	ITU - Telecommunications Standardization Sector

STUDY GROUP 16

Video Coding Experts Group (Question 15)

Eleventh Meeting: Portland, Oregon, USA, 22-25 August, 2000
	Document Q15-K-12
Filename: q15k12.doc

Generated: 15 Aug ’00

	Question:
	Q.15/SG16

	Source:
	D. Marpe, G. Blättermann, G. Heising
Image Processing Department
Heinrich-Hertz-Institute
Einsteinufer 37

10587 Berlin
Germany
	
Tel:
Fax:
Email:
	
+49 30 31 002 621/619/226
+49 30 392 72 00
marpe@hhi.de,
blaetter@hhi.de,
heising@hhi.de

	Title:
	Technical Description of a Quality-Scalable Coder for H.26L

	Purpose:
	Proposal

31
Scope

2
Basic architecture of the quality scalable (QS) mode
3
3
Technical description of the QS coding scheme
4
3.1
Computation of the residue in the spatial domain
4
3.2
Block-based transform of the residue
4
3.3
Reordering of the transform coefficients in subbands of same frequency
4
3.4
Embedded coding of the residue
5
3.4.1
Overview of the coding tools
5
3.4.2
Scan order of subbands
6
3.4.3
Determination and signalling of the active bitplanes
6
3.4.4
3-Scan bitplane coding
7
3.4.5
Significance propagation pass
9
3.4.6
Refinement pass
9
3.4.7
Remainder pass
10
3.4.8
Context formation
11
3.5
Probability models and arithmetic coding
14
3.6
Construction and layout of the final enhancement layer bitstream
14
3.7
Reconstruction of the enhancement coefficients
15
3.8
Post-filtering of the enhanced frames
15
4
References
16

1 Scope

The purpose of this document is a complete technical description of the quality scalable (QS) coding mode for H.26L as presented at the Osaka-meeting. Some changes have been made with respect to the original proposal [1]:

· Computation of the residue is performed in the spatial domain. This allows the QS coding mode to operate more independently from the specific choice of transforms and quantizers in the current base layer coding scheme.

· The number of different context models has been extremely reduced, so that models are shared between all subbands. We found that reducing the number of contexts significantly accelerates the adaptation phase of the arithmetic coder and improves coding efficiency.
· A post-filtering based on the deblocking filter of the current test model has been added to visually improve the quality of the enhanced pictures.

As a general remark, we like to stress that the description of the coding elements of the QS-coder given in this document is primarily intended to provide all necessary information for the generation and interpretation of the enhancement layer bitstream. It does not intend to provide sufficient information for an understanding of the employed coding elements itself.

[image: image14.png]

Fig. 1:
Block diagram of the generic quality scalable (QS) coding scheme
2 Basic architecture of the quality scalable (QS) mode

The basic architecture of the QS coding mode is shown in Fig. 1. In its generic form it consists of a non-scalable base layer (BL) and a quality scalable enhancement layer (EL), which codes the residue between the original and the reconstructed frame formed in the spatial domain. Usually the base layer bitstream corresponds to a minimally acceptable reconstruction quality and this basic quality can be improved in a fine granular way by truncating the enhancement layer bitstream at (almost) any arbitrary point.

The upper part of Fig. 1 shows the generic structure of the enhancement layer coding scheme. After determination of the frame difference the resulting residue is transformed using the same block-based transform as in the base layer. Then, the residual coefficients are reordered into subbands.

The entropy coder of the enhancement layer is essentially a bitplane coder combined with a context-based binary arithmetic coder. Advantage is taken of the reordering into sub​bands by an appropriate context formation and a suitable partitioning of the residual coefficients. In addition, several scans for a single bitplane are used in order to increase the granularity of the resulting bitstream in a rate/distortion optimized sense.

3 Technical description of the QS coding scheme

3.1 Computation of the residue in the spatial domain

Frame differences of the components are computed in the spatial domain between the reconstructed base layer frame (after loop filtering) and the original frame.

