-1-

ITU - Telecommunications Standardization Sector
STUDY GROUP 16
Video Coding Experts Group (Question 15)
_________________
Tenth meeting:  Osaka, 16-18 May, 2000
Document  Q15-J-19
Filename:   q15j19.doc
Generated: 7 May 2000

Question:
Q.15/SG16

Source:
Marta Karczewicz, Jani Lainema,
Joni Vahteri and Bogdan Dobrin

Nokia Research Center
6000 Connection Drive
Irving, TX 75039, U.S.A.
Tel:
Fax:
Email:
+1 972 894 4188
+1 972 894 4589
Marta.Karczewicz@nokia.com

Title:
Nokia MVC H.26L Proposal Description

Purpose:
Proposal

_____________________________


1.
Introduction
4
2.
Picture Layer
4
2.1
Picture Start Code (PSC) (22 bits)
4
2.2
Slice Structure Indicator (SSI) (1 bit)
4
2.3
Temporal Reference (TR) (8 bits)
4
2.4
Picture Type (PTYPE) (Variable Length)
5
2.5
Picture Format (PFMT) (2 bits)
5
2.6
Custom Picture Format (CPFMT) (14 bits)
5
2.7
Extended Header Indicator (EHI) (1 bit)
5
2.8
Extended Header (EXTHEAD) (4 bits)
6
2.9
Quantization Information (PQUANT) (5 bits)
6
2.10
Loopfilter Information (LOOPF) (1 bit)
6
2.11
Number Of Reference Frames (NRF) (Variable Length)
6
2.12
Multiple Reference Frame Indicator (MRFI) (1 bit)
6
2.13
Stuffing (ESTUFF) (Variable Length)
7
2.14
End Of Sequence (EOS) (22 bits)
7
2.15
Stuffing (PSTUFF) (Variable Length)
7
3.
Slice Layer
7
3.1
Stuffing (SSTUFF) (Variable Length)
8
3.2
Slice Start Code (SSC) (18 bits)
8
3.3
Time Reference Indicator (TRI) (1 bit)
8
3.4
Time Reference (TR) (8 bits)
9
3.5
Picture Type (PTYPE) ( Variable Length)
9
3.6
Critical Parameter Indicator (CPI) (1 bit)
9
3.7
Picture Format (PFMT) (2 bits)
9
3.8
Custom Picture Format (CPFMT) (14 bits)
9
3.9
Extended Header Indicator (EHI) (1 bit)
9
3.10
Extended Header (EXTHEAD) (4 bits)
9
3.11
Quantization Information (SQUANT) (5 bits)
9
3.12
Intra Slice Indicator (ISI) (1 bit)
9
3.13
Absolute Macroblock Address (MBA) (6/7/9/ 1-14 bits)
9
4.
Macroblock Layer
10
4.1
Macroblock Type (MBTYPE) (Variable Length)
11
4.2
Quantizer Information (DQUANT) (N bits / Variable Length)
12
4.3
Reference Frame Index (RFI) (Variable Length)
12
4.4
Motion Prediction Direction (MPRDIRMB) (1 bit)
13
4.5
Motion Prediction Block Selection (MPRSELMB) (1 bit)
13
4.6
Motion Coefficient Pattern (MCP) (Variable Length)
13
4.7
Motion Coefficient (MCOEFF) (Variable Length)
14
4.8
Coded/Not Coded – Information (CNCMB) (Variable Length)
15
5.
Block Layer
15
5.1
Block Type (BTYPE) (Variable Length)
16
5.2
Intra Prediction Method Rank (IPMR) (Variable Length)
17
5.3
Intra Block Coded/Not-Coded Information (ICNCB) (1 Bit)
18
5.4
Intra DC Difference (IDCD) (Variable Length + Fixed Length + Sign Bit)
18
5.5
Intra Block Matching Vector (IBMV) (4 Bits Fixed Length + 0/3/4/5 Bits Fixed Length)
19
5.6
Motion Prediction Direction (MPRDIRB) (1 bit)
19
5.7
Motion Coefficient Pattern (MCP) (Variable Length)
19
5.8
Motion Coefficient (MCOEFF) (Variable Length)
19
5.9
Coded/Not Coded – Information (CNCB) (Variable Length)
19
6.
Coefficient Layer
20
6.1
8(8 Coding Method Information (METH8) (Variable Length)
20
6.2
4(4 Coding Method Information (METH4) (Variable Length)
23
6.3
Transform Coefficient (TCOEFF) (Variable Length)
24
7.
Prevention of Synchronization Code Emulation
31
7.1
PSC Emulation Prevention
31
7.2
EOS Emulation Prevention
31
7.3
SSC Emulation Prevention
32
8.
Motion compensated prediction
34
8.1
Prediction candidates for affine coefficient prediction
34
8.2
Creation of the motion vector field
34
8.3
Subpixel interpolation for luminance frames
35
8.4
Subpixel interpolation for chrominance frames
36
9.
Intra Prediction
37
9.1
Gradient-Based Directionality Classifier
38
9.2
Mapping of Directionality Classes to Context Classes
42
9.3
Context-Dependent Prediction Method Subset Selection
42
9.4
Prediction Methods
44
9.5
Restoring Intra Prediction DC Error
48
10.
Prediction Error Decoding
48
10.1
Coding Methods for 8(8 Blocks
49
10.2
Coding Methods for Quadrant and 4(4 Chrominance Block
55
11.
Deblocking Filter
58
11.1
Deblocking Filtering in I-frames
58
11.2
Deblocking Filtering in P-frames
59
12.
Annex I 8x8 KLT Basis Functions
59
13.
Annex II 4x4 KLT Basis Functions
63
14.
Annex III Deblocking filter
64
14.1
Filter Description
65


Introduction

This document describes the syntax of the Nokia MVC video codec bitstream. We kindly ask Q.15/SG16 experts to consider this for the next version of TML.

1. Picture Layer

Syntax for the Picture Layer is shown in Figure 2.1 below.


[image: image1.wmf]PSC

SSI

TR

PTYPE

PFMT

CPFMT

EHI

EXTHEAD

PQUANT

NRF

MRFI

MB layer

Slice

ESTUFF

EOS

PSTUFF

LOOPF


Figure 2.1.   Syntax diagram for the Picture Layer.

1.1 Picture Start Code (PSC) (22 bits)

PSC is a 22 bit codeword with value 00000000 00000000 010000. All PSC shall be byte aligned. This is achieved by inserting necessary amount of PSTUFF bits before the PSC such that the first bit of the PSC is the most significant (MSB) of a byte.

1.2 Slice Structure Indicator (SSI) (1 bit)

SSI indicates the usage of the optional Slice Structure (SS) mode for error resilience: “0” SS mode is off, “1” SS mode is on.

1.3 Temporal Reference (TR) (8 bits)

TR is a 8 bit codeword which indicates the temporal reference for the picture.

TR contains the 8 least significant bits (LSB) of the reference picture number at the source picture clock frequency. Thus, TR is formed by incrementing its value by one plus the number of skipped source pictures. TR addresses only P and I pictures.

The source picture clock frequency rate is assumed to be standard CIF Picture Clock Frequency (30 000/1001, or 29,97 pictures per second). Other source  can be negotiated by external means.

1.4 Picture Type (PTYPE) (Variable Length)

PTYPE is a variable length  codeword which indicates the Picture Coding Type. Possible PTYPE codes and associated Picture Coding Types are defined in Table 2.1.

Table 2.1.   Codes for PTYPE.

PTYPE
Picture Coding Type

0
P

10
I

1.5 Picture Format (PFMT) (2 bits)

PFMT is a 2 bit codeword which  indicates the size of the source picture. PFMT has three values associated with different standard source formats. In addition, PFMT can indicate Custom Picture Format. In such case, actual size of the source picture is given by the following CPFMT field. PFMT codes are defined in Table 2.2.

Table 2.2.   Codes for PFMT and associated Picture Formats.

PFMT
Picture Format

00
QCIF

01
Custom Picture Format

10
Sub-QCIF

11
CIF

1.6 Custom Picture Format (CPFMT) (14 bits)

CPFMT is a 14 bit codeword, which is present only if indicated by setting PFMT field to “01”. CPFMT indicates the size of the custom picture format and it consist of two fields:

· Bits 1-7:
Picture Width (PW), natural binary presentation of the picture
 
width given in terms of macroblocks. Number of pixels per
 
line is obtained as 16((PW+1).

· Bits 8-14:
Picture Height (PH), natural binary presentation of the
 
picture height given in terms of macroblocks. Number of
 
lines is obtained as 16((PH+1).

1.7 Extended Header Indicator (EHI) (1 bit)

EHI is present only for I picture and indicates the presence of the extended header EXTHEAD: “0” EXTHEAD is not present, “1” EXTHEAD is present.

1.8 Extended Header (EXTHEAD) (4 bits)

EXTHEAD is a 4 bit codeword which indicates the usage of optional encoding modes and it is present only if indicated by the EHI field. EXTHEAD consist if the following fields:

· Bit 1:
Optional Differential Quantizer (DQ) mode, “0” off, “1” on.

· Bits 2–4:
Reserved, shall be equal to “000”

1.9 Quantization Information (PQUANT) (5 bits)

PQUANT is a 5 bit codeword which contains the natural binary representation of the quantizer QUANT to be used until updated by any subsequent DQUANT (in DQ mode) or SQUANT (in SS mode). Allowed QUANT values are from 1 to 31. The quantization parameter for chrominance transform coefficients QUANTC can be derived from QUANT according to the table below.

