ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Eleventh Meeting: Portland, Oregon, USA, 22-25 August, 2000
Document Q15-K-24
Filename: q15k24.doc

Generated: 16 Aug ’00

Question:
Q.15/SG16

Source:
Mathias Wien, Claudia Mayer,
Jens-Rainer Ohm
Institut für Elektrische Nachrichtentechnik
RWTH Aachen
52074 Aachen, Germany

Tel:
Fax:
Email:

+49-241-80 7681
+49-241-8888 196
wien@ient.rwth-aachen.de
mayer@ient.rwth-aachen.de
ohm@ient.rwth-aachen.de

Title:
Integer Transforms for H.26L using Adaptive Block Transforms

Purpose:
Proposal

Introduction

In [1] the application of Adaptive Block Transforms (ABT) for transform coding of the prediction error in H.26L was proposed. The basic idea of ABT is to connect the block sizes of the applied transforms to the size of the blocks used for motion compensation. Since these block sizes are transmitted for motion compensation, no additional side information needs to be transmitted to the decoder.

In [1] float DCT matrices of sizes 4x4, 8x8, and 16x16 and an entropy based rate estimation were used to compare the ABT scheme to the TML with fixed 4x4 blocks. In these preliminary experiments the ABT coder showed a gain of up to 1.5dB against the scheme with fixed 4x4 blocks.

In this document integer approximations of the DCT matrix of size 8x8 and 16x16 are proposed for application with ABT. The transforms both have a norm that is a multiple of 17 and can be operated in 32bit arithmetic. The quantization and coding procedure are designed the same way as in the TML. The quantization procedure uses a set of five quantization tables that reflects the varying norms of the transform blocks. For encoding of the quantized coefficients, scan blocks of 16 coefficients are used. This preliminary approach allows for application of the TML VLC as well as for a simple R/D optimization on the encoder side, similar to the optimization used in the TML.

However, we assume that the TML VLC is suboptimum to achieve efficient entropy coding in the context of ABT, and expect more gain by using an optimized VLC.

Adaptive Block Transforms

In the TML seven tilings of a macroblock with a corresponding set of motion vectors are used for motion compensation. Each of the occuring blocks shall be coded with a transform of the maximal applicable size. For the transformation of the 16x16, 16x8, 8x16, 8x8, 8x4, 4x8, and 4x4 blocks, horizontal and vertical transform matrices of size 4x4, 8x8, and 16x16 are needed.

[image: image1.wmf]27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2500

7500

12500

17500

22500

27500

est. Rate [bit/s]

PSNR [dB]

DCT Foreman

ICT Foreman

DCT Silent

ICT Silent

1
2
3
4
5
6
7

Figure 1: Macroblock modes in TML-4

The blocks are transformed by

Cnxm = Tm x Bnxm x TnT,
(1)

where Bnxm denotes a block with n pixels m rows. Tn and Tm are the horizontal and vertical transform matrices of size nxn and mxm, respectively. Cnxm denotes the transformed nxm block. The transform matrices are not normalized. Normalization is performed during the quantization and dequantization procedures.

Motion Estimation

The variable block sizes and transforms of ABT have to be concidered during motion estimation. Here, the SATD is calculated using the block size given by the macroblock mode. Hadamard transforms of size 4x4, 8x8, and 16x16 are employed using a fast implementation, e.g. [6]. Besides the SATD, the motion estimation is unchanged from the TML.

Integer Transform Matrices

The transform matrices proposed here are integer approximations to the DCT of size 8x8 and 16x16. In the following the integer transforms are denoted by ICT for Integer Cosine Transform.

In [2] an 8x8 approximation of the DCT is given with the constant basis vector equal to 13. Here, the zero basis functions of the 8x8 and 16x16 ICT matrices are equal to 17. While solutions for the 8x8 can be found directly by searching the integer coefficients with respect to symmetry and orthogonality restrictions, this does not yield a solution in the 16x16 case. The method for finding the proposed 16x16 ICT matrix is based on [4], where the Hadamard transform and a conversion matrix are used for the approximation of the DCT.