3.2 Block-based transform of the residue

The same 4x4 block-based integer transform as used in the base layer [2] is also employed for the enhancement layer. Since no normalization is used in the integer transform, the magnitudes of the coefficients are too high, which means, that they are represented by too many bitplanes.

Therefore all residual coefficients are quantized according to [2] by using the finest quantization step size (QP=0), i.e. a coefficient K is quantized in the following way:

LEVEL(K) = (KxA(0))/220, A(0) = 620.

So, the bitplane coding operates on coefficients that are actually the quantizer indices related to the lowest QP.

3.3 Reordering of the transform coefficients in subbands of same frequency

After employing the block-based transform, the resulting coefficients are reordered. Based on the given 4x4 integer transform [2] the coefficients are rearranged into 16 corresponding subbands (Fig. 2). For example, the upper left subband contains the DC coefficients of all blocks. This rearrangement of coefficients corresponds to an exchange of indices which are related to the spatial position and frequency content of each coefficient as depicted in Fig. 3.

[image: image15.png]

Fig. 2:
The spatially local block-based representation of the residue is converted into a spatially global subband
oriented
representation.

[image: image1.wmf]

REORDERING

Done

i < bv

i = 0

j = 0

j < bh

Yes

Yes

No

No

i ++

j ++

k < 4

k = 0

l = 0

l < 4

Yes

Yes

No

No

k +

+

band

4*k+l

[i,j] = block

i,j

[k,l]

l ++

Notation:

bv:

number of transform

blocks, vertical

bh:

number of transform

blocks, horizontal

block:

transform block

band:

subband of same

frequency

Fig. 3:
Block diagram of the reordering process which groups all coefficients from the transform blocks into subbands of same frequency
3.4 Embedded coding of the residue

3.4.1 Overview of the coding tools

The main conceptual features of the bitplane coder operating on the residual information can be summarized as follows:

· Distinction between significance and refinement bits

· Context-based arithmetic coding of the binary decisions

· Several passes for each bitplane

For each bit encountered in the bitplane representation of the absolute values of a given residual coefficient a distinction is made between a significance and refinement bit. Significance bits are those bits indicating whether a given residual coefficient has already become significant, i.e. whether its most significant bit (MSB) has already shown up in the enhancement layer. Every bit below the MSB is interpreted as a so-called refinement bit (cf. Fig. 4). The information of the current state of the residuals will be managed in a binary significance map (one for each subband), as shown in Fig. 4. This map represents the currently available significance information of the residual amplitudes.

[image: image16.wmf]0

1

3

2

4

5

6

7

8

9

10

15

14

13

12

11

[image: image17.png]

By means of the significance map it is possible to exploit the remaining spatial correlations of the significance information within a subband with the instrument of adaptive context-based arithmetic coding. In contrast to significance bits, refinement bits usually show only weak spatial correlations and could be considered as uniformly distributed. The underlying concept of partitioning a representation of transform coefficients into sub-sets with different statistical properties has been successfully employed in both scalable and non-scalable coding approaches [3]

 REF _Ref482589187 \r \h
 * MERGEFORMAT [4].

3.4.2 Scan order of subbands

The processing of subbands is performed in a global zig-zag scan order from low to high frequency bands within each bitplane as shown in Fig. 5.

[image: image18.png]

[image: image19.wmf]0

1

3

2

4

5

6

7

8

9

10

15

14

13

12

11

3.4.3 Determination and signalling of the active bitplanes

As described in section 3.3, residual transform coefficients are reordered into subbands of the same frequency. All transform coefficients are expressed in sign-magnitude representation, and the first action of the bitplane coding routine is to find the maximum number bp_max(band_nr) of active bitplanes for each subband S(band_nr), where an active bitplane consists at least of a single “1” bit.

Furthermore, the global maximum number of active bitplanes bp_max_frame is determined for all subbands and components (YUV) and signaled in the frame header at the beginning of the EL-bitstream as described in section 3.6. Each active bitplane for a particular subband S(band_nr) is signaled within the bitstream by using the flag bp_include(band_nr), where

[image: image2.wmf]î

í

ì

>

=

else.

