ITU – Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Eleventh Meeting: Portland, Oregon, USA, 22-25 August, 2000
Document Q15-K-17
Filename: q15k17.doc

Generated: 10 Aug ’00

Question:
Q.15/SG16

Source:
Thomas Stockhammer
Institute for Communications Eng.
Munich University of Technology
D-80290 Munich
Germany

Jürgen Pandel, Gero Bäse, Sebastian Purreiter
Siemens AG, ZT IK 2
D-81730 Munich
Germany

Tel:
Fax:
Email:

Tel:
Fax:
Email:
+49 89 289 23474
+49 89 289 23490
stockhammer@ei.tum.de

+49 89 636 53193
+49 89 636 52393
Gero.X.Baese@mchp.siemens.de

Title:
Data Partitioning Test Software

Purpose:
Proposal

Introduction

This proposal provides a description of a software which serves as an interface between H.26L and packet oriented networks. Several packetization modes are supported including two frame-wise data partitioning modes. The coding performance of H.26L is not changed, however, the concept of a more network friendly interface providing packets with priority levels is supported. Figure 1 shows the structure of the H.26L stack if the data partitioning software is included. Denote that this concept provides a clear separation of coding efficiency and network adaptation and can be viewed as a possible realization of he part of the network adaptation layer presented in Q-15-J-23 and Q-15-K-19. In the following we will provide a description of the software, the interfaces and different partitioning modes.

[image: image1.wmf]H.26L encoder

H26LMODE

Partitioning

H26LPACKETMODE

FRAMEMODE

PROGFRAMEMODE

Packet Transport Layer

H.26L encoder

Departitioning

IF1i

IF1o

IF2o

IF2i

Figure 1 Structure of H.26L stack including Data Partitioning software

The software consists of a context based parser reading conventional H.26L video streams or data partitioned H.26L video streams according to the file format presented later in this document. Parameter are set via a configuration file also to be presented later in this document. In accordance to the specified input- and output mode the input stream is parsed and the identified elements are checked for correctness and pushed into different containers. If an element is not correct concealment strategies are applied also to be discussed later. If a frame is completely parsed a conventional syntactically correct H.26L stream is generated at the output.

Software Description

Supported Data Partitioning Schemes

This software reads and writes conventional and data partitioned TML4 conform H.26L video streams. It serves for partitioning as well as for departitioning by setting different input and output modes.

For parsing the streams a parser syntax was adopted to rearrange the different syntax elements. Up to now only frame-wise partitioning can be applied to a conventional H.26L video stream.

Four modes are supported in the data partitioning software, i.e.

H26LMODE: Unframed conventional H.26L stream. This mode is used to read the H.26L stream as an input from the encoder or write it as an output to the decoder.

H26LPACKETMODE: Framewise packetized conventional H.26L stream. The H.26L stream is mapped framewise into packets, i.e. at each PSYNC-element a new packet is started.

FRAMEMODE: Data Partitioning Scheme separating different syntax elements for each frame.

Partition 1: Psync, Ptype, MBtype, REFframe

Partition 2: IntraPredMode, MVD

Partition 3: CBP, LUM_DC, CHR_DC

Partition 4: LUM_AC, CHR_AC

A detailed description of this mode is provided in document Q-15-J-23 [3] and Q-15-K-18.

PROGFRAMEMODE : Data Partitioning Scheme with progressively ordered transform coefficients. Additionally, to the FRAMEMODE, DC and AC luminance coefficients of the Intra and Inter macroblocks are in now split in separate partitions. The different partitions contain the following elements:
Partition 1: Psync, Ptype, MBtype, REFframe

Partition 2: IntraPredMode, MVD

Partition 3: CBP_Intra, LUM_DC_Intra, CHR_DC_Intra

Partition 4: LUM_AC_Intra, CHR_AC_Intra

Partition 5: CBP_Inter, LUM_DC_Inter, CHR_DC_Inter

Partition 6: LUM_AC_Inter, CHR_AC_Inter

A detailed description of this mode is provided in document Q-15-K-18 [2].

Software Structure

The following files and directories are part of the data partitioning software:

datapart/
: directory containing the source code for the data partitioner

readme.txt
: Readme file containing all the relevant information

disclaimer.txt
: disclaimer of warranty

assure.h

: file handling functions

container.h
: container object classes

errormsg.h
: functions handling errors

global.h

: global definitions

parser.h

: parser object class

stream.h
: stream classes to read and write VLC coded H.26L streams

syntaxelem.h
: syntax element object classes

datapart.cpp
: main file of data partitioner

params.cpp
: functions to read configuration file

parser.cpp
: parser for H.26L conventional and data partitioned streams

pop.cpp
: return functions of parsed syntax elements

push.cpp
: assignment of parsed syntax elements and error concealment

stream.cpp
: Input and output functions for video stream

test.cpp
: test functions for debugging

datapart.dat
: example data partitioning configuration file

The software could possibly extended by additional data partitioning or packetization modes. This is easily done by adding a new Modetype in global.h and extending the function parser::convertmode() in params.cpp. Finally the grammatical structure of this mode has to be added to the grammar[] array in parser.cpp. Note that the number of the new mode has to be the same as the position of the corresponding grammatical structure in the array. If new parsing elements (i.e. elements inside the grammar[] array) are added the parser::readframe() and parser::writeframe() as well as a new parser::pushxxx() and parser::popxxx() function has to be added to parser.cpp, push.cpp, pop.cpp.

