ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Eleventh Meeting: Portland, Oregon, USA, 22-25 August, 2000
Document Q15-K-45
Filename: q15k45.doc

Generated: 16 Aug ’00

Question:
Q.15/SG16

Source:
Louis Kerofsky
Sharp Labs of America
5750 NW Pacific Rim Boulevard
Camas, WA 98607

Tel:
Fax:
Email:

(360) 817-7644
(360) 817-8436
lkerofsky@sharplabs.com

Title:
Entropy coding of transform coefficients

Purpose:
Information

1. Introduction

Improvement of entropy coding is one of the key technical areas of investigation within the current H.26L standardization. The current test model uses an entropy-coding tool based on Huffman coding with a single variable length code used for all syntax elements. The VLC table is based on the universal variable length code (UVLC) which constructs codewords by interleaving symmetric VLC code into fixed-length code (FLC) whose length is regulated properly with respect to the symmetric code [2]. Within each syntax a table specifies the correspondence between the syntax symbols and the UVLC codewords. The table defines a map of syntax elements into the UVLC codewords. For each syntax element this map is designed to approximate the symbol statistics with the UVLC code.

The UVLC has several advantages:

· Common VLC for all syntax elements
· Regular structure of codewords

· Encoding and decoding are simplified by the regular structure of codewords, a lookup table is not needed

· robustness to bit error
The UVLC combines these features with the ability to provide good entropy coding over a range of syntax elements and source data. Since a single code is used to capture the statistics of ten syntax elements at all quantization sizes it is reasonable to expect some improvement in entropy coding efficiency can be found. The coding performance of the UVLC was studied over various QP values with respect to syntax elements in [3]. These experiments modified the coding of the UVLC by changing the association between symbols and codewords the codewords are unmodified. The association between symbols and codewords was adapted to the data being encoded. The source of performance gains was primarily due to improvements in coding transform coefficients corresponding to the TCOEFF_Luma_SimpleScan syntax elements. The gains were most significant at small values of QP (1-12). Based on these results we study the coding of coefficient data in more detail.
2. Coding coefficient data

We examine the coding of transform coefficient data. During compression, each image block is represented as a 4x4 block of transform coefficients. The coefficients of each block are represented in a run-level scan as a series of (run, level) events followed by an end of block event, EOB. The EOB symbol is used to signal the end of scan within a block all other run/level symbols occur in pairs of equal probability symbols one element of the pair for each sign of “level”, (run, -|level|) and (run, +|level|). An entropy coder is used to map these events into variable length codewords. The UVLC codeword structure used by the entropy coder has a single codeword of length one all other codeword lengths occur an even number of times. In the symbol to codeword association defined in [1], the one-bit codeword is assigned to the EOB symbol.

To investigate the maximum possible improvement in entropy coding of transform coefficient data we compare the coding redundancy generated by the current UVLC and codeword assignment with the entropy. Results of this experiments are shown for the sequences ‘news’ (QCIF 10fps), ‘foreman’ (QCIF 10fps), ‘akiyo’ (QCIF 10fps) and ‘mobile’ (CIF 30fps) are in Figure 1.

[image: image1.emf]news (QCIF 10fps)

2

2.5

3

3.5

4

4.5

5

5.5

1 5 9 13 17 21 25 29

QP

redundancy

entropy

uvlc

[image: image2.emf]foreman (QCIF 10fps)

2

2.5

3

3.5

4

4.5

5

5.5

1 5 9 13 17 21 25 29

QP

redundancy

entropy

uvlc

[image: image3.emf]akiyo (QCIF 10fps)

2

2.5

3

3.5

4

4.5

1 5 9 13 17 21 25 29

QP

redundancy

entropy

uvlc

[image: image4.emf]mobile (CIF 30fps)

2

2.5

3

3.5

4

4.5

5

5.5

6

1 5 9 13 17 21 25 29

QP

redundancy

entropy

uvlc

Figure 1 coding redundancy

 In general, at higher quantizer values QP >17 the difference between the UVLC and the entropy code is insignificant. At lower quantizer values QP < 13, the difference between the source entropy and the UVLC coding redundancy suggests room for improvement. This observation holds for all sequences tested. The codeword reassignment method of [3] reaches similar conclusion that gain is possible for small values of QP while restricted to modifying the codeword assignment within the UVLC.
3. Low quantizer probability distribution

To understand the loss of efficiency of the UVLC when used with small quantizer values we examine the probability distributions of the UVLC codewords and the distribution of symbols. As an extreme example consider the sequence mobile (CIF 30fps) coded with QP=1. The probability distributions corresponding to the UVLC and entropy codes are shown in Figure 2. Asymptotically, the UVLC does a good job modeling the decay of the entropy. However, the entropy distribution is flat near the origin and the UVLC has difficulty with this flatness. One symbol does not dominate the probability and the UVLC code forms a poor model of the distribution near the origin. The difficulty of matching a distribution that is flat near the origin with the UVLC can not be removed by simply re-associating the symbols with other UVLC codewords a different code is needed to match the distribution effectively.