1,

max

if

0,

(band_nr)

 bp_

bp_curr

(band_nr)

bp_include

The flag bp_include(band_nr) is coded with a separate context (see sections 3.4.4 and 3.4.8).

3.4.4 3-Scan bitplane coding

The bitplane coding process is divided into three different scans of each bitplane. This method increases the granularity of the bit-stream because more optimal truncation points are generated. In the context of JPEG2000 [3] it is known as the concept of fractional bitplanes.

[image: image3.wmf]

3

-

SCAN BITPLANE CODING

bp_act

³

 0

bp_curr = bp_max_frame

band_nr = 0

Done

band_nr ++

Yes

Yes

Yes

No

No

No

bp_act

-

-

band_nr < 16

bp_curr

£

 bp_max

bp_include = 1

CX = 9

REFINEMENT

REMAINDER

Notation:

bp_max

_frame:

maximum number of active

bitplanes for all subbands

bp_curr:

current bitplane to be

processed

bp_max:

maximum number of active

bitplanes for a given subband

bp_include:

flag indicating an active bitplane

for a given subband

CX:

context number

SIGNIFICANCE PROPAGATION

ENCODE (bp_inlcude, CX)

ENCODE (bp_include, CX)

bp_inlcude = 0

CX = 9

Coding of flag bits,

signalling whether a

current bitplane is

included or not

Fig. 6: Block diagram of the 3-scan bitplane coding

The first scan operates on non-singular significance information, that means, in this scan only those bits will be coded, which are significance bits and which have at least one significant neighbor. Here, the significance propagation coding routine and, if a MSB of a given coefficient is encountered, the sign coding routine are used. In the second scan the refinement bits, i.e. only those bits below the MSB of a given coefficient are coded using the refinement coding routine. The third scan finally collects all remaining bits, which have not been coded, by the two preceding scans, thus it is called the remainder coding pass. Note, that all bits of the residual coefficients are visited and examined in raster scan order within a given subband. The actual coding, however is performed according to the individual scan conditions given in the following sections.

The coefficients are partitioned in sign and magnitude. In addition, for each subband a significance map and a visited map is provided. The former indicates whether a coefficient has already been found significant in previous coding decisions, while the latter marks all coefficients which have already been visited during a whole bitplane coding pass. At the beginning of the overall coding process the significance maps are initialized to 0. The visited maps are reinitialized to 0 at the beginning of each bitplane.

[image: image4.wmf]

SIGNIFICANCE PROPAGATION

i < height

i = 0

j = 0

Done

j < width

signif[i,j] == 0

CX = SIGNIFICANCE CONTEXT

Ye

s

Yes

Yes

visited[i,j] = 1

signif[i,j] = 1

Yes

No

No

No

No

j ++

i ++

No

Yes

Notation:

height:

height of the current subband

width:

width of the current subband

signif:

binary significance map

of the

current subband

visited: binary visited map of the current

subband

sign:

binary sign map of the current

subband

band:

magnitude matrix of the current

subband

bp_curr: current active bitplane to encode

CX != 0

Symbol = (band[i,j] >>bp_curr)&01

ENCODE (Symbol,CX)

Symbol == 1

(CX, XORbit) = SIGN CONTEXT

ENCODE (Symbol,CX)

Symbol = sign[i,j] XORbit

Fig. 7 : Block diagram of the significance propagation pass
3.4.5 Significance propagation pass

The conditions of encoding a given bit of a coefficient in the significance propagation pass depend on the current significance state of the coefficient and the significance states of its eight surrounding neighbor coefficients (Fig. 7). The first condition is that the coefficient itself has been found insignificant in all previous passes, the second is that the eight neighbor states form a context number CX unequal to zero, where CX is computed according to the rules given in section 3.4.8 below. If both of these conditions are fulfilled then the current bit is fed to the arithmetic coding engine together with the related context number CX. If the current bit is 1, then the significance state of the related coefficient switches from insignificant (0) to significant (1), thus that its significance propagates to the context formation of coefficients in future coding decisions. The next bit to encode after the occurrence of the first significance bit (MSB) of a coefficient is the sign bit of the related coefficient. For encoding of the sign bit a context number is determined from the significance states of the surrounding vertical and horizontal neighbors as will be further described in section 3.4.8 below.