The value of 17 instead of 13 was chosen, because 17^2 can be decomposed into more square numbers than 13^2. This is essential for the design of the transform. The ICT matrices are:

T8 = [

 17 17 17 17 17 17 17 17

 24 20 12 6 -6 -12 –20 -24

 23 7 -7 -23 -23 -7 7 23

 20 -6 -24 –12 12 24 6 -20

 17 -17 –17 17 17 -17 –17 17

 12 -24 6 20 -20 -6 24 -12

 7 –23 23 -7 -7 23 -23 7

 6 -12 20 –24 24 -20 12 -6];

T16 = [

 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17

 25 21 25 21 9 -3 9 -3 3 -9 3 -9 -21 -25 -21 -25

 29 13 11 -5 5 -11 -13 -29 -29 -13 -11 5 -5 11 13 29

 9 -3 9 -3 -25 -21 -25 -21 21 25 21 25 3 -9 3 -9

 23 7 -7 -23 -23 -7 7 23 23 7 -7 -23 -23 -7 7 23

 25 21 -25 -21 -9 3 9 -3 3 -9 -3 9 21 25 -21 -25

 11 -5 -29 -13 13 29 5 -11 -11 5 29 13 -13 -29 -5 11

 9 -3 -9 3 25 21 -25 -21 21 25 -21 -25 -3 9 3 -9

 17 -17 -17 17 17 -17 -17 17 17 -17 -17 17 17 -17 -17 17

 21 -25 -21 25 -3 -9 3 9 -9 -3 9 3 -25 21 25 -21

 13 -29 5 11 -11 -5 29 -13 -13 29 -5 -11 11 5 -29 13

 -3 -9 3 9 -21 25 21 -25 25 -21 -25 21 -9 -3 9 3

 7 -23 23 -7 -7 23 -23 7 7 -23 23 -7 -7 23 -23 7

 21 -25 21 -25 3 9 3 9 -9 -3 -9 -3 25 -21 25 -21

 -5 -11 13 -29 29 -13 11 5 5 11 -13 29 -29 13 -11 -5

 -3 -9 -3 -9 21 -25 21 -25 25 -21 25 -21 9 3 9 3];

The 4x4 ICT matrix is the transform proposed in the TML [5]. The transformed blocks have to be normalized. The norms of all nxm-transforms are listed below. The different norms are concidered during the quantization/normalization process described in the next section.

Block Size
Norm N²nxm

16x16
16 * 17^2

16x8
8 * sqrt(2) * 17^2

8x16
8 * sqrt(2) * 17^2

8x8
8 * 17^2

8x4
4 * sqrt(2) * 13 * 17

4x8
4 * sqrt(2) * 13 * 17

4x4
4 * 13^2

Quantization Tables

The quantization is performed the same way as in the TML. Here, five quantization tables are needed, since the non-square blocks 16x8/8x16 and 8x4/4x8 can use the same tables, respectively. The number of quantization tables could be reduced if a higher arithmetic precision is used (then the quantization table of the 8x8 ICT could be scaled by 2 and be used for the 16x16 ICT) and/or if a 4x4 transform of norm 4 * 17^2 would be applied.

The quantization tables for the new block sizes are listed below. They are designed to have the same normalized quantization step size as the TML quantizers. Therefore the quantization table for 4x4 blocks can be taken from the TML. The values in the quantization tables follow the condition

Anxm * Bnxm * N²nxm = 2^40.