Table 2.3.: Dependency of QUANTC and QUANT

QUANT
QUANTC

QUANT
QUANTC

1
1

10-11
9

2
2

12-13
10

3
3

14-15
11

4
4

16-18
12

5
5

19-21
13

6-7
6

22-26
14

8
7

27-31
15

9
8




1.10 Loopfilter Information (LOOPF) (1 bit)

LOOPF is present only if PTYPE indicates a P picture. If LOOPF is set to "1" the deblocking filter (chapter 11) is used as loopfilter. If set to "0" reconstructed P frames are used as reference frames without filtering.

1.11 Number Of Reference Frames (NRF) (Variable Length)

NRF is present for all the I pictures. It signals the maximum number of reference frames allowed for the following P pictures. The variable length codewords for NRF are listed in Table 2.4.

1.12 Multiple Reference Frame Indicator (MRFI) (1 bit)

MRFI is present only if current picture is of type P and NRF for the previous I picture indicated more than one reference frame. If MRFI is set to "1" multiple reference frames can be used. If set to "0" previous reconstructed frame is to be used as reference frame for the macroblocks in current picture.

Table 2.4.   Codes for NRF and RFI.
VLC Code
Code Length in Bits
Number of Reference Frames (NRF)
Reference Frame Index (RFI)

1
1
1
0

000
3
2
1

010
3
3
2

00100
5
4
3

00110
5
5
4

01100
5
6
5

01110
5
7
6

0010100
7
8
7

0010110
7
9
8

0011100
7
10
9

1.13 Stuffing (ESTUFF) (Variable Length)

ESTUFF consists of less than 8 zero-bits. If encoder inserts EOS, it shall be byte aligned. This is achieved by inserting necessary amount of ESTUFF bits directly before EOS such that the first bit of the EOS is the most significant (MSB) of a byte.

1.14 End Of Sequence (EOS) (22 bits)

EOS is a 22 bit codeword with value 000000 000000 011111 and indicates the end of the bitstream. EOS is optional and it is up to encoder to insert EOS. EOS shall be byte aligned by inserting ESTUFF directly before EOS.

1.15 Stuffing (PSTUFF) (Variable Length)

PSTUFF consists of less than 8 zero-bits. PSTUFF shall be inserted directly before PSC in order to byte align PSC.

2. Slice Layer

Syntax of the Slice Layer is depicted in Figure 3.1. Slice Layer is present only when optional Slice Structure (SS) mode is on. This is indicated by SSI field.

Figure 3.1.   Syntax diagram for the Slice Layer.

2.1 Stuffing (SSTUFF) (Variable Length)

SSTUFF consists of less than 8 zero-bits. SSTUFF shall be inserted directly before SSC in order to byte align SSC.

2.2 Slice Start Code (SSC) (18 bits)

SSC is a 18 bit codeword with value 00000000 00000000 11. All SSC shall be byte aligned by inserting SSTUFF codeword directly before SSC. SSC is not present for the slice which follows the PSC.

2.3 Time Reference Indicator (TRI) (1 bit)

TRI indicates that TR field is present. TRI is not present for the slice which follows the PSC.

2.4 Time Reference (TR) (8 bits)

TR is present only if indicated by TRI field and indicates the temporal reference for the slice, see section 2.3.

2.5 Picture Type (PTYPE) ( Variable Length)

PTYPE indicates the Picture Coding Type (PCT), see section 2.4.

2.6 Critical Parameter Indicator (CPI) (1 bit)

CPI is present only for I pictures and indicates the presence of the fields defined in sections 3.7 - 3.10: “0” fields are not present. “1” fields are present. CPI is not present for the slice which follows the PSC.

The existence of the critical parameters of sections 3.7 - 3.10 allows the decoding of the bitstream to be started from any slice of a I-frame.

2.7 Picture Format (PFMT) (2 bits)

Size of the source picture, see section 2.5. PFMT is present only if indicated by CPI field.

2.8 Custom Picture Format (CPFMT) (14 bits)

Size of the custom picture, see section 2.6. CPFMT is present only if indicated by PFMT field.

2.9 Extended Header Indicator (EHI) (1 bit)

EHI is a 1 bit codeword which indicates the presence of the EXTHEAD in the slice header, see section 2.7. EHI is present only if indicated by CPI field.

2.10 Extended Header (EXTHEAD) (4 bits)

Indicates the optional functionalities , see section 2.8. EXTHEAD is present only if indicated by EHI field.

2.11 Quantization Information (SQUANT) (5 bits)

SQUANT is a 5 bit codeword which gives the natural binary representation of the quantizer QUANT to be used until . Allowed QUANT values are from 1 to 31. SQUANT is not present for the slice which follows the PSC.

2.12 Intra Slice Indicator (ISI) (1 bit)

ISI indicates if all the macroblocks in the slice are coded as INTRA macroblocks. “0” macroblocks in the slice can have different types, “1” all macroblocks are coded as INTRA macroblocks. If ISI is “1”, MBTYPE is not present for the macroblocks.

ISI is not present if PTYPE indicates I picture.

2.13 Absolute Macroblock Address (MBA) (6/7/9/ 1-14 bits)

MBA is a codeword having a length that is dependent on the current picture size, as defined in Table 3.1. In the case of Custom Picture Format, (x( means the smallest integer ( x. However, the width of the MBA field is at least 1 bit.

The bits are the natural binary representation of the macroblock number of the first macroblock in the current slice. The numbering of the macroblocks is done in the scanning order, starting with the macroblock 0 at the upper left corner of the picture.

Table 3.1.   Specification of the MBA field.
Picture Size
MBA Width
Max MBA Value

Sub-QCIF
6
47

QCIF
7
98

CIF
9
395

Custom Format
(log2((PW+1)((PH+1))(
PW(PH-1

3. Macroblock Layer

This chapter describes the macroblock layer syntax of the MVC codec. Decoder action for building motion compensated prediction for a macroblock can be found in chapter 8.

Syntax of the Macroblock Layer is depicted in Figure 4.1.


[image: image2.wmf]DQUANT

MBTYPE

MPRSELMB

MCOEFF

CNCMB

BLOCK LAYER

MPRDIRMB

BLOCK LAYER

I Macroblock

P Macroblock

Splitted

Macroblock

MCP

RFI

RFI

BLOCK LAYER


Figure 4.1.   Syntax diagram for the Macroblock Layer.

3.1 Macroblock Type (MBTYPE) (Variable Length)

MBTYPE is a variable length codeword, which indicates the type of the macroblock (INTER MOTION / INTER NOMOTION / INTRA / SPLITTED). 

In the case of INTER MOTION macroblock, MBTYPE indicates also the used motion parameter prediction method. However, since the prediction of the motion parameters is not possible in all cases (no neighboring blocks in the same picture or slice when using SS mode, no motion parameters for the neighboring blocks), there exist two sets of variable length codes. The set defined in Table 4.1 contains different variable length codes for INTER MOTION macroblocks with different motion parameter prediction methods, while the set defined in Table 4.2 contains only one variable length code for INTER MOTION macroblock.

In the case of INTER MOTION or INTER NOMOTION macroblock, MBTYPE indicates also if any coded blocks exist in the macroblock.

MBTYPE is not present for macroblocks in I pictures, or for macroblocks in slices for which ISI is set to “1”.
Table 4.1.   Codes for MBTYPE when motion parameter prediction 
for INTER MOTION macroblock is possible.
MBTYPE
Bits
Macroblock Type
Motion Parameter
Prediction
Coded/
Not Coded

1010
4
INTER MOTION
NOPRED
NOTCODED

1001
4
INTER MOTION
NOPRED
CODED

01
2
INTER MOTION
PRED
NOTCODED

1011
4
INTER MOTION
PRED
CODED

1100
4
INTER MOTION
DELTAPRED
NOTCODED

1101
4
INTER MOTION
DELTAPRED
CODED

111
3
INTER NOMOTION
---
NOTCODED

10001
5
INTER NOMOTION
---
CODED

10000
5
INTRA
---
---

00
2
SPLITTED
---
---

Table 4.2.   Codes for MBTYPE when motion parameter prediction for INTER MOTION macroblock is not possible.
MBTYPE
Bits
Macroblock Type
Motion Parameter
Prediction
Coded/
Not Coded

011
3
INTER MOTION
NOPRED
NOTCODED

0001
4
INTER MOTION
NOPRED
CODED

1
1
INTER NOMOTION
---
NOTCODED

001
3
INTER NOMOTION
---
CODED

0000
4
INTRA
---
---

010
3
SPLITTED
---
---

3.2 Quantizer Information (DQUANT) (N bits / Variable Length)

DQUANT is present only if Bit 1 of the EXTHEAD field indicates the usage of the optional DQ mode. DQUANT defines the differential value for changing QUANT. If the value for QUANT after adding the differential value is less than 1 or greater than 31, QUANT is clipped to 1 and 31 respectively.

3.3 Reference Frame Index (RFI) (Variable Length)

RFI indicates the the index of the reference frame in the reference frame memory to be used in motion compensated prediction for current macroblock. RFI is present only for Macroblocks of types "P" and "Splitted" and only if MRFI signalled multiple reference frames. Decoded frames are stored in the reference frame memory in first-in-first-out fashion and kept numbered in inverse temporal order (that is, the most recently decoded frame has always index 0). Variable length codes for RFI are given in Table 2.4.

3.4 Motion Prediction Direction (MPRDIRMB) (1 bit)

MPRDIRMB is present only for INTER MOTION macroblocks using motion coefficient prediction (INTER MOTION PRED and INTER MOTION DELTAPRED). It indicates the direction where from motion coefficients for the macroblock are predicted: “0” prediction from up, “1” prediction from left.