3.4.6 Refinement pass

In the second pass of a given bitplane all bits of those coefficients are coded that already became significant in former, i.e. higher bit planes, but not just in the last significance propagation pass. Fig. 8 depicts this refinement pass where a fixed context number is used (CX = 8) to arithmetically encode the refinement bits.

[image: image5.wmf]

i < height

i = 0

j = 0

Done

j < width

 visited[i,j] == 0

&& signif[i,j] == 1

Symbol = (band[i,j] >> bp_curr)

 & 01

ENCODE (Symbol,CX)

visited[i,j] = 1

Yes

Yes

No

No

No

i ++

j ++

CX = 8

Notation:

height:

height of the current subband

width:

width of the current subband

signif:

binary significance map of the

current subband

visited: binary visited map of the current

subband

sign:

binary sign map of the current

subband

band:

magnitude matrix of the current

subband

bp_curr: current bitplane to encode

REFINEMENT

Fig. 8 : Block diagram of the refinement pass

3.4.7 Remainder pass

All remaining bits are coded in the remainder pass using the same context formation procedures as in the significance propagation pass (cf. Fig. 9).

[image: image6.wmf]

i = 0

Done

j < width

visited[i,j] == 0

CX = SIGNIFICANCE CONTEXT

Symbol = (band[i,j] >>bp_curr)&01

ENCODE (Symbol,CX)

Symbol == 1

E

NCODE (Symbol,CX)

signif[i,j] = 1

Yes

Yes

Yes

Yes

No

No

No

No

i ++

j ++

visited[i,j] = 0

i < height

j = 0

Notation:

height:

height of the current subband

width:

width of the current subband

signif:

binary significance map of the

current subband

visited: binary visited map of the

current

subband

sign:

binary sign map of the current

subband

band:

magnitude matrix of the current

subband

bp_curr: current bitplane to encode

REMAINDER

(CX, XORbit) = SIGN CONTEXT

Symbol = sign[i,j] XORbit

Fig. 9 : Block diagram of the remainder pass

3.4.8 Context formation

The context formation for encoding of significance and sign bits is done by mapping a neigh​borhood of the related coefficient to a reduced number of context states. Fig. 10 illustrates the neighborhood relations for both coding primitives, while in section 3.4.8.1 - 3.4.8.2 more detailed definitions of the related mappings are given.

Refinement and marker bits are coded with one single statistical model. In Table 1 the relation between the context numbers and the different kinds of bits is listed, where the specific choice of numbering, however, is arbitrary.

[image: image7.wmf]

(a)

(b)

Fig. 10:
Illustration of context-based coding: (a) 8-neighborhood used for encoding of significance bits
(b) 4-neighborhood for context formation of sign bits

	Context No.
	Application

	0 – 2
	Significance bits of all subband within one component

	3 – 7
	Sign bits of all subband within one component

	8
	Refinement bits of all subband within one component

	9
	Marker bits (bitplane included or not) of all subbands within one component

3.4.8.1 Significance context

Coding of significance bits is performed by using a context which depends on the significance state of the local 8-neighborhood. The resulting 2^8=256 states are reduced to three different contexts, where context state CX=0 means that all neighbors are insignificant, CX=1 is related to low activity of the neighbors, and CX=2 means high activity of the neighbors. The actual mapping is performed by a quantization of the weighted sum of all diagonal (Dk), vertical (Vk) and horizontal (Hk) neighboring significance bits:

[image: image8.wmf]÷

ø

ö

ç

è

æ

+

+

+

=

å

å

=

=

9

)

(

3

2

10

1

1

0

3

0

k

k

k

k

k

V

H

D

CX

For determining the state of bit positions outside the current subband boundaries, the pixel coordinates shall be clipped (limited) to coordinates within the subband.