QUANTIZATION TABLES

QP
16x16
16x8 = 8x16
8x8
8x4 = 4x8

A
B
A
B
A
B
A
B

0
91
565
128
803
181
1136
335
2100

1
81
635
114
902
162
1270
299
2353

2
72
714
102
1008
144
1428
266
2645

3
64
803
91
1130
128
1607
237
2968

4
57
902
81
1270
114
1804
211
3334

5
51
1008
72
1428
102
2017
188
3742

6
45
1143
64
1607
91
2260
168
4188

7
40
1286
57
1804
81
2539
149
4721

8
36
1428
51
2017
72
2857
133
5289

9
32
1607
45
2286
64
3214
118
5962

10
29
1773
40
2571
57
3609
105
6700

11
25
2057
36
2857
51
4033
94
7484

12
23
2236
32
3214
45
4571
84
8375

13
20
2571
29
3546
40
5142
75
9380

14
18
2857
25
4114
36
5714
67
10500

15
16
3214
23
4472
32
6428
59
11924

16
14
3673
20
5142
29
7093
53
13274

17
13
3956
18
5714
25
8228
47
14968

18
11
4675
16
6428
23
8943
42
16750

19
10
5142
14
7346
20
10285
37
19014

20
9
5714
13
7911
18
11428
34
20691

21
8
6428
11
9350
16
12856
30
23450

22
7
7346
10
10285
14
14693
26
27058

23
6
8571
9
11428
13
15823
24
29313

24
6
8571
8
12856
11
18700
21
33500

25
5
10285
7
14693
10
20570
19
37026

26
5
10285
6
17141
9
22855
17
41382

27
4
12856
6
17141
8
25712
15
46900

28
4
12856
5
20570
7
29385
13
54116

29
3
17141
5
20570
6
34283
12
58625

30
3
17141
4
25712
6
34283
10
70350

31
2
25712
4
25712
5
41139
9
78167

Scanning Method

To deal with the heterogenous block sizes in ABT, the concept of the well-known zig-zag is modified to allow for the application of CBP and the TML VLC scan. In H.26L the CBP concerns a set of 64 coefficients in 4 transformed blocks. To apply this CBP in MBs with 16x8, 8x16 or 16x16 transforms, these blocks are first scanned using the zig-zag scan and then ordered into groups of 64 coefficients. Figure 2 shows examples for the 8x8 transform (b), the 16x16 transform (c) and the 16x8 transform (d). The starting points and the direction of the scans are marked inside the blocks. To apply the VLC from the TML, the resulting subblocks are divided into scans of 16 coefficients (scan blocks).

[image: image2.jpg][o 4

[o 4

[image: image3.jpg]

[image: image4.jpg]it

it

[image: image5.jpg]

[image: image6.wmf]27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

2500

7500

12500

17500

22500

27500

est. Rate [bit/s]

PSNR [dB]

DCT Foreman

ICT Foreman

DCT Silent

ICT Silent

Rate-Distortion Optimization

Single coefficients of value ±1 may be very expensive to code without much improvement in picture quality. The TML employes a simple R/D optimization on the encoder side to avoid encoding of expensive subblocks. For each CBP the following steps are performed during the scan

· Set coeff_cost to zero

· If |level| > 1, add MAX_VALUE to coeff_cost (the block is important)

· If |level| = =1, add value to coeff_cost depending on run
value(run) = [3,2,2,1,1,1,0,0,...]

· If coeff_cost < Threshold1, set CBP to zero (the block is unimportant)

coeff_cost is accummulated for each MB. If sum_coeff_cost < Threshold2 the CBP for the entire MB is set to zero. This concept is used for ABT as well.

A problem arises if one of four scan blocks in a CBP is important while the others only contain very few coefficients of |level|=1. Then the three expensive scan blocks are coded in addition to the important scan block.

For further improvement we propose to use a threshold (Threshold0) for each scan block. If the block is unimportant (e.g. only a single coefficient of level=1), the scan block is set to zero. The scan block then only needs 1 bit to be coded.

Experimental Results

An entropy based performance comparison of the ABT coder (based on TML-2) with ICT matrices and with float DCT matrices is given at the end of this paper. The results are shown for FOREMAN and SILENT. As can be seen, the proposed ICT matrices perform very well compared to the DCT. For other sequences we achieved similar results.

In Document Q15-K-25 [3] the R/D performance of the current ABT coder is presented. The TML VLC and scan blocks with 16 coefficients are used for encoding. Also, a comparison of the coder perfomance when using either the 8x8 transform matrix with a constant basis vector of 13 or of 17 is given. See Q15-K-25 for details.

Conclusion and Future Work

Integer transform matrices of size 8x8 and 16x16 are proposed for application of ABT in H.26L. In a pre-experiment, the proposed matrices showed a comparable performance to float DCT matrices.

New quantization tables and a new scanning method for the transformed blocks are given. A modification of the single coefficient elimination is proposed. The scan allows for coding with the TML VLC when using scan blocks of 16 coefficients. Since the TML VLC is not optimized for this application, we expect further gain when using an optimized VLC. The coding method for 8x8 blocks proposed in [2] may be used as a starting point.

Furthermore, the deblocking filter used in the TML has to be modified to fit into the ABT scheme. Also, the application of ABT to chroma should be investigated.

