ITU - Telecommunications Standardization Sector
STUDY GROUP 16
Video Coding Experts Group (Question 15)

Tenth meeting: Portland, 21-25 August, 2000
Document: Q15-K-20
Filename: q15k20.doc
Generated: 2000-08-11

Question:
Q15/SG16

Source:
PictureTel Corp.

Contact:
Dave Lindbergh
PictureTel Corp.
100 Minuteman Road
Andover, MA 01810

USA

Tel:
Fax:
Email:

+1 978 292 4351
+1 978 292 3309
lindbergh@pictel.com

Title:
Policies for Development and Extension of Rec. H.26L

Purpose:
Proposal

1.0
Introduction

H.26L has the potential to be an extremely important codec for the telecommunications industry and for users worldwide. As a next-generation natural-scene video codec, H.26L may eventually replace existing codecs in most applications. Therefore it seems especially important that in the development and standardization of H.26L, we take advantage of the lessons learned in earlier efforts, and plan in advance for the future extension and enhancement of H.26L.

We therefore propose the following policies for the development of H.26L within Q15. These are intended to increase the simplicity, testability, interoperability, correctness, acceptance, and actual real-world performance of H.26L:

(a) A system of “Application-Level profiles” instead of individual algorithm options [variation on MPEG model]

(b) A requirement for 2 independent interoperable non-realtime implementations before approval [IETF model]

(c) A non-real-time C-code implementation [WP2 audio codec model]

(d) Test vectors should be provided

(e) A requirement for resource-consumption and performance metrics to accompany all algorithmic proposals

These proposals are independent of each other, and may be accepted, modified, or rejected individually. The following sections discuss each proposal.

2.0
Application-Level Profiles instead of Options

Experience with H.263 and other codecs shows that over time, proposals for improved modes and new features inevitably appear. We believe that a simple but firm policy for the handling of such proposals, agreed in advance, can create incentives for firms and experts to more carefully consider the value and correctness of H.26L proposals, and to discourage the approval of poorly-considered extensions.

2.1
Problem

The proliferation of individually-selectable optional modes in existing codecs (especially H.263) leads to an exponentially-growing number of mode permutations. This has many highly undesirable consequences in practical implementations:

· The very large number of possible modes means that effective testing of all modes supported by an implementation is impossible. The code for individual modes can be tested, but these often interact with each other, sometimes in unintended ways (bugs). This problem is compounded when different implementations interoperate. The reliability of products and systems suffers.

· The same is true for performance tuning of parameters and algorithms—the large number of possible modes make optimization of all modes impractical.

· Since each mode can be selected independently, and many implementations can support only certain combinations of modes (in order to deal with the above two problems), often the only common mode between two implementations is the baseline (lowest performing) mode. This is especially likely in “multipoint” connections, in which 3 or more parties attempt to communicate. The performance gains offered by the improved modes are not obtainable in practice.

· Long, complicated capability negotiations require excessive complexity and time (especially on systems such as H.320). The chances for bugs and misinterpretation increase, especially between different implementations.

· Competitive pressures lead manufacturers to implement a “checklist” of optional modes, even when those modes have no benefit for the application involved.

· The use of “profiles” (as in MPEG and H.263) is effectively discouraged, as most profiles contain elements considered unnecessary or difficult-to-implement by some vendors. Selecting individual options allows implementors to save work at the expense of interoperability and performance.

And finally, there is a negative consequence for the incentives of experts and firms involved in standardization:

· The incentive for firms to carefully examine the technical value and correctness of proposals is greatly reduced. Since modes are optional, vendors can choose to not implement a flawed or weak optional mode, rather than working to either improve or eliminate the proposal in the standardization process. While this makes compromising disagreement easier, it can lead to standardization of modes with little technical merit, or even with technical mistakes, if too few experts carefully check the proposal.

2.2
Proposal

Individually selectable optional modes should not be allowed.

Instead, we propose a system similar to the “profiles” used in MPEG, but focused on applications and resource tradeoffs, and on the idea that proposals for new and improved algorithms will appear over time, and that provision should be made for such enhancements.

First, we propose there should be a baseline (“Level 0”) algorithm for H.26L, which all implementations should be required to support. This baseline algorithm should be modest in terms of complexity and memory consumption, and have low delay, so that it is minimally suitable for all applications.

Beyond this, we propose a series of application-focused specialized profiles, one for each identified application. Over time, as proposals appear for improved algorithms, sets of these proposals would periodically be selected by Q15 for inclusion in a new “level” for each application.

APPLICATIONS

We believe the primary tradeoffs in the design of video codecs, at a given level of the state-of-the-art, are computational complexity, memory, and delay.

Generally, computational complexity and memory are both associated with cost, and therefore (for the sake of simplicity) can be combined into a metric called “complexity”.

The importance of delay is extremely application-dependent, and therefore this will be treated separately.