[image: image9.wmf]

SIGNIFICANCE CONTEXT

D0 = Signif[i

-

1, j

-

1]

V0 = Signif[i

-

1, j]

D1 = Signif[i

-

1, j+1]

H0 = Signif[i , j

-

1]

H1 = Signif[i , j+1]

D2 = Signif[i+1, j

-

1]

V1 = Signif[i+1, j]

D3 = Signif[i+1,j+1]

Done

CX = 2* SUM(Dk) + 3*SUM(Vk+Hk)

CX = (CX+9)/10

Notation:

Signif:

bina

ry significance map of the

current subband

Fig. 11:
Block diagram of the context formation for significance bits, the 256 different states of the 8-neighborhood are reduced to three context states

This mapping can be done efficiently using the following lookup table (Table 2), where
[image: image10.wmf]1

0

1

0

V

V

H

H

HV

+

+

+

=

 and
[image: image11.wmf]3

2

1

0

D

D

D

D

D

+

+

+

=

.

	HV

D
	0
	1
	2
	3
	4

	0
	0
	1
	1
	1
	2

	1
	1
	1
	1
	2
	2

	2
	1
	1
	1
	2
	2

	3
	1
	1
	2
	2
	2

	4
	1
	2
	2
	2
	2

3.4.8.2 Sign context

Sign bits are coded with a context depending on sign and significance states of the local 4-neighborhood (Fig. 10), i.e. the context number used for encoding of sign bits is derived from the signs of significant horizontal and vertical neighbors only. Similar to JPEG-2000 [3], we use 5 contexts for sign bit encoding and the sign bit is inverted by applying an XOR-Operation with a XOR-bit as given in Table 3 (b).
This routine is only employed, when a residual coefficient indicates its significance for the first time (cf. Figs. 7 and 9). The same boundary handling policy as in the case of context formation for significance bits is also applied to formation of sign contexts.

[image: image12.wmf]

Notation:

Signif:

binary significance map

of the current subband

Sign:

binary sign map of the

current subband

Done

h = min { 1, max{

-

1, Signif[i,j

-

1] * (1

–

 2* Sign[i,j

-

1]) + Signif[i,j+1] * (1

–

 2* Sign[i,j+1]) }}

v = min { 1, max{

-

1, Signif[i

-

1,j] * (1

–

 2* Sign[i

-

1,j]) + Signif[i+1,j] * (1

–

 2* Sign[i+1,j]) }}

SIGN CONTEXT

CX = SIGN_TABLE(h,v), XORbit = XOR_TABLE(h,v)

Fig. 12 :
Block diagram of the context formation for the sign bits. The sign und significance states of the vertical and horizontal neighbors are mapped on 5 different contexts by using intermediate variables h and v.

The intermediate variables h and v used for computation of sign contexts are generated according to the formulas given in Fig. 12, where the meaning of these operations is as follows:

	h = (1
	if both significant horizontal neighbours have negative sign or the only significant horizontal neighbour has negative sign

	h = 0
	if both significant horizontal neighbours have different signs or no horizontal neighbours are significant

	h = +1
	if both significant horizontal neighbours have positive sign or the only significant horizontal neighbour has positive sign

	V = (1
	if both significant vertical neighbours have negative sign or the only significant vertical neighbour has negative sign

	V = 0
	if both significant vertical neighbours have different signs or no vertical neighbours are significant

	V = +1
	if both significant vertical neighbours have positive sign or the only significant vertical neighbour has positive sign

	 h

v
	(1
	0
	1

	(1
	7
	4
	5

	0
	6
	3
	6

	1
	5
	4
	7

	 h

v
	(1
	0
	1

	(1
	1
	1
	0

	0
	1
	0
	0

	1
	1
	0
	0

 (a)
(b)

Table 3:
(a) Sign table for the context formation of sign bits. (b) Table for the XOR-bit to be applied to each sign bit before encoding.
3.5 Probability models and arithmetic coding

At the beginning of the overall encoding of a given frame the probability models associated with the nine different contexts are initialized with a flat, uniform distribution. For each symbol to encode the frequency count of the related binary decision is updated, thus providing a new probability estimate PX for the next coding decision (Fig. 13). The binary arithmetic coding engine Bi_arith_encode used in our QS-coder is a straightforward implementation similar to that given in [5].