MPRDIRMB is present only if prediction of the motion coefficients can be done both from upper and left neighboring macroblocks/blocks (i.e., there is at least one connected INTER MOTION macroblock/block in both directions with the same reference frame as the current macroblock). If the macroblock/block is at the upper or left picture boundary (or slice boundary when SS mode is used), or there is no neighboring INTER MOTION macroblocks/blocks with the same reference frame as the current macroblock in both directions, MPRDIRMB is omitted.

3.5 Motion Prediction Block Selection (MPRSELMB) (1 bit)

MPRSELMB is present only for INTER MOTION macroblocks using motion coefficient prediction (INTER MOTION PRED and INTER MOTION DELTAPRED). It indicates the selected 8(8 reference block for motion coefficient prediction. If motion coefficients for macroblock are predicted from above, MPRSELMB set to “0” indicates prediction from the left 8(8 block and “1” indicates prediction from the right 8(8 block. If motion coefficients for macroblock are predicted from left, MPRSELMB set to “0” indicates prediction from the upper 8(8 block and “1” indicates prediction from the lower 8(8 block.

MPRSELMB is present only if the selected prediction direction contains two adjacent 8(8 blocks of a splitted macroblock and both of these blocks can be used as a reference block for motion coefficient prediction (i.e. they are both in any of the INTER MOTION modes and have the same reference frame as the current macroblock). Otherwise, MPRSELMB is omitted.

3.6 Motion Coefficient Pattern (MCP) (Variable Length)

MCP is present only for INTER MOTION NOPRED and INTER MOTION DELTAPRED macroblocks/blocks. It contains variable length codeword for the Motion Coefficient Pattern, defined in Table 4.3 indicating which motion coefficients are nonzero. Nonzero Motion Coefficient Pattern has six bits each corresponding to one coefficient (leftmost bit corresponds to the first motion coefficient and so on). "1" bit indicates nonzero coefficient, "0" bit indicates zero coefficient.

Table 4.3.   Codes for MCP and corresponding Nonzero Motion Coefficient Patterns.
MCP
Bits
Nonzero Motion Coefficient Pattern

MCP
Bits
Nonzero Motion Coefficient Pattern

111
3
100000

0010011
7
100001

011101
6
010000

00001100
8
010001

10101
5
110000

00001011
8
110001

10100
5
001000

0010010
7
001001

10011
5
101000

0010001
7
101001

0011011
7
011000

00001010
8
011001

10010
5
111000

00001001
8
111001

1011
4
000100

010100
6
000101

110
3
100100

010011
6
100101

0011010
7
010100

00001000
8
010101

011100
6
110100

0010000
7
110101

0011001
7
001100

00000111
8
001101

10001
5
101100

010010
6
101101

00010001
8
011100

00000110
8
011101

011011
6
111100

010001
6
111101

011010
6
000010

0001111
7
000011

011001
6
100010

0001110
7
100011

00010000
8
010010

00000101
8
010011

0011000
7
110010

00000100
8
110011

00001111
8
001010

00000011
8
001011

011000
6
101010

00000010
8
101011

00001110
8
011010

00000001
8
011011

0010111
7
111010

0001101
7
111011

10000
5
000110

010000
6
000111

01111
5
100110

0001100
7
100111

0010110
7
010110

00000000
8
010111

010111
6
110110

001111
6
110111

0010101
7
001110

0001011
7
001111

010110
6
101110

001110
6
101111

00001101
8
011110

0001010
7
011111

010101
6
111110

0001001
7
111111

0010100
7
000001





3.7 Motion Coefficient (MCOEFF) (Variable Length)

MCOEFF fields are present only for INTER MOTION NOPRED and INTER MOTION DELTAPRED macroblocks/blocks. MCOEFF indicates the quantized LEVEL and sign of a nonzero motion coefficient. The MCOEFF fields for motion coefficients are sent according to preceding MCP field in ascending order of indices (one MCOEFF for each nonzero coefficient). Coefficient amplitudes are coded using the codes in Table 4.4
Table 4.4.   Codes for MCOEFF
MCOEFF
Bits
(LEVEL(

MCOEFF
Bits
(LEVEL(

11s
3
1

0000110s
8
12

10s
3
2

0000101s
8
13

011s
4
3

0000100s
8
14

0101s
5
4

0000011s
8
15

0100s
5
5

00000101s
9
16

0011s
5
6

00000100s
9
17

00101s
6
7

00000011s
9
18

00100s
6
8

00000010s
9
19

000101s
7
9

00000001s
9
20

000100s
7
10

00011
5+7
Escape 1

0000111s
8
11

00000000
8+11
Escape 2

The codes defined in Table 4.4 contain separate codewords for absolute motion coefficient levels from 1 to 20, followed by one sign bit, “0” for positive level, “1” for negative level. For the absolute levels from 21 to 84, codeword corresponding to “Escape 1” is used, followed by 6 bits covering the levels in the interval (to be added in natural representation to the base index 21) and one sign bit, “0” for positive level, “1” for negative level. Furthermore, if the absolute level of the coefficient is in the interval from 85 to 1108, it is signaled with codeword corresponding to “Escape 2”, followed by 10 bits covering the interval and one sign bit, “0” for positive level, “1” for negative level.

3.8 Coded/Not Coded – Information (CNCMB) (Variable Length)

CNCMB is present only for INTER MOTION CODED and INTER NOMOTION CODED macroblocks. CNCMB is a variable length codeword, which corresponds  to Coded Block Patterns of 4 luminance blocks and 2 chrominance blocks in scanning order (i.e. Luminance CNC Up-left quadrant (8x8 block), Up-Right quadrant, Down-Left quadrant, Down-Right quadrant, CNC of Chrominance component U, CNC of Chrominance component V). 

Table 4.5 shows the selection of the VLC code according to the CNC Pattern. If the CNC pattern is not one of the 15 listed below (ELSE), then the 3 bit codeword (100) is dumped to the bitstream, followed by the 6 bit CNC PATTERN.

Table 4.5 VLC Codeword index selection via CNC Pattern 
CNC Pattern
BITS
VLC Codeword

CNC Pattern
BITS
VLC Codeword

000100
3
000

100100
5
11011

001000
3
001

101000
5
11010

001100
5
11111

101100
5
11001

010000
3
010

110000
5
11000

010100
5
11110

110100
5
1011

011000
5
11101

111000
5
10110

011100
5
11100

111100
4
1010

100000
3
011

ELSE
3
100






6
CNC PATTERN

4. Block Layer

This chapter describes the block layer syntax of the MVC codec. Syntax diagram of the Block Layer is depicted in Figure 5.1. Decoder action for building motion compensated prediction for a block can be found in Section 8 whereas decoder action for building intra prediction for a block can be found in Section 9.

The Syntax of the Block Layer depends on the block type. In the case of INTRA blocks, Block Layer for each of the luminance and chrominance components consist of INTRA header fields followed by the Coefficient Layer of the component. For INTER blocks, INTER header fields are common for all the three components and they are followed by the luminance and two chrominance Coefficient Layers.


[image: image3.wmf]IPMR

COEFF LAYER

SUBDCD

P block

BTYPE

I block

DCDRANGE

DCDSIGN

IBMX

MPRDIRB

MCP

MCOEFF

CNCB

COEFF LAYER

      IDCD

     IBMV

ICNCB

IBMY


Figure 5.1.   Syntax diagram for the Block Layer.

4.1 Block Type (BTYPE) (Variable Length)

BTYPE is a variable length code present only in P-frames, which describes the type of the 8(8 block (INTER MOTION / INTER NOMOTION / INTRA) in SPLITTED macroblock. In the case of INTER MOTION block, BTYPE can also give information about the used motion parameter prediction method. However, since the prediction of the motion parameters is not possible in all cases (no neighboring blocks in the same picture or slice when using SS mode or no motion parameters for the neighboring blocks with the same reference frame), there exist two sets of variable length codes. The set defined in Table 5.1 contains different variable length codes for INTER MOTION blocks with different motion parameter prediction methods, while the set defined in Table 5.2 contains only the NOPRED version of the INTER MOTION modes.

If block type is INTER MOTION or INTER NOMOTION, BTYPE indicates also if any further coding information exist for the block.

Table 5.1.   Codes for BTYPE when motion parameter prediction 
for INTER MOTION block is possible.
BTYPE
Bits
Block Type
Motion Parameter Prediction
Coded/
Not Coded

000
3
INTER MOTION
NOPRED
NOTCODED

011
3
INTER MOTION
NOPRED
CODED

111
3
INTER MOTION
PRED
NOTCODED

100
3
INTER MOTION
PRED
CODED

010
3
INTER MOTION
DELTAPRED
NOTCODED

101
3
INTER MOTION
DELTAPRED
CODED

110
3
INTER NOMOTION
---
NOTCODED

0011
4
INTER NOMOTION
---
CODED

0010
4
INTRA
---
---

Table 5.2.   Codes for BTYPE when motion parameter prediction 
for INTER MOTION block is not possible.
BTYPE
Bits
Block Type
Motion Parameter Prediction
Coded/
Not Coded

011
3
INTER MOTION
NOPRED
NOTCODED

001
3
INTER MOTION
NOPRED
CODED

1
1
INTER NOMOTION
---
NOTCODED

010
3
INTER NOMOTION
---
CODED

000
3
INTRA
---
---

4.2 Intra Prediction Method Rank (IPMR) (Variable Length)

IPMR is a variable length codeword (shown in Table 5.3) which represents a direct index inside the context dependent list of intra prediction methods. There are altogether 49 context possibilities which are described in Section 9 along with their corresponding six-entry list of intra prediction methods. IPMR is used to signal the rank (inside the context-depenent list) of the chosen intra prediction method used to perform intra prediction for the current block.