Configuration File

All input parameters are read from a configuration file which is the only input parameter to the program. A sample configuration is as follows:

Configuration File of datapart

Currently 4 modes for input and output syntax are supported

H26LMODE : Unframed conventional H.26L stream

#

 (serves as interface to the current H.26L)

H26LPACKETMODE : Framewise Packetized H.26L stream

FRAMEMODE : Framewise Data Partitioned Stream

PROGFRAMEMODE : Framewise Data Partitioned Stream

progressive ordered transform coeffs and intra

- inter partition

infile: input file name

if no filename is given the stream is read from stdin

infile=in.h26l

inmode: mode of input stream

inmode=H26LMODE

inmode=H26LPACKETMODE

inmode=FRAMEMODE

inmode=PROGFRAMEMODE

outfile: output file name

if no filename is given the stream is written to stdout

outfile=test.h26l

outmode: mode of output stream

outmode=H26LPACKETMODE

outmode=H26LMODE

outmode=FRAMEMODE

outmode=PROGFRAMEMODE

frames: <int> (optional) number of frames to process

frames=5

Lines beginning "#" are interpreted as comments.

Input/Output File Format

Video packets in packetized modes (H26LPACKETMODE, FRAMEMODE, PROGFRAMEMODE) consist of the format presented in Figure 2.

Content
EI
lc
l (sdu)
pl (sdu)

Bytes
1
1
4
l(sdu)

Figure 2 data partitioning input/output file format
EI :
Error Indication flag at input only, at output unused

lc :
priority/partition/logical channel number (max. 16 possible)

l (sdu) :
video packet length in bytes

pl (sdu) :
payload of transmitted video packet (octet-aligned)

If H26LPACKETMODE is used, we only have one logical channel and one entire frame is placed into one video packet. For data partitioning, several logical channels are supported. At the decoder it is possible to process a payload which has an error indication but packet length is not 0. The departitioner assumes that the content of the delivered payload is correct. However, the error indication signals that the payload is not complete. This allows a processing of partly correct video packets.

This I/O file format including the processing of partly correct payloads is supported by the pseudo-mux software presented in Q-15-K-15 and Q-15-K-16. However, any other transport protocol which can be adapted to this interface can be used to transport H.26L packets.

Error Concealment

We derive a strategy to overcome the loss of a certain priority class and still deliver a “valid” bit stream to a test model compliant decoder as the bit stream is syntactically correct. We do not claim that our loss strategies are optimal. However, we think that for standardization comparison this is a simple and still very effective method avoiding difficulties having different implementations of error resilient decoders.

In the H26LPACKETMODE if we receive partly correct packets macroblocks at the beginning of the frame can be processed correctly. This is possible until the packet is terminated due to a loss of information. The residual macroblocks for which no more information is available are skipped. For macroblocks which can be decoded only partly the departitioner acts according to the procedures described in Table 1.

In the FRAMEMODE and PROGFRAMEMODE the departitioner reconstructs the frame based on the available partitions. However, if a partition depends on the decoding of a partition with higher priority even correctly decoded partitions are in general useless. As decoding only parts of partitions is supported the concealment strategies can be described by the loss of elements provided in Table 1.
Table 1 Error Concealment Strategies

Element
departitioner action

Psync
frame is skipped

Ptype
frame is skipped

MB_type
MB/frame is skipped

REFFrame
MB/frame is skipped

IPM
MB/frame is skipped

MVD
MB/frame is skipped

CBP
Only motion compensation is done, all coefficients set to 0

LUM_DC
The block is terminated by an EOB symbol

CHR_DC
The block is terminated by an EOB symbol

LUM_AC
The block is terminated by an EOB symbol

CHR_AC
The block is terminated by an EOB symbol

Any partly decoded coefficient partition is processed such that after the last decodable coefficient the block is terminated by an EOB symbol.

Conclusions and Possible Extensions

The document and the software presented provides an interface for H.26L to packet networks in general. A simple interface is defined which allows to prioritize packets and provide error detection to the departitioner. Additionally, an error concealment is presented which is suited to lost data. For future standardization efforts we propose

· adopt the concept of data partitioning in the standardization process,

· adopt the separation of coding efficiency and data partitioning,

· use simple error concealment for comparison,

· provide a valid bit stream to the H.26L decoder

Future extensions in the test model obviously need an adaptation in the data partitioning software. Additionally , the introduction of slices might allow to do partitioning on slice-basis rather than on frame-basis.

References

[1]
G. Bjontegaard, "H.26L Test Model Long Term Number 4 (TML-4) draft0", ITU-Document Q15-J-72, Osaka Meeting, May 2000

[2]
Stockhammer, Bäse, Purreiter, Pandel, "Data partitioning for packet oriented H.26L - a network friendly interface", ITU-Document Q15-J-23, Osaka Meeting, May 2000

[3]
Stockhammer, Bäse, Purreiter, Pandel, "Data Partitioning for H.324/M – First Results", ITU-Document Q15-K-18, Portland Meeting, August 2000

File:q15k17.doc
Page: 5
Date Printed: 16.08.00

_1027322842.doc

H.26L encoder

H26LMODE

Partitioning

H26LPACKETMODE

FRAMEMODE

PROGFRAMEMODE

Packet Transport Layer

H.26L encoder

Departitioning

IF1i

IF1o

IF2o

IF2i

