpixel

X axis

Local image

Origin

pixel

Reference image

_1012756612

_1021446457.doc

Origin

X axis

X axis

Origin

_1012756612

_1021403082.unknown

_1021402881.unknown

_1020878577.doc

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(1,3)

(2,0)

(2,1)

(2,2)

(2,3)

(3,0)

(3,1)

(3,2)

(3,3)

sub-image

image-block

_1021402777.unknown

_1021258807.doc

Pan right

Pan left

Tilt up

Tilt down

Roll

_1019657322.unknown

_1020255092.doc

Motion

Motion Parameters

time

TemporalInterpolationD

a1

a2

a3

a4

_1006188295.doc

Hue

Diff

Sum

Black Color

Min

Max

White Color

_1015186097.unknown

_1016366654.doc

TemporalInterpolationD

TemporalInterpolationD

TemporalInterpolationD

_1016978504.doc

a.

b.

_1015411946.unknown

_1015031332.doc
[image: image1.wmf]COLOR

BIN

C0

C1

+1

C2

C3

+1

C4

C5

C6

C7

+1

[image: image2.wmf]COLOR

BIN

C0

C1

+1

C2

C3

+1

C4

C5

C6

C7

+1

� EMBED Word.Document.8 \s ���

8 x 8 structuring

element

_1015031684.doc

color

Bin

C0

C1

+1

C2

C3

+1

C4

C5

C6

C7

+1

_982405887.unknown

_993561669.doc

Track left

Track right

Boom up

Boom down

Dolly backward

Dolly

forward

_999190999.doc
[image: image1.bmp]

Reference Region

Reference Region

Motion

Motion

Motion

Reference Region

_989302279.doc
[image: image1.bmp]

V1

V2

V3

V4

_989311174.doc
[image: image1.bmp]

V1

V2

V3

V4

V5

V6

Vk

_989302278.doc
[image: image1.bmp]

V1

V2

V3

V4

_982400518.unknown