Table 5.3.   Codes for IPMR field.
IPMR
Bits
Rank

1
1
1

01
2
2

0000
4
3

0001
4
4

0010
4
5

0011
4
6

4.3 Intra Block Coded/Not-Coded Information (ICNCB) (1 Bit)

ICNCB indicates whether any coding information will follow in the Coefficient Layer.  A “1” indicates that there will be coding information following, whereas a ”0” indicates there will not be. The DC difference is not part of the Coefficient Layer and is always sent for intracoded blocks for both luminance and chrominance blocks.

4.4 Intra DC Difference (IDCD) (Variable Length + Fixed Length + Sign Bit)   

IDCD gives the level (denoted here as DClevel) and sign of the quantised intra prediction DC error. IDCD consists of a variable length codeword (DCDRANGE) which gives the range of DClevel, followed by a possible fixed length codeword (SUBDCD) which gives the sub-index inside the signaled range, and finally a sign bit (DCDSIGN) only present if DClevel is non-zero. When SUBDCD is present it represents the binary representation of DClevel - RangeOffset, where RangeOffset is the value directly derived from the given DCDRANGE in Table 5.4. The second column in Table 5.4 indicates amount of bits for DCDRANGE codeword plus the bits for SUBDCD, if any. The amount of bits for SUBDCD depends on DCDRANGE and on the quantisation parameter (QP) of given 8x8 or 4x4 block, according to Table 5.4. The DCDSIGN bit is not accounted in Table 5.4. DCDSIGN (1 bit) is sent after SUBDCD (if not present then after DCDRANGE) and only in the case when DClevel is nonzero. A bit “0” indicates positive whereas a bit “1” indicates negative values of DC error.

The total amount of quantisation levels is given by the integer division

L = min {1024 / QP, 256}

whereas the absolute inverse quantised value of DC error is given by the integer division


|DC error| = (DClevel * 255) / (L - 1)

Table 5.4.  DCDRANGE codes & Additional SUBDCD Bits.

DCDRANGE
Bits
QP
RangeOffset
DClevel

1
1
-
-
0

01
2
-
-
1

001
3
-
-
2

0001
4
-
-
3

00001
5+1
-
4
4 or 5

000001
6+1
-
6
6 or 7

0000001
7+1
-
8
8 or 9

00000001
8+2
-
10
10, …, 13

000000001
9+2
-
14
14, …, 17

0000000001
10+2
-
18
18, …, 21

00000000001
11+3
-
22
22, …, 29


11+8
< 7




11+7
7, …, 10




11+6
11, …, 16



00000000000
11+5
17, …, 21
30
> 29


11+4
22, …, 26




11+3
27, …, 29




11+2
30 or 31



4.5 Intra Block Matching Vector (IBMV) (4 Bits Fixed Length + 0/3/4/5 Bits Fixed Length)

IBMV is sent only when IPMR indicates Block Matching as intra prediction method (method P10 in Section 9.4). IBMV gives the vertical and horizontal component of the chosen Block Matching vector to be used in intra prediction for the current block. IBMV consists of a fixed length codeword (IBMY encoded by 4 bits) which gives the vertical displacement, followed by a fixed length codeword (IBMX encoded by 0/3/4/5 bits as illustrated in Table 5.5) which gives the horizontal displacement. The final displacements dY and dX are computed as dY = -IBMY, dX = IBMX – OffsetX, where IBMY, IBMX are values directly corresponding to the binary representation of IBMY and IBMX, and OffsetX is derived as illustrated in Table 5.5. 

Table 5.5.  IBMX Bits of corresponding OffsetX values.


Luminance in I frames
Chrominance in I frames &
Intra in P frames

|dY|
IBMX
OffsetX
IBMX
OffsetX

0,…,7
3 bits

15
No bits

8

8,…,15
5 bits

4 bits


4.6 Motion Prediction Direction (MPRDIRB) (1 bit)

Identical to the MPRDIRMB described in 4.4. Present only if macroblock type is SPLITTED.

4.7 Motion Coefficient Pattern (MCP) (Variable Length)

Identical to the MCP described in 4.6. Present only if macroblock type is SPLITTED.

4.8 Motion Coefficient (MCOEFF) (Variable Length)

Identical to the MCOEFF described in 4.7. Present only if macroblock type is SPLITTED.

4.9 Coded/Not Coded – Information (CNCB) (Variable Length)

CNCB is present only for INTER MOTION CODED and INTER NOMOTION CODED 8(8 blocks. CNCB is a variable length codeword, which corresponds to Coded Block Patterns of 1 8(8 luminance block and 2 4(4 chrominance blocks in scanning order. 

Table 5.6 gives the VLC codeword according to the CNC Pattern. 

Table 5.6.   CNCB VLC Codeword Selection Table
CNC Pattern
Bits
VLC Codeword

001
5
11111

010
4
1110

011
5
11110

100
1
0

101
3
100

110
3
101

111
3
110

5. Coefficient Layer

Syntax of the Coefficient Layer is depicted in Figure 6.1.


[image: image4.wmf]METH8

METH4

TCOEFF

TCOEFF


Figure 6.1.   Syntax diagram for the Coefficient Layer.

5.1 8(8 Coding Method Information (METH8) (Variable Length)

METH8 is a variable length codeword, which is present only for 8(8 luminance blocks and 8(8 chrominance blocks (i.e., chrominance blocks of macroblocks). METH8 signals the coding method to be used for the 8(8 prediction error block, see Section 10.1.

The set of all possible coding methods is divided into subsets that contain coding methods ranked according to their usage. METH8 signals the rank of the selected coding method in the particular method subset in question and decoder can infer the actual coding method knowing the used subset. The variable length codes for METH8 and associated method ranks are shown in Table 6.1.

Table 6.1. Codes for METH8 field.
METH8
Bits
Method Rank

1
1
1

010
3
2

011
3
3

0010
4
4

0011
4
5

0001
4
6

000011
6
7

000010
6
8

0000011
7
9

0000010
7
10

0000001
7
11

0000000
7
12

The criteria for method subset selection are quantizer value QUANT (QUANTC for chrominance) and block type, which refers to INTER coding or different INTRA predictions. Correct subset is found by obtaining the method class from Table 6.2 and selecting the method subset corresponding to method class and PQUANT of the block from Table 6.3 for luminance blocks and from Table 6.4 for chrominance blocks.  

In case of directional INTRA prediction, error blocks obtained from certain prediction methods (e.g. vertical prediction P5 and horizontal prediction P9) can be made similar by using specific block manipulation operations. After that, the error blocks fit to same subset of coding methods. Required block manipulation operations are also shown in Table 6.2. For intra prediction method P10 (Block Matching) the directionality of the block is not known and the used coding method subset is the same as for INTER blocks.

Block operations are defined as


[image: image5.wmf])

,

1

(

)

,

(

:

)

1

,

(

)

,

(

:

)

,

(

)

,

(

:

)

1

,

(

)

,

(

:

)

,

1

(

)

,

(

:

L

L

R

R

D

D

V

V

H

H

x

y

N

I

y

x

I

I

I

x

N

y

I

y

x

I

I

I

x

y

I

y

x

I

I

I

y

N

x

I

y

x

I

I

I

y

x

N

I

y

x

I

I

I

-

-

=

®

-

-

=

®

=

®

-

-

=

®

-

-

=

®

          

:

        

:

       

:

         

:

    

:

Left

 

Rotate

Right

 

Rotate

Diagonal

 

Flip

 

Vertical

 

Flip

Horizontal

 

Flip


(6-1)

where N is the size of the block and 
[image: image6.wmf]1

,

0

-

£

£

N

y

x

 are pixel coordinates inside the block, such that location (0, 0) is at the upper left corner and location (N-1, N-1) is at the lower right corner. 

Table 6.2 Association between block type and method class.
Block Type
Block Operation
Method Class

INTER
---
A

INTRA P1
---
B

INTRA P2
Flip Horizontal
C

INTRA P3
Flip Horizontal
D

INTRA P4
Rotate Left
E

INTRA P5
Flip Diagonal
F

INTRA P6
Flip Diagonal
G

INTRA P7
---
H

INTRA P8
---
G

INTRA P9
---
F

INTRA P10
---
A

Table 6.3 8(8 coding methods for 8(8 luminance blocks.
QUANT
Range
Method Class
Method Rank



1
2
3
4
5
6
7
8
9
10
11
12

1 – 9
A
 1
42
2
7
6
3
52
56
8
4
---
---


B
 1
42
50
48
46
44
8
4
49
45
52
56


C
44
52
42
1
8
45
---
---
---
---
---
---


D
45
52
42
1
44
8
50
46
48
67
---
---


E
 1
44
45
42
52
8
49
4
66
48
---
---


F
52
8
42
1
4
6
7
44
50
48
46
---


G
42
44
49
52
1
8
---
---
---
---
---
---


H
45
42
56
52
4
8
46
44
3
1
68
69

10 - 15
A
 1
7
6
3
2
4
8
42
9
5
---
---


B
 1
50
44
48
46
49
45
42
8
4
52
56


C
44
42
1
8
50
45
52
6
46
---
---
---


D
45
1
50
---
---
---
---
---
---
---
---
---


E
 1
44
45
49
66
---
---
---
---
---
---
---


F
52
8
42
1
7
6
4
49
45
48
46
---


G
 1
52
44
42
45
48
---
---
---
---
---
---


H
45
42
56
52
4
8
46
44
7
1
68
69

16 - 22
A
 1
7
6
3
2
66
68
67
69
8
4
---


B
 1
50
44
48
46
49
45
42
8
4
52
56


C
44
42
8
7
52
6
50
---
---
---
---
---


D
45
1
46
---
---
---
---
---
---
---
---
---


E
44
46
48
45
1
4
---
---
---
---
---
---


F
52
8
42
50
44
46
48
4
49
7
45
6


G
 1
44
45
7
6
---
---
---
---
---
---
---


H
 1
45
46
44
8
4
68
69
42
52
56
---

23 - 31
A
 1
7
3
6
2
66
68
67
69
8
4
---


B
 1
50
44
48
46
42
8
4
49
45
---
---


C
44
8
42
50
52
4
45
---
---
---
---
---


D
45
7
1
46
50
49
42
---
---
---
---
---


E
44
45
1
---
---
---
---
---
---
---
---
---


F
52
50
44
8
7
6
48
46
4
49
45
42


G
 1
52
44
---
---
---
---
---
---
---
---
---


H
45
1
44
46
48
50
69
68
7
2
4
8

Table 6.4 8(8 coding methods for 8(8 chrominance blocks.