[image: image13.wmf]

Notation:

NS[CX]:

overall frequency of occurrence of a symbol in the context CX

NS1[CX]:

frequency of occurrence of the symbol 1 in the context CX

PX:

estimated probability of the to coded symbol

Done

Symbol == 1

NS[CX] ++

BI_ARITH_ENCODE (Symbol,PX)

NS1[CX] ++

ENCODE (Symbol, CX)

PX = NS1[CX] / NS[CX]

PX = (NS[CX]

-

NS1[CX])/ NS[CX]

Symbol == 1

Determine the probability of

the symbol

Update the statistics

Yes

No

Yes

No

Fig. 13 : Block diagram of the encode routine

3.6 Construction and layout of the final enhancement layer bitstream

For each component (YUV) one separate bitstream is produced containing the encoded bitplane data, as generated by the arithmetic coding machine. The three resulting bitstreams are interleaved according to the YUV-weights specified in the encoding configuration at the beginning of the encoding process. The bitstreams are interleaved byte aligned, that means, for the default setting (Y:U:V – weights = 8:1:1) 8 byte from the Y-bitstream are followed by 1 byte from the U-bitstream and 1 byte from the V-bitstream and so on.

The YUV weights together with the maximum number of bit planes in a frame are signalled in a small frame header (6 bytes) of the final bitstream. At the beginning of the frame header a 4 bytes integer representation of the length of the subsequent EL bitstream is written in little endian byte ordering. Then, Y-weight with a range of 0…31 (5 bits), U-weight and V-weight, each with a range of 0…7 (3 bits) and, finally, the maximum number of active bitplanes bp_max_frame with a range of 0…7 (5 bits) are arranged according to Table 4.

The enhancement layer bitstream is not yet embedded into the TML bit stream. The current TML bit stream syntax does not allow this. Therefore, a separate enhancement layer bitstream is formed.

	bit no.

byte no.
	7
	6
	5
	4
	3
	2
	1
	0

	0
	bitstream length

	1
	bitstream length

	2
	bitstream length

	3
	bitstream length

	4
	Y-weight
	U-weight

	5
	V-weight
	bp_max_frame

Table 4:
Layout of the frame header of the enhancement layer bitstream, where byte no. 0 is the first byte in the frame header and the MSB of each byte is related to bit no. 7.

3.7 Reconstruction of the enhancement coefficients

The enhancement bit-stream may be truncated so that not all enhancement layer bits are available at the decoder. In the case that no enhancement residue or a partial enhancement residue is available, the coefficients are reconstructed as follows:

If the decoded residual value of a coefficient is equal to zero, its reconstruction value is set to zero. Otherwise, the value of the reconstruction equals the sum of the decoded residue and of 1/4 * (1<<decoded_bit_plane).

Dequantization and normalization of the reconstructed residual coefficient K’ is performed accordingly to [2] by using

K’ = LEVEL x B(0), B(0) = 3881.

Inverse reordering and inverse transform yields the spatial representation of the enhance​ment layer residual frame. By adding this residue to the reconstructed base layer frame a reconstruction with enhanced quality is finally generated.

3.8 Post-filtering of the enhanced frames

In order to reduce the blocking artefacts, the same deblocking filter as in the base layer is also used for the enhancement layer. For details, see the filter description in [2]. Here, we only describe the necessary modifications for an application of this filter to the reconstructed enhancement frame.

Initially each 4x4 block of a given frame is assigned strength = 0. If a block contains non-zero decoded residue coefficients, then the strength of this block is set to 2, and the strength of the neighboring vertical and horizontal blocks is set to 1. Thus, the additional filtering only affects the blocks with enhanced coefficients and their neighboring blocks.