References

[1]
Mathias Wien and Claudia Mayer, ‘New Integer Transforms for H.26L’, ITU-T Q15/SG16,

Document Q15-J-41, Osaka, May 2000

[2]
Gisle Bjontegaard, ‘Addition of 8x8 Transform to H.26L’, ITU-T Q15/SG16, Document Q15-I-39,

Red Bank, NJ, October 2000

[3]
Mathias Wien and Till Halbach, ‘Results of H.26L Core Experiment on Adaptive Block Transforms’,

ITU-T Q15/SG16, Document Q15-K-25, Portland, OR, August 2000

[4]
R. Srinivasan and K. Rao, ‘An Approximation to the Discrete Cosine Transform for n=16’,

Signal Processing 5, pp. 81-85, 1983

[5]
Gisle Bjontegaard, ‘H.26L Test Model Long Term Number 4 (TML-4)’, ITU-T Q15/SG16,

Document Q15-J-72, Osaka, May 2000

[6]
D.F. Elliott and K.R. Rao, ‘Fast Transforms: Algorithms, Analyses, Applications’, Academic Press,

New York, London, 1982

 (a)				 (b)			 (c)		 	 (d)

Figure 2: (a) Scan of a 8x8 block. The four Blocks affected by the CBP: (b) 8x8 transform, (c) 16x16 tranform, and (d) 16x8 transform.

� EINBETTEN Excel.Sheet.8 ���

File:q15k24.doc
Page: 1
Date Printed: 22.08.00

_1027960236.xls
Diagramm3

		27471		27493		17044		16990

		26019		24579		16080		15081

		24420		20844		15042		12832

		22518		17882		13880		10845

		20903		14503		12726		8827

		19235		11754		11798		7122

		17699		9479		10939		5521

		16152		7436		9708		4227

		14624		5777		8709		3009

		13368		4218		8076		2143

		12010		3258		7071		1492

		10684				6314

		9556				5527

		8532				4886

		7486				4381

		6717				3705

		5832				3107

		5006				2572

		4262				2170

		3834				1841

		3353				1466

		2811				1238

DCT Foreman

ICT Foreman

DCT Silent

ICT Silent

est. Rate [bit/s]

PSNR [dB]

40.613

40.5631

40.8599

40.8103

39.9441

39.2151

40.2036

39.4533

39.2781

37.8029

39.4874

37.8938

38.5255

36.4964

38.6851

36.508

37.8702

35.1838

37.9661

35.0051

37.1854

33.9483

37.2018

33.7355

36.5751

32.6195

36.56

32.3845

35.8624

31.4403

35.7969

31.1827

35.2428

30.2156

35.1398

29.891

34.6349

28.9147

34.4956

28.6064

34.0394

27.7378

33.8083

27.4989

33.4012

33.1601

32.7162

32.4343

32.1834

31.8806

31.5777

31.2515

30.9686

30.7193

30.3777

30.0483

29.6464

29.3114

29.0192

28.745

28.5651

28.3153

27.9126

27.6153

27.3597

27.0379

res_dct_ict_for_sil

		

		DCT				ICT

		Rate [kbit/s]		PSNR [dB]		Rate [kbit/s]		PSNR [dB]

		27471		40.613		27493		40.5631

		26019		39.9441		24579		39.2151

		24420		39.2781		20844		37.8029

		22518		38.5255		17882		36.4964

		20903		37.8702		14503		35.1838

		19235		37.1854		11754		33.9483

		17699		36.5751		9479		32.6195

		16152		35.8624		7436		31.4403

		14624		35.2428		5777		30.2156

		13368		34.6349		4218		28.9147

		12010		34.0394		3258		27.7378

		10684		33.4012

		9556		32.7162

		8532		32.1834

		7486		31.5777

		6717		30.9686

		5832		30.3777

		5006		29.6464

		4262		29.0192

		3834		28.5651

		3353		27.9126

		2811		27.3597

		SILENT				ICT

		Rate [kbit/s]		PSNR [dB]		Rate [kbit/s]		PSNR [dB]

		17044		40.8599		16990		40.8103

		16080		40.2036		15081		39.4533

		15042		39.4874		12832		37.8938

		13880		38.6851		10845		36.508

		12726		37.9661		8827		35.0051

		11798		37.2018		7122		33.7355

		10939		36.56		5521		32.3845

		9708		35.7969		4227		31.1827

		8709		35.1398		3009		29.891

		8076		34.4956		2143		28.6064

		7071		33.8083		1492		27.4989

		6314		33.1601

		5527		32.4343

		4886		31.8806

		4381		31.2515

		3705		30.7193

		3107		30.0483

		2572		29.3114

		2170		28.745

		1841		28.3153

		1466		27.6153

		1238		27.0379

res_dct_ict_for_sil

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0				0

		0				0

		0				0

		0				0

		0				0

		0				0

		0				0

		0				0

		0				0

		0				0

		0				0

DCT Foreman

ICT Foreman

DCT Silent

ICT Silent

est. Rate [bit/s]

PSNR [dB]

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