QUANTC
Range
Method Class
Method Rank



1
2
3
4
5
6
7
8
9
10
11
12

1 - 9
A
 1
2
3
7
6
5
9
67
66
69
68
---


B
 1
50
46
48
44
45
49
8
4
42
52
56


C
46
44
42
1
45
49
50
8
---
---
---
---


D
 1
45
---
---
---
---
---
---
---
---
---
---


E
 1
44
68
---
---
---
---
---
---
---
---
---


F
52
8
50
44
42
45
49
68
1
48
46
4


G
 1
44
---
---
---
---
---
---
---
---
---
---


H
 1
46
44
45
56
52
4
8
42
48
50
---

10 - 15
A
 1
67
66
69
68
2
7
3
6
4
8
---


B
 1
---
---
---
---
---
---
---
---
---
---
---


C
45
---
---
---
---
---
---
---
---
---
---
---


D
 1
---
---
---
---
---
---
---
---
---
---
---


E
48
44
49
4
7
1
45
46
56
---
---
---


F
 8
50
44
49
45
42
68
52
---
---
---
---


G
52
46
50
8
---
---
---
---
---
---
---
---


H
42
46
44
56
52
68
69
3
50
9
48
5

5.2 4(4 Coding Method Information (METH4) (Variable Length)

METH4 is a variable length codeword, which is present if 8(8 coding method indicates coding of 4(4 Quadrants of 8(8 block separately or coding of single 4 x 4 chrominance block. METH4 signals the coding method to be used for the 4(4 prediction error block, see Section 10.2. Coding method subsets for different 4x4 block types are shown in Table 6.5, Table 6.6 and Table 6.7. Selection of the coding method subset is based on the quantizer value QUANT (QUANTC for chrominance). Signaling uses the same variable length code words as for 8x8 method signaling, see Table 6.1.

Table 6.5 4x4 coding methods for 4x4 luminance Quadrants.

QUANT
Range
Method Rank


1
2
3
4
5
6
7
8
9
10
11

1 – 9
3
0
33
39
37
35
34
38
1
4
8

10 – 15
3
0
33
39
37
35
34
38
1
4
8

16 – 22
3
0
33
39
37
35
38
34
4
8
1

22 – 31
3
0
33
39
35
37
1
4
8
34
38

Table 6.6 4x4 coding methods for 4x4 chrominance Quadrants.
QUANTC
Range
Method Rank


1
2
3
4
5
6
7
8
9
10
11

1 – 9
3
0
1
4
8
33
37
35
39
34
38

10 - 15
0
3
37
35
33
34
1
38
39
---
---

Table 6.7 4x4 coding methods for 4x4 single chrominance block.
QUANTC
Range
Method Rank


1
2
3
4
5
6
7
8
9
10

1 – 9
3
1
35
37
39
33
34
38
8
4

10 - 15
3
1
34
38
35
33
37
39
4
8

5.3 Transform Coefficient (TCOEFF) (Variable Length) 

TCOEFF field contains events of run-length coded transform coefficient. An event is a combination of a last non-zero coefficient indication (LAST, “0” there are more non-zero coefficients in the block, “1” this is the last coefficient of the block), the number of successive zeros preceding the coefficient (RUN), the non-zero absolute quantized level of the coded coefficient (LEVEL) and finally the sign of the non-zero coefficient.

The most commonly occurring events are coded with variable length codes followed by 1 bit for sign (“0” for positive, “1” for negative). The remaining events are coded with ESCAPE code followed by 1 bit for LAST and fixed length codes for RUN and LEVEL (see Table 6.8 and Table 6.9).

The necessary VLC tables are selected based on block coding mode and transform type acording to Table 6.10. There are alltogether five VLC tables for run-length coded TCOEFF coefficients and they are specified in Table 6.11 - Table 6.15.