Furthermore the filtering process for the base layer depends on the quantization parameter QP [2]. The adaptation to the enhancement layer coding is performed by means of a virtual “quantization” parameter QPEL which is defined as follows:

QPEL = max(0, QPBL – 4* (number_of_decoded_bitsEL)/(height * width)).

Thus, an increasing bitrate of the enhancement layer results in a linear reduction of QPEL, which, in turn, reduces the strength of the deblocking filter.

4 References

[1] ITU-T Standardization Sector, “A Quality Scalable Mode for H.26L“, Doc. Q15-J-24, May 2000.

[2] ITU-T Standardization Sector, “Definition of the new coding elements from Telenor”, Doc. Q15-J-28,

May 2000.

[3] ISO/IEC CD 15444-1; JPEG-2000 Image Coding System, Committee Draft, Version 1.0, Dec.1999.

[4] D. Marpe and H. L. Cycon, “Efficient Pre-Coding Techniques for Wavelet-Based Image Com​pression”, Proc. Picture Coding Symp., 1997, pp.45-50.

[5] Witten et al, “Arithmetic Coding for Data Compression“, Comm. of the ACM, 30 (6), 1987, pp.520-541.

Enhancement Layer

Reordering in

subbands

Entropy coding

Quality scalable

EL – Bitstream

Transform

Block based

Encoder

Decoder

BL - Bitstream

Base Layer

Frame difference

reconstructed frame

on

original frame

� EMBED PBrush ���

� EMBED PBrush ���

1

0

0

1

0

1

1

Sign bit

Significance bits

Refinement bits

1

0

1

0

1

1

1

1

0

0

0

0

Binary significance map before coding the state-changing bit of a coefficient

Refreshed binary significance map after coding the state changing bit (and the sign bit); all remaining bits are treated as refinements bits

1

0

1

0

1

1

1

1

0

0

0

1

Fig. 4:	 Simple example to illustrate the concept of significance maps showing the bitplanes of a single coefficient� (left) and its position in a subband (right).

� EMBED Word.Picture.8 ���

Fig. 5:	Global zig-zag scan of the subbands during processing of one bitplane.

Table 1 : Relation between context number and the different kinds of bits.

Table 2 : Lookup table for an efficient determination of context numbers for coding of significance bits

File:q15k12
Page: 1
Date Printed: 8/15/00

_1027876861.doc

j < width

SIGNIFICANCE PROPAGATION

i < height

 i = 0

j = 0

Symbol == 1

signif[i,j] == 0

CX = SIGNIFICANCE CONTEXT

ENCODE (Symbol,CX)

Done

Symbol = (band[i,j] >>bp_curr)&01

Yes

Yes

Yes

j ++

i ++

Yes

ENCODE (Symbol,CX)

(CX, XORbit) = SIGN CONTEXT

visited[i,j] = 1

signif[i,j] = 1

CX != 0

No

No

No

No

No

Yes

Notation:

height:	height of the current subband

width:	width of the current subband

signif:	binary significance map of the current subband

visited: binary visited map of the current subband

sign: 	binary sign map of the current subband

band: 	magnitude matrix of the current subband

bp_curr: current active bitplane to encode

Symbol = sign[i,j] XORbit

_1027880695.doc

j < bh

REORDERING

i < bv

 i = 0

j = 0

k < 4

Notation:

bv: 	number of transform blocks, vertical	

bh: 	number of transform blocks, horizontal

block:	transform block

band:	subband of same frequency

Done

Yes

Yes

l = 0

i ++

j ++

l < 4

k ++

No

No

band4*k+l[i,j] = blocki,j[k,l]

Yes

Yes

 k = 0

l ++

No

No

_1027880894.doc

j < width

REFINEMENT

i < height

 i = 0

j = 0

 visited[i,j] == 0

&& signif[i,j] == 1

Notation:

height:	height of the current subband

width:	width of the current subband

signif:	binary significance map of the current subband

visited: binary visited map of the current subband

sign: 	binary sign map of the current subband

band: 	magnitude matrix of the current subband

bp_curr: current bitplane to encode

ENCODE (Symbol,CX)