Given tradeoffs of delay and complexity, we propose identifying applications as in Table 1:

TABLE 1 – Proposed H.26L application profile branches

Delay
Complexity
Application
Profile name

Low
Low
Real-time conversation, low complexity
RTL

Low
High
Real-time conversation, high complexity
RTH

High
Low or High
Streaming
ST

Table 1 shows three applications, “RTL”, “RTH”, and “ST”. These represent application-optimized modes using the best available algorithm for each application, as of the time of their approval by ITU. These would be called “Level 1” modes, specifically “RTL-1”, RTH-1”, and “ST-1”. All “Level 1” implementations would be required to also support the “Level 0” baseline.

Additional applications could potentially be defined in the future, but we think these are sufficient for now (simplicity is important).

This would complete H.26L as of the date of its initial ITU approval.

LEVELS

Over time, as proposals appear for new and improved algorithms for each application, sets of these proposals would periodically be selected by Q15 for inclusion in a new and improved “level” for the application. We propose 2 years as the minimum time between approval of new levels (the same as the existing ITU-T Recommendation update period).

Thus, for example, “RTH-2” (Real-time high-complexity Level 2 profile) would be a set of improved algorithms for that application, all of which must be supported by all RTH-2 implementations. Such implementations would also have to support all earlier levels for that same application (that is, Level 1 and Level 0).

This cycle could continue for as long as desired. After some years, the tree of H.26L profiles might look something like Figure 1:

FIGURE 1 – H.26L Profiles after some years

The definition of each Application-Level profile can include dependencies on conditions such as frame rate, resolution, bitrate, etc., if the Q15 experts decide this is appropriate. For example, the RTL-1 profile might involve the use of B-frames only when operating at a frame rate of 25 fps or higher. Because such dependencies are not optional, they do not require additional capability exchange, or involve an exponential increase in the modes to be implemented.

CAPABILITY EXCHANGE

This system would greatly simplify capability exchange. An implementation would identify itself as simply supporting one or more Application(s), and a Level for each. For each such profile supported, quantitative maxima (maximum frame rate, bitrate, and resolution) would also apply.

2.3
Summary and Benefits

We believe this proposed system of Application-Level profiles addresses all the problems listed earlier. With this system, when Q15 and ITU agrees to a new profile, there is a much more serious commitment to implementation than exists with the individual option method used in H.263. Since the entire level (for a particular application) must be supported, vendors will have an incentive to carefully examine and debate the inclusion of each proposal in a level, and to ensure that only those proposals offering the best technical performance are included.

3.0
Two independent implementations before approval

The IETF has long had a requirement that at least 2 independent implementations of any proposed standard be proven to interwork before approval of that standard.

This rule ensures both that

(a) the text of the standard is sufficiently unambiguous to allow two independent developers to interpret it in the same way, and,

(b) the technical content is correct.

We therefore propose that this same requirement be used in the development of H.26L.

For each independent Application-Level profile, the text should be “frozen” at the time of ITU-T Determination. The text should not move forward to Decision until two independent implementations of the profile have been shown to interwork.

Real-time implementations are not required; only the production and successful decoding of H.26L bitstreams (in each direction) needs to be shown.

After the text has been “frozen”, only those changes necessary to correct mistakes and ambiguities in the text should be allowed.

4.0
Non-real-time C implementation

Numerous previous codec standards have included a non-real-time C code implementation as a part of the standard. This both provides an implementation-exact description of the standard, and a starting point for would-be implementors.

We propose the same for H.26L.

5.0
Test vectors

For each Application-Level profile, a set of test vectors should be supplied as an annex to the standard. These should exercise all algorithms in the decoder for that particular profile.

6.0
Resource consumption metrics with all proposals

Our final proposal is that there should be a requirement that all algorithmic proposals for H.26L be accompanied with quantitative metrics for their performance and consumption of resources.

The purpose is to assist the Q15 experts in making decisions about the inclusion of proposed algorithms in H.26L, and in choosing which Application profile(s) each algorithm should be used for.

Proposals not including such metrics should not be considered by Q15 for inclusion in H.26L. (The proposal may be resubmitted at a later time with the metrics).

We propose that the metrics required should include, at least, the following:

· Memory consumption (ROM and RAM, in 8-bit bytes)

· Signal/noise ratios

· Algorithmic delay

· Computational complexity

Computational complexity should be stated in cycles consumed on a stated hardware or simulation platform, under stated conditions (scene, frame rate, resolution, bitrate, etc.). The hardware/simulation platform should be one that is commercially available (not proprietary and unfamiliar to other experts).

These metrics should be provided for both encoder and decoder.

We are not proposing that everyone measure on the same platform or conditions, as we think this would be so burdensome that it would not be enforced. While hardware platforms vary greatly, experts can usually estimate rough compensation for the differences between known platforms.

The group should, however, encourage contributors to submit numbers for well-known and widely-available hardware (for example, Pentium MIPS).

Additional metrics should be considered for inclusion, if Q15 can decide on ways to measure them that do not involve an unreasonable burden on contributors. These might include:

· Robustness to errors (possibly in terms of SNR decrease under fixed conditions with stated bit-error rate)

· Compression efficiency (possibly in terms of achievable bitrate at a fixed SNR)

· Program space (lines of C code, bytes of executable on stated platform, etc.)

[end]

.
Baseline - Level 0

RTL-2

RTL-3

RTH-1

RTL-1

ST-2

ST-1

1
1