Table 6.8 Encoding of RUN if ESCAPE TCOEFF is Signaled

Bits
RUN
Transform Type

6
0,…, 63
8x8 DCT

4
0, …, 15
4x4 DCT

5
0, …, 31
4x8 DCT

4
0, …, 15
8x8 KLT

3
0, …, 7
4x4 KLT

Table 6.9 Encoding Bits for LEVEL if ESCAPE TCOEFF is Signaled

Bits for SIGN and |LEVEL|
QP

Luminance
Chrominance


1+9
1+8
1

1+8
1+7
2

1+7
1+6
3-5

1+6
1+5
6-11

1+5
1+4
12-23

1+4
1+3
24-31

Table 6.10 TCOEFF VLC Table Selection

Block Transform Type
PQUANT
Range
VLC

Inter 8x8 DCT
1 – 7
Table 1


8 – 31
Table 4

Inter 4x4 DCT
1 – 5
Table 0


6 – 15
Table 3


16 – 31
Table 2

Inter 4x8 DCT
-
Table 4

Inter 4x4 KLT
Intra 4x4 KLT
-
Table 2

Intra 8x8 DCT
1 – 4
Table 0


5 – 17
Table 1


18 – 31
Table 3

Intra 4x4 DCT
1 – 11
Table 0


12 – 31
Table 2

Intra 4x8 DCT
1 – 5
Table 0


6 - 15
Table 1


16 - 31
Table 3

Intra 8x8 KLT
1 - 12
Table 0


13 - 31
Table 2

Table 6.11 Codes for TCOEFF VLC, Table 0

TCOEFF
Bits
LAST
RUN
(LEVEL(

11s
2+1
0
0
1

101s
3+1
0
0
2

1001s
4+1
0
0
3

1000s
4+1
0
0
4

01101s
5+1
0
0
5

01100s
5+1
0
0
6

010001s
6+1
0
0
7

010000s
6+1
0
0
8

001111s
6+1
0
0
9

0010111s
7+1
0
0
10

0010110s
7+1
0
0
11

0010101s
7+1
0
0
12

0010100s
7+1
0
0
13

00011101s
8+1
0
0
14

00011100s
8+1
0
0
15

00011011s
8+1
0
0
16

00011010s
8+1
0
0
17

00011001s
8+1
0
0
18

000011101s
9+1
0
0
19

000011100s
9+1
0
0
20

000011011s
9+1
0
0
21

000011010s
9+1
0
0
22

000011001s
9+1
0
0
23

000011000s
9+1
0
0
24

000010111s
9+1
0
0
25

0000011101s
10+1
0
0
26

0000011100s
10+1
0
0
27

0000011011s
10+1
0
0
28

0000011010s
10+1
0
0
29

0000011001s
10+1
0
0
30

0000011000s
10+1
0
0
31

000000010011s
12+1
0
1
0

0111s
4+1
0
1
1

01011s
5+1
0
1
2

001110s
6+1
0
1
3

0010011s
7+1
0
1
4

00011000s
8+1
0
1
5

00010111s
8+1
0
1
6

000010110s
9+1
0
1
7

0000010111s
10+1
0
1
8

0000010110s
10+1
0
1
9

0000010101s
10+1
0
1
10

00000010111s
11+1
0
1
11

00000010110s
11+1
0
1
12

00000010101s
11+1
0
1
13

00000010100s
11+1
0
1
14

000000010010s
12+1
0
1
15

000000010001s
12+1
0
1
16

000000010000s
12+1
0
1
17

000000001111s
12+1
0
1
18

000000001110s
12+1
0
1
19

000000001101s
12+1
0
1
20

0000000000011s
13+1
0
1
21

0000000000010s
13+1
0
1
22

01010s
5+1
0
2
1

0010010s
7+1
0
2
2

00010110s
8+1
0
2
3

000010101s
9+1
0
2
4

0000010100s
10+1
0
2
5

00000010011s
11+1
0
2
6

000000001100s
12+1
0
2
7

000000001011s
12+1
0
2
8

0000000000001s
13+1
0
2
9

001101s
6+1
0
3
1

00010101s
8+1
0
3
2

0000010011s
10+1
0
3
3

00000010010s
11+1
0
3
4

000000001010s
12+1
0
3
5

0010001s
7+1
0
4
1

000010100s
9+1
0
4
2

00000010001s
11+1
0
4
3

00010100s
8+1
0
5
1

0000010010s
10+1
0
5
2

000000001001s
12+1
0
5
3

00010011s
8+1
0
6
1

00000010000s
11+1
0
6
2

000010011s
9+1
0
7
1

0000000000000s
13+1
0
7
2

0000010001s
10+1
0
8
1

0000010000s
10+1
0
9
1

00000001111s
11+1
0
10
1

00000001110s
11+1
0
11
1

000000001000s
12+1
0
12
1

000000000111s
12+1
0
13
1

01001s
5+1
1
0
1

00010010s
8+1
1
0
2

000010010s
9+1
1
0
3

0000001111s
10+1
1
0
4

000000000110s
12+1
1
0
5

001100s
6+1
1
1
1

000010001s
9+1
1
1
2

000000000101s
12+1
1
1
3

0010000s
7+1
1
2
1

0000001110s
10+1
1
2
2

00010001s
8+1
1
3
1

00000001101s
11+1
1
3
2

00010000s
8+1
1
4
1

00001111s
8+1
1
5
1

000010000s
9+1
1
6
1

000001111s
9+1
1
7
1

0000001101s
10+1
1
8
1

0000001100s
10+1
1
9
1

00000001100s
11+1
1
10
1

00000001011s
11+1
1
11
1

00000001010s
11+1
1
12
1

000000000100s
12+1
1
13
1

000000000011s
12+1
1
14
1

000000000010s
12+1
1
15
1

0001111
7
ESCAPE

Table 6.12 Codes for TCOEFF VLC, Table 1

TCOEFF
Bits
LAST
RUN
(LEVEL(

11s
2+1
0
0
1

101s
3+1
0
0
2

0111s
4+1
0
0
3

01011s
5+1
0
0
4

001111s
6+1
0
0
5

0010001s
7+1
0
0
6

0010000s
7+1
0
0
7

00001111s
8+1
0
0
8

00001110s
8+1
0
0
9

000010001s
9+1
0
0
10

000010000s
9+1
0
0
11

0000001011s
10+1
0
0
12

0000001010s
10+1
0
0
13

100s
3+1
0
1
1

01010s
5+1
0
1
2

001110s
6+1
0
1
3

0001111s
7+1
0
1
4

000001111s
9+1
0
1
5

0000001001s
10+1
0
1
6

0000001000s
10+1
0
1
7

0110s
4+1
0
2
1

001101s
6+1
0
2
2

00001101s
8+1
0
2
3

000001110s
9+1
0
2
4

01001s
5+1
0
3
1

00001100s
8+1
0
3
2

000001101s
9+1
0
3
3

001100s
6+1
0
4
1

00001011s
8+1
0
4
2

0000000111s
10+1
0
4
3

0001110s
7+1
0
5
1

000001100s
9+1
0
5
2

0001101s
7+1
0
6
1

0000000110s
10+1
0
6
2

00001010s
8+1
0
7
1

000001011s
9+1
0
8
1

000001010s
9+1
0
9
1

0000000101s
10+1
0
10
1

0000000100s
10+1
0
11
1

01000s
5+1
1
0
1

0001100s
7+1
1
0
2

001011s
6+1
1
1
1

000001001s
9+1
1
1
2

001010s
6+1
1
2
1

0000000011s
10+1
1
2
2

0001011s
7+1
1
3
1

0001010s
7+1
1
4
1

0001001s
7+1
1
5
1

0001000s
7+1
1
6
1

00001001s
8+1
1
7
1

000001000s
9+1
1
8
1

000000111s
9+1
1
9
1

000000110s
9+1
1
10
1

0000000010s
10+1
1
11
1

0000000001s
10+1
1
12
1

0000000000s
10+1
1
13
1

001001
6
ESCAPE

Table 6.13 Codes for TCOEFF VLC, Table 2

TCOEFF
Bits
LAST
RUN
(LEVEL(

11s
2+1
0
0
1

101s
3+1
0
0
2

0111s
4+1
0
0
3

01001s
5+1
0
0
4

001001s
6+1
0
0
5

0001011s
7+1
0
0
6

00001001s
8+1
0
0
7

00001000s
8+1
0
0
8

000000101s
9+1
0
0
9

0110s
4+1
0
1
1

01000s
5+1
0
1
2

0001010s
7+1
0
1
3

00000111s
8+1
0
1
4

00111s
5+1
0
2
1

0001001s
7+1
0
2
2

000000100s
9+1
0
2
3

001000s
6+1
0
3
1

000000011s
9+1
0
3
2

00000110s
8+1
0
4
1

000000010s
9+1
0
5
1

100s
3+1
1
0
1

00110s
5+1
1
0
2

00000101s
8+1
1
0
3

000000001s
9+1
1
0
4

0101s
4+1
1
1
1

0001000s
7+1
1
1
2

00101s
5+1
1
2
1

00000100s
8+1
1
2
2

000111s
6+1
1
3
1

000000000s
9+1
1
3
2

000110s
6+1
1
4
1

0000111s
7+1
1
5
1

0000110s
7+1
1
6
1

00000011s
8+1
1
7
1

0000101
7
ESCAPE

Table 6.14 Codes for TCOEFF VLC, Table 3

TCOEFF
Bits
LAST
RUN
(LEVEL(

11s
2+1
0
0
1

0111s
4+1
0
0
2

01001s
5+1
0
0
3

001011s
6+1
0
0
4

0001101s
7+1
0
0
5

00001011s
8+1
0
0
6

101s
3+1
0
1
1

01000s
5+1
0
1
2

0001100s
7+1
0
1
3

00001010s
8+1
0
1
4

0110s
4+1
0
2
1

0001011s
7+1
0
2
2

00001001s
8+1
0
2
3

00111s
5+1
0
3
1

00001000s
8+1
0
3
2

001010s
6+1
0
4
1

000000111s
9+1
0
4
2

0001010s
7+1
0
5
1

00000111s
8+1
0
6
1

00000110s
8+1
0
7
1

000000110s
9+1
0
8
1

0000000011s
10+1
0
9
1

100s
3+1
1
0
1

0001001s
7+1
1
0
2

000000101s
9+1
1
0
3

0101s
4+1
1
1
1

00000101s
8+1
1
1
2

00110s
5+1
1
2
1

000000100s
9+1
1
2
2

001001s
6+1
1
3
1

0000000010s
10+1
1
3
2

001000s
6+1
1
4
1

000111s
6+1
1
5
1

0001000s
7+1
1
6
1

0000111s
7+1
1
7
1

00000100s
8+1
1
8
1

000000011s
9+1
1
9
1

000000010s
9+1
1
10
1

0000000001s
10+1
1
11
1

0000000000s
10+1
1
12
1

0000110
7
ESCAPE

Table 6.15 Codes for TCOEFF VLC, Table 4

TCOEFF
Bits
LAST
RUN
(LEVEL(

111s
3+1
0
0
1

1011s
4+1
0
0
2

010001s
6+1
0
0
3

0001111s
7+1
0
0
4

00010001s
8+1
0
0
5

000001011s
9+1
0
0
6

1010s
4+1
0
1
1

010000s
6+1
0
1
2

00010000s
8+1
0
1
3

1001s
4+1
0
2
1

0001110s
7+1
0
2
2

000001010s
9+1
0
2
3

01111s
5+1
0
3
1

00001111s
8+1
0
3
2

01110s
5+1
0
4
1

00001110s
8+1
0
4
2

001111s
6+1
0
5
1

000001001s
9+1
0
5
2

001110s
6+1
0
6
1

000001000s
9+1
0
6
2

001101s
6+1
0
7
1

0001101s
7+1
0
8
1

0001100s
7+1
0
9
1

00001101s
8+1
0
10
1

00001100s
8+1
0
11
1

00001011s
8+1
0
12
1

00001010s
8+1
0
13
1

000000111s
9+1
0
14
1

110s
3+1
1
0
1

0001011s
7+1
1
0
2

0000000001s
10+1
1
0
3

1000s
4+1
1
1
1

000000110s
9+1
1
1
2

01101s
5+1
1
2
1

000000101s
9+1
1
2
2

01100s
5+1
1
3
1

01011s
5+1
1
4
1

000000100s
9+1
1
4
2

01010s
5+1
1
5
1

01001s
5+1
1
6
1

001100s
6+1
1
7
1

001011s
6+1
1
8
1

001010s
6+1
1
9
1

001001s
6+1
1
10
1

0001010s
7+1
1
11
1

00001001s
8+1
1
12
1

0001001s
7+1
1
13
1

00001000s
8+1
1
14
1

00000111s
8+1
1
15
1

000000011s
9+1
1
16
1

000000010s
9+1
1
17
1

0000000000s
10+1
1
18
1

000000001s
9+1
1
19
1

00000110s
8+1
1
20
1

001000
6
ESCAPE

6. Prevention of Synchronization Code Emulation

Encoder shall guarantee that PSC, EOS, and SSC codes are not emulated in the bitstream. This is achieved by adding emulation prevention bits as necessary. These bits are considered to be part of the output bitstream of the encoder. Therefore, byte aligned codes shall start at the byte boundaries of the bitstream containing the emulation prevention bits. Similarly, decoder shall discard the emulation prevention bits while decoding the bitstream. While discarding the emulation prevention bits, decoder shall keep the byte alignment of the synchronization codes the same as in the output bitstream of the encoder.

6.1 PSC Emulation Prevention

After writing the bit 5 of the current last byte of the bitstream, encoder shall place 21 bit window at the end of the bitstream (i.e., window will be byte aligned such that the first bit of the window corresponds the first bit of the third last byte of the bitstream). If the window contains bit pattern 00000000 00000000 01000, encoder shall add emulation prevention bit “1” in order to avoid possible emulation of the PSC 00000000 00000000 010000. After adding the emulation prevention bit to bitstream, writing of the codeword continues from bit 7 of the current last byte of the bitstream, see Figure 7.1.