Done

Symbol = (band[i,j] >> bp_curr) & 01

Yes

Yes

i ++

j ++

visited[i,j] = 1

CX = 8

No

No

No

_1027882898.doc

ENCODE (Symbol, CX)

No

Yes

Symbol == 1

Notation:

NS[CX]:	overall frequency of occurrence of a symbol in the context CX

NS1[CX]:	frequency of occurrence of the symbol 1 in the context CX

PX:		estimated probability of the to coded symbol

BI_ARITH_ENCODE (Symbol,PX)

Done

NS[CX] ++

No

Yes

Update the statistics

Determine the probability of the symbol

NS1[CX] ++

Symbol == 1

PX = (NS[CX]-NS1[CX])/ NS[CX]

PX = NS1[CX] / NS[CX]

_1027880786.doc

3-SCAN BITPLANE CODING

bp_act (0

 bp_curr = bp_max_frame

band_nr = 0

REMAINDER

bp_curr (bp_max

SIGNIFICANCE PROPAGATION

REFINEMENT

Done

bp_include = 1

CX = 9

Yes

Yes

Yes

Notation:

bp_max_frame:	maximum number of active�bitplanes for all subbands

bp_curr: 	current bitplane to be processed

bp_max:	maximum number of active bitplanes for a given subband

bp_include:	flag indicating an active bitplane for a given subband

CX:		context number	

bp_act ((

ENCODE (bp_include, CX)

ENCODE (bp_inlcude, CX)

band_nr ++

band_nr < 16

Coding of flag bits, signalling whether a �current bitplane is �included or not

No

No

No

bp_inlcude = 0

CX = 9

_1027877503.doc

j < width

REMAINDER

i < height

 i = 0

j = 0

Symbol == 1

visited[i,j] == 0

CX = SIGNIFICANCE CONTEXT

ENCODE (Symbol,CX)

Done

Symbol = (band[i,j] >>bp_curr)&01

Yes

Yes

Yes

i ++

j ++

Yes

ENCODE (Symbol,CX)

Symbol = sign[i,j] XORbit

(CX, XORbit) = SIGN CONTEXT

Notation:

height:	height of the current subband

width:	width of the current subband

signif:	binary significance map of the current subband

visited: binary visited map of the current subband

sign: 	binary sign map of the current subband

band: 	magnitude matrix of the current subband

bp_curr: current bitplane to encode

signif[i,j] = 1

visited[i,j] = 0

No

No

No

No

_1027877918.unknown

_1027846696.unknown

_1027853037.doc

(b)

(a)

_1027875053.unknown

_1027853868.doc

CX = SIGN_TABLE(h,v), XORbit = XOR_TABLE(h,v)

SIGN CONTEXT

v = min { 1, max{-1, Signif[i-1,j] * (1 – 2* Sign[i-1,j]) + Signif[i+1,j] * (1 – 2* Sign[i+1,j]) }}

h = min { 1, max{-1, Signif[i,j-1] * (1 – 2* Sign[i,j-1]) + Signif[i,j+1] * (1 – 2* Sign[i,j+1]) }}

Done

Notation:

Signif:	binary significance map of the current subband

Sign:	binary sign map of the current subband

_1027846733.unknown

_1018261748

_1027240786.doc

SIGNIFICANCE CONTEXT

D0 = Signif[i-1, j-1]

V0 = Signif[i-1, j]

D1 = Signif[i-1, j+1]

H0 = Signif[i , j-1]

H1 = Signif[i , j+1]

D2 = Signif[i+1, j-1]

V1 = Signif[i+1, j]

D3 = Signif[i+1,j+1]

Done

Notation:

Signif:	binary significance map of the current subband

CX = 2* SUM(Dk) + 3*SUM(Vk+Hk)

CX = (CX+9)/10

_1027100613.doc

0

1

3

2

4

5

6

7

8

9

10

15

14

13

12

11

_1018261747