[image: image5.emf]mobile (CIF 30fps QP=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5 6 7 8 9 10 11

codeword

probability

entropy

uvlc

[image: image6.emf]mobile (CIF 30fps QP=1)

0.0001

0.001

0.01

0.1

1

1 51 101

codeword

probability

entropy

uvlc

Figure 2 QP=1 probability distribution of run/level symbols
4. Alternate entropy code

To try to improve the entropy coding with low quantizer values, we develop a code with improved performance at low quantizer values by matching the flatness of the probability distribution near the origin while also matching the asymptotic decay of the distribution. When designing a code, reducing redundancy is not the only factor to consider. The UVLC has a regular structure that simplifies the encoding and decoding operations. It also has a resynchronization property that provides a degree of error resilience. The ability to easily encode and decode the code is particularly important when operating at video rates and should be maintained. We do not see value in preserving the resynchronization property for a code developed strictly for coding run/level symbols. If the decoder detects an error and is able to resynchronize to a codeword boundary it may correctly decode subsequent codewords but the correctly decoded runs can not be properly interpreted unless all prior runs have been correctly decoded.

The code we developed matches the distribution both near the origin and asymptotically by merging codes designed for each requirement. We base the code on two Golomb codes G(2) and G(8) [4]. The Golomb codes are optimal for run-length coding and have formed the basis for developing the entropy coders [5,6, 7]. In addition to providing optimal encoding for exponential distributions, the structure of these codes enables simple encoding and decoding.

The codewords of G(m) are formed from a prefix and suffix. For each prefix there are m codewords differing in suffix. For the ith codeword, the prefix is the unary representation of i/m and the suffix is determined by i%m. For the case m=2k, the codes are particularly simple, division and modulo operations are simple to implement and the suffix is simply the binary representation of i%m using m bits. Examples of the Golomb codes of order 2, 4, and 8 are shown in Table 1. We design a code by merging the codes G(2) and G(8). The shaded codewords are removed from G(2) and G(8). The results are combined to form a new complete codebook consisting of the first three codewords of G(2) followed by codewords from G(8). The resulting is called a grafted code since the code tree of G(8) is grafted onto the code tree of G(2). Codewords of the grafted code are shown in Table 2.

Table 1 codewords of G(m)

Codeword
m=2
m=4
m=8

0
10
100
1000

1
11
101
1001

2
010
110
1010

3
011
111
1011

4
0010
0100
1100

5
0011
0101
1101

6
00010
0110
1110

7
00011
0111
1111

8
000010
00100
01000

9
000011
00101
01001

10
0000010
00110
01010

11
0000011
00111
01011

12
00000010
000100
01100

13
00000011
000101
01101

…..
…..
…..
…..

Table 2 codewords of grafted code

Index
Code
Index
Codeword

0
G2
0
10

1
G2
1
11

2
G2
2
010

3
G8
11
01100

4
G8
12
01101

5
G8
13
01110

6
G8
14
01111

7
G8
15
001000

8
G8
16
001001

9
G8
17
001010

10
G8
18
001011

…

…
…

Probability distributions to the codes G(2), G(8) and the grafted code are shown in Figure 3. The grafted distribution follows the distribution of G(2) near the origin and is asymptotically similar to G(8). The merged code is able to match the probability distribution both near the origin and asymptotically. The simplicity of encoding and decoding is inherited from the Golomb codes. An encoder codes the first three symbols using G(2) and the remainder using G(8) with an offset. The decoder uses the prefix that is common to G(2) and G(8) to determine which code is needed to decode the suffix. In both cases the modifications to the basic Golomb coder are minimal.

[image: image7.emf]0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 2 4 6 8 10

G2

G8

graft 2&8

[image: image8.emf]0.0001

0.0010

0.0100

0.1000

1.0000

0 50 100

codeword

probability

G2

G8

graft 2&8

Figure 3 probability distributions of G(2), G(8) and the grafted code

Features of grafted code:

· Coding near entropy limit for coefficient generated with small quantizer values

· Structure of codewords simplifies encoding and decoding – no look-up table needed

· Flexible structure – the grafting process can be tuned to match a variety of distributions
5. Results

A VLC called the grafted code was developed to demonstrate the improvement in coding coefficient data when using small quantizer values. We compare the UVLC and grafted codes with the source entropy for the sequences ‘news’ (QCIF 10fps), ‘foreman’ (QCIF 10fps), ‘akiyo’ (QCIF 10fps), and ‘mobile’ (CIF 30fps) in Figure 4. The grafted code performs near the entropy limit on all tested sequences when operating with a quantizer value less than 13. At large quantizer values its performance declines and the UVLC code is more effective.