[image: image7.wmf]00000000

00000000

01000

Next bit to

bitstream

00000000

00000000

010001

Emulation

prevention

Next bit to

bitstream

Emulation

prevention bit

21 bit window

01100001

01100001


Figure 7.1.   Prevention of PSC emulation.

In order to remove emulation prevention bits, decoder shall use 22 bit byte aligned window. If the window contains bit pattern 00000000 00000000 010001 which is always created by emulation prevention as depicted in Figure 7.1, the last “1” bit shall be discarded. However, byte alignment of the synchronization codes shall not be affected.

6.2 EOS Emulation Prevention

After writing the bit 5 of the current last byte of the bitstream, encoder shall place 21 bit window at the end of the bitstream (i.e., window will be byte aligned such that the first bit of the window corresponds the first bit of the third last byte of the bitstream). If the window contains bit pattern 00000000 00000000 01111, encoder shall add extra “0” bit in order to avoid possible emulation of the EOS 00000000 00000000 011111. After adding the extra bit to bitstream, writing of the codeword continues from bit 7 of the current last byte of the bitstream, see Figure 7.2.


[image: image8.wmf]00000000

00000000

01111

Next bit to

bitstream

00000000

00000000

011110

Emulation

prevention

Next bit to

bitstream

Emulation

prevention bit

21 bit window


Figure 7.2.   Prevention of EOS emulation.

In order to remove emulation prevention bits, decoder shall use 22 bit byte aligned window. If the window contains bit pattern 00000000 00000000 011110 which is always created by emulation prevention as depicted in Figure 7.2, the last “0” bit shall be discarded. However, byte alignment of the synchronization codes shall not be affected.

6.3 SSC Emulation Prevention

When SS mode is used, the bitstream syntax offers possibility of starting the bitstream decoding from any slice of an I frame when CPI field is set to “1”. Therefore, it is allowed for decoder to look for SSC codes to be used as a starting point for the bitstream decoding process. This requires that the prevention of SSC bit patterns shall be done regardless of whether SS mode is used or not.

After writing the bit 1 of the current last byte of the bitstream, encoder shall place 17 bit window at the end of the bitstream (i.e., window will be byte aligned such that the first bit of the window corresponds the first bit of the third last byte of the bitstream). If the window contains bit pattern 00000000 00000000 1, encoder shall add extra “0” bit in order to avoid possible emulation of the SSC 00000000 00000000 11. After adding the extra bit to bitstream, writing of the codeword continues from bit 3 of the current last byte of the bitstream, see Figure 7.3.


[image: image9.wmf]00000000

00000000

1

Next bit to

bitstream

00000000

00000000

10

Emulation

prevention

Next bit to

bitstream

Emulation

prevention bit

17 bit window


Figure 7.3.   Prevention of SSC emulation.

In order to remove emulation prevention bits, decoder shall use 18 bit byte aligned window. If the window contains bit pattern 00000000 00000000 10 which is always created by emulation prevention as depicted in Figure 7.3, the last “0” bit shall be discarded. However, byte alignment of the synchronization codes shall not be affected.

Motion compensated prediction

Motion compensated prediction is based on affine motion model and cubic spline interpolation (luminance frames) or bilinear interpolation (chrominance frames). Affine motion coefficients of a macroblock/block are conditionally predicted from the ones of a selected neighboring macroblock/block and refined to obtain the final motion model as described in the following sections.

6.4 Prediction candidates for affine coefficient prediction

A neighboring macroblock/block directly up or left is considered as prediction candidate if all three conditions below are satisfied:

1. It is in any of the INTER MOTION modes. That is, it has affine motion vector field associated with it.

2. If SS mode is used it belongs to the same slice with the macroblock/block to be decoded.

3. Same reference frame is used for the neighbor than for the macroblock/block to be decoded.

If there are multiple candidates for motion parameter prediction the one to be used is signaled by MPRDIRMB and/or MPRSELMB fields.

6.5 Creation of the motion vector field

Final motion vector field of a given motion compensated (16x16 or 8x8) macroblock/block Si has an affine model given by the following equation (superscript i indicates the fact that the coefficients are associated with macroblock/block Si):


[image: image10.wmf])

(

)

(

)

,

(

)

(

)

(

)

,

(

0

6

0

5

4

0

3

0

2

1

i

i

i

i

i

i

i

i

i

i

x

x

y

y

y

x

y

x

x

y

y

y

x

x

-

×

+

-

×

+

=

D

-

×

+

-

×

+

=

D

b

b

b

b

b

b


where 
[image: image11.wmf]i

i

y

x

0

0

,

 are coordinates of the upper-left most pixel in the macroblock/block and 
[image: image12.wmf]i

i

6

1

,

,

b

b

K

are the final affine coefficients calculated as described in the following sections.

Final affine coefficients are sums of predicted coefficients (set to zero if MBTYPE is not INTER MOTION PRED or INTER MOTION DELTAPRED) and refinement coefficients (set to zero if MBTYPE indicates INTER MOTION PRED mode) as shown below.


[image: image13.wmf]k

i

k

i

i

i

prd

i

a

a

y

x

x

a

3

3

3

2

2

2

0

0

1

1

)

,

(

b

b

b

b

b

+

=

+

=

D

+

=

    and      
[image: image14.wmf]k

i

k

i

i

i

prd

i

a

a

y

x

y

a

6

6

6

5

5

5

0

0

4

4

)

,

(

b

b

b

b

b

+

=

+

=

D

+

=


Refinement coefficients (a1,…,a6) are obtained by inverse quantizing and deorthonormalizing transmitted coefficient values (MCP and MCOEFF). Inverse quantization is performed by multiplying coefficients by a quantization parameter AQP given in the table below.

PQUANT
AQP

PQUANT
AQP

PQUANT
AQP

PQUANT
AQP

1
2

9
3

17
4

25
6

2
2

10
3

18
4

26
6

3
2

11
3

19
4

27
6

4
2

12
3

20
5

28
7

5
2

13
4

21
5

29
7

6
3

14
4

22
5

30
8

7
3

15
4

23
5

31
8

8
3

16
4

24
5




In the case of a 16x16 macroblock, output of the inverse quantization (c1, …, c6) is deorthonormalized by carrying out the following matrix multiplications:


[image: image15.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

×

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3

2

1

3

2

1

889

0

0

0

889

0

6664

6664

4096

c

c

c

a

a

a

  and  
[image: image16.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

×

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

6

5

4

6

5

4

889

0

0

0

889

0

6664

6664

4096

c

c

c

a

a

a


In the case of a 8x8 block resulted from splitting a 16x16 macroblock, transform matrices are defined as follows:


[image: image17.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

×

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3

2

1

3

2

1

3575

0

0

0

3575

0

12513

12513

8192

c

c

c

a

a

a

  and  
[image: image18.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

×

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

6

5

4

6

5

4

3575

0

0

0

3575

0

12513

12513

8192

c

c

c

a

a

a


Translational predicted coefficients 
[image: image19.wmf])

,

(

),

,

(

0

0

0

0

i

i

prd

i

i

prd

y

x

y

y

x

x

D

D

 are obtained by evaluating the prediction motion vector field (i.e. the final motion vector field of the selected predictor macroblock/block) at 
[image: image20.wmf]i

i

y

x

0

0

,

. Other predicted coefficients are simply corresponding final coefficients of the predictor macroblock/block.

To obtain motion vector fields for chrominance blocks translational coefficients (
[image: image21.wmf]i

i

4

1

,

b

b

) are divided by two and truncated. Warping coefficients (
[image: image22.wmf]i

i

i

i

6

5

3

2

,

,

,

b

b

b

b

) are used as such.

Final motion vectors are in fixed point representation having 16 bits after the decimal point.

6.6 Subpixel interpolation for luminance frames

Discrete version of cubic convolution interpolation is used to interpolate subpixel values in luminance frames. Interpolation is carried out in three steps:

Step 1: Identification of 4x4 pixel window

The integer-valued displacements 
[image: image23.wmf](

)

)

,

(

),

,

(

y

x

y

y

x

x

D

D

 corresponding to pixel 
[image: image24.wmf])

,

(

y

x

 in macroblock/block Si are expressed in modulo-65536 form:


[image: image25.wmf]{

}

{

}

65535

 

,

 

1,

 

0,

 

        

,

65536

)

,

(

65535

 

,

 

1,

 

0,

 

        

,

65536

)

,

(

K

K

Î

+

×

=

D

Î

+

×

=

D

y

y

dy

y

x

y

x

x

dx

y

x

x

d

d

d

d


where 
[image: image26.wmf]y

x

dy

dx

d

d

,

,

,

 are integer values with the latter two being always non-negative. The coordinates inside the 4x4 cubic convolution window are:


[image: image27.wmf]4

,

3

,

2

,

1

        

),

1

,

2

(

4

,

3

,

2

,

1

        

),

1

,

2

(

=

-

-

+

+

=

¢

=

-

-

+

+

=

¢

k

N

k

dy

y

sat

y

j

M

j

dx

x

sat

x

k

j


Where M and N are the width and height of the reference frame and 
[image: image28.wmf])

,

(

v

u

sat

is the saturation function defined as


[image: image29.wmf]ï

î

ï

í

ì

>

£

£

<

=

v

u

v

v

u

u

u

v

u

sat

   

          

0

       

0

   

          

0

)

,

(


Consequently, the 16 integer pixel values 
[image: image30.wmf]jk

r

 used in the cubic convolution are:


[image: image31.wmf]4

,

3

,

2

,

1

,

        

)

,

(

=

¢

¢

=

k

j

y

x

R

r

k

j

ref

jk


Rref being the reference frame.