[image: image9.emf]news (QCIF 10fps)

2

2.5

3

3.5

4

4.5

5

5.5

1 5 9 13 17 21 25 29

QP

redundancy

entropy

uvlc

grafted

[image: image10.emf]foreman (QCIF 10fps)

2

2.5

3

3.5

4

4.5

5

5.5

1 5 9 13 17 21 25 29

QP

redundancy

entropy

uvlc

grafted

[image: image11.emf]akiyo (QCIF 10fps)

2

2.5

3

3.5

4

4.5

5

5.5

1 5 9 13 17 21 25 29

QP

redundancy

entropy

uvlc

grafted

[image: image12.emf]mobile (CIF 30fps)

2

2.5

3

3.5

4

4.5

5

5.5

6

1 5 9 13 17 21 25 29

QP

redundancy

entropy

uvlc

grafted

Figure 4 coding redundancy entropy, uvlc, grafted code

To further illustrate this improvement in entropy coding the bitrate savings in using the grafted code rather than the UVLC is shown in Figure 5. For the ‘news’ and ‘akiyo’ sequences the grafted code shows a savings when the bitrate is above 50kbps. The ‘foreman’ sequence shows savings from the grafted code when the bitrate is above 150 Kbps. The ‘mobile’ sequence shows savings above 1.5 Mbps.

[image: image13.emf]news (QCIF 10fps)

-15

-10

-5

0

5

10

15

0 50 100 150 200 250 300 350

bitrate kbps

percent gain

[image: image14.emf]foreman (QCIF 10fps)

-25

-20

-15

-10

-5

0

5

10

15

0 100 200 300 400 500 600 700

bitrate kbps

percent gain

[image: image15.emf]akiyo (QCIF 10fps)

-25

-20

-15

-10

-5

0

5

10

0 20 40 60 80 100 120 140

bitrate kbps

percent gain

[image: image16.emf]mobile (CIF 30fps)

-10

-5

0

5

10

15

20

0 2000 4000 6000 8000 10000 12000 14000

bitrate kbps

percent gain

Figure 5 bitrate savings of grafted code vs. UVLC

6. Conclusions

The coding of transform coefficient data of the current H.26L reference model was evaluated. Comparison between the UVLC coding redundancy and the entropy of run/level symbols shows the UVLC performs near the entropy limit at high quantizers QP>17 but room for improvement exists for small quantizers QP<13. At low quantizers the performance of the UVLC coder is limited by the distribution of codeword probabilities. To achieve coding near the entropy limit in these cases, the structure of the code must be modified to enable it to more nearly match the probability distribution of symbols. To further demonstrate this area of improvement, we demonstrated a VLC designed to approaching the entropy limit when using small quantizer values while maintaining the advantage of simple encoding and decoding. These examples suggest further study to improve the entropy coding of coefficient data while preserving the simplicity of encoding and decoding of the UVLC.

References

1. Gisle Bjontegaard, “H.26L Test Model Long Term Number 4 (TML-4) draft 0,” Q15-I-57d0, Osaka, Japan, May 2000.

2. Yuji Itoh, “Bi-directional motion vector coding using universal VLC,” Signal Processing: Image Communication 14 (1999), pp.541-557.
3. Byeungwoo Jeon, “Entropy Coding Efficiency of H.26L,” Q15-J-57, Osaka, Japan May 2000.

4. S. W. Golomb, "Run length encodings,” IEEE Trans. Inform. Theory, vol. 12, pp. 399 - 401, July 1966. Describes a family of infinite codes, the Golomb codes designed for encoding symbols generated by run-length coding.

5. R. Gallager and D.C. Van Voorhis, "Optimal source codes for geometrically distributed integer alphabets,” IEEE Trans. Inform. Theory, vol. 21, pp. 228 - 230, March 1975. Describes infinite codes for geometric distributions.

6. N. Merhav, G. Seroussi, M. Weinberger, "Optimal Prefix Codes for Sources with Two-Sided Geometric Distributions," IEEE Trans. Inform. Theory, vol. 46, pp. 121 - 135, January 2000.
7. N. Merhav, G. Seroussi, M. Weinberger, " Algorithm: Principles and Standardization into JPEG-LS," IEEE Trans. Image Processing, vol. 9, NO. 8, August 2000.

File:q15k45
Page: 6
Date Printed: 08/16/00