Step 2: Computation of convolution coefficients

Convolution coefficients are calculated using integer division by truncation ("/") as follows:


[image: image32.wmf])

(

16384

))

256

/

(

256

(

)

256

/

(

)

256

256

/

(

3

2

1

4

3

2

1

u

u

u

u

x

spl

u

x

spl

u

x

spl

u

+

+

-

=

-

=

=

+

=

d

d

d

  and  
[image: image33.wmf])

(

16384

))

256

/

(

256

(

)

256

/

(

)

256

256

/

(

3

2

1

4

3

2

1

v

v

v

v

y

spl

v

y

spl

v

y

spl

v

+

+

-

=

-

=

=

+

=

d

d

d


where 
[image: image34.wmf])

(

s

spl

 is integer-valued function of positive integer argument:


[image: image35.wmf]{

}

{

}

ï

î

ï

í

ì

-

=

Î

+

×

-

+

×

Î

+

×

-

×

-

=

otherwise

       

          

          

          

          

          

          

          

          

          

0

256

  

,

511

,

,

256

   

          

)

1024)/2048

)

512

(65536

((

-

255

,

,

1

,

0

   

          

          

          

1024)/2048

)

3

(1280

(

6384

1

)

(

2

2

s

t

s

t

t

t

s

s

s

s

spl

K

K


Step 3: Computation of reference pixel value

By using integer division by truncation, the reference pixel value is computed as:


[image: image36.wmf])

255

  

,

2

/

2

256

/

  

(

20

19

4

3

2

1

4

3

2

1

44

34

24

14

43

33

23

13

42

32

22

12

41

31

21

11

÷

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

ç

è

æ

+

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

×

÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

×

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

=

v

v

v

v

u

u

u

u

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

r

sat

r

T


6.7 Subpixel interpolation for chrominance frames

Bilinear interpolation is used to evaluate pixel values in subpixel positions for chrominance frames. Filter coefficients are now:


[image: image37.wmf]4

/

4

/

16384

2

1

x

p

x

p

d

d

=

-

=

  and  
[image: image38.wmf]4

/

4

/

16384

2

1

y

q

y

q

d

d

=

-

=


and reference pixel value is computed by using integer division by truncation:


[image: image39.wmf]21

20

2

1

2

1

33

23

32

22

2

/

2

128

/

÷

÷

ø

ö

ç

ç

è

æ

+

ú

û

ù

ê

ë

é

×

÷

÷

ø

ö

ç

ç

è

æ

ú

û

ù

ê

ë

é

×

ú

û

ù

ê

ë

é

=

q

q

p

p

r

r

r

r

r

T


7. Intra Prediction

Spatial prediction is done for each intracoded block using previously reconstructed intracoded blocks within the same frame (or within the same slice if SS mode is used). The residual error is compressed by using the error coding methods described in Section 10.

The intra prediction scheme consists of two main parts, as illustrated in Figure 9.1. First, context-dependent selection of suitable subset of prediction methods is done by classifying the neighbouring reconstructed intracoded blocks at left and above current block. After that, the intra prediction block is constructed using one of prediction methods in a selected subset. The subset is dependent on the context given by the two neighbouring intracoded blocks.


[image: image40.wmf]Directionality

Classification

Mapping of

Classes

Selection of

Prediction

Method Set

Signaling of

Prediction

Method

Spatial

Prediction

Context-Dependent

Selection of

Prediction Set

Spatial Prediction

and Signaling


Figure 9.1.   Block diagram of context-dependent prediction for intracoding.

The context-dependent selection of prediction method subset consists of directionality classification of the two possible neighbouring blocks (Section 9.1), mapping of directionality classes to context classes (Section 9.2) and final context-dependent selection of the proper prediction method subset (Section 9.3).

Spatial prediction and signaling includes construction of the prediction block (according to one of the methods described in Section 9.4) and signaling of the selected prediction method to decoder (as described in Section 5.2).

7.1 Gradient-Based Directionality Classifier

The blocks that are used for the classification are the possible left and upper neighbouring intracoded blocks already reconstructed. The relation between the blocks is depicted in Figure 9.2. Assuming that the block “C” is the current block to be coded, the classification is done for blocks “L” and “U”. However, the classification is performed only if the block exists and it is intracoded. If block does not exist or is not intracoded, it is treated as "Non-Intra" during the context-dependent selection of prediction methods.


[image: image41.wmf]8x8 Chroma

L

U

C

Luminance

L

U

C

L

U

C

4x4 Chroma


Figure 9.2.   Illustration of blocks that are used for classification.

The blocks “U” and “L” are classified according to directionality of the image details inside the block. The directionality classifier analyses the directionality of the texture inside block by using pixel value gradients. First, the block is mapped into one of 6 output classes. These consist of four directionality classes D1 – D4 corresponding to the four edge orientations (k-1) ( 45(, k = 1, 2, 3, 4 and two non-directional classes D5, D6 corresponding to flat and texture blocks.

The classification is based on the average absolute directional gradients gk, k = 0, 2, 4, 6 defined as


[image: image42.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

+

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

+

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

+

-

-

-

=

÷

÷

ø

ö

ç

ç

è

æ

+

-

-

=

å

å

å

å

å

å

å

å

-

=

-

=

-

=

-

=

-

=

-

=

-

=

-

=

2

0

2

0

2

10

6

2

0

1

0

10

4

2

0

1

1

2

10

2

1

0

2

0

10

0

)

1

,

1

(

)

,

(

,

1

max

)

1

(

2

)

1

,

(

)

,

(

,

1

max

)

1

(

2

)

1

,

1

(

)

,

(

,

1

max

)

1

(

2

)

,

1

(

)

,

(

,

1

max

)

1

(

2

N

y

N

x

N

y

N

x

N

y

N

x

N

y

N

x

y

x

I

y

x

I

N

g

y

x

I

y

x

I

N

N

g

y

x

I

y

x

I

N

g

y

x

I

y

x

I

N

N

g

                            (1)



(1)
where N is the size of the block (either 8 or 4) and I(x,y) represent the pixel intensity values. Indices x and y refer to coordinates of pixel inside the block.The division operation is an ineteger division with truncation to the smallest near integer. An example of pixel pairings in gradient calculation for a 4(4 block are graphically shown in Figure 9.3. 


[image: image43.wmf]g

0

 (0°)

g

4

 (90°)

g

2

 (45°)

g

6

 (135°)


Figure 9.3.   Example of pixel pairings for gradient calculations for 4(4 block. Absolute pixel value difference is calculated between two pixels connected with a line.

Using the gradient values gk, gradient ratios rk, k = 0, 2, 4, 6 are defined as the ratio between gradient value in a certain direction and the gradient value in the orthogonal direction:


[image: image44.wmf]10

2

6

6

10

0

4

4

10

6

2

2

10

4

0

0

2

.

 

          

,

2

.

 

          

,

2

.

          

,

2

.

g

g

r

g

g

r

g

g

r

g

g

r

=

=

=

=

            (2)

Based on the absolute gradient values gk and gradient ratios rk defined in (1) and             (2), classification of the block is done using the following algorithm. 

Step 1. In this step the flatness of the block is checked. Calculate gradient values g0 and g4. If both g0 
[image: image45.wmf]£

2.210 and g4 
[image: image46.wmf]£

2.210 the block is classified as D5 (flat) and algorithm ends, otherwise continue from Step 2.

Step 2. In this step a further check for flatness of the block is performed. Calculate the rest of the gradient values gk, and find the maximum gradient value gmax = max{gk}. If gmax 
[image: image47.wmf]£

 5. 29 the block is classified as D5 (flat) and algorithm ends, otherwise continue from Step 3.

Step 3. In this step a check for a clear directionality is performed. Calculate gradient ratios rk and find the minimum gradient ratio rmin = min{rk} and corresponding index kmin. If rmin 
[image: image48.wmf]£

 154 classify the block to corresponding class D(kmin /2+1) and continue from Step 10, otherwise continue from Step 4.

Step 4. In this step a check for texture class is performed. If rmin 
[image: image49.wmf]³

 614 continue from Step 11, otherwise continue from Step 5.

Step 5. In this step the two smallest ratios are checked if they are clearly distinct. Sort the gradient ratios rk in increasing order r(0) 
[image: image50.wmf]£

 r(1) 
[image: image51.wmf]£

 r(2) 
[image: image52.wmf]£

 r(3) and reorder the gradient ratio indices according to the sorted order k(0), k(1), k(2), k(3). If 
[image: image53.wmf](

)

(

)

)

1

(

)

2

(

)

0

(

)

1

(

.

3

r

r

r

r

-

<

-

 continue from Step 6, otherwise continue from Step 8.

Step 6. In this step the two smallest ratios are checked if either of them corresponds to directionality classes D2 or D4 and the smallest ratio is small enough. If 
[image: image54.wmf]}

6

,

2

|

{

)

0

(

=

Î

k

r

r

k

 and r(0) < 614 classify the block to corresponding class D(k(0)/2+1) and continue from Step 10, otherwise continue from Step 7.

Step 7. In this step a further check similar to that of Step 6 is performed. If
[image: image55.wmf]}

6

,

2

|

{

)

1

(

=

Î

k

r

r

k

and r(0) < 614 classify the block to corresponding class D(k(1)/2+1) and continue from Step 10, otherwise continue from Step 8.

Step 8. Directionality is not yet found therefore a slightly higher threshold value is tried for checking directionality. If r(0) < T1 defined in Table 9.1 classify the block to corresponding class D(k(0)/2+1) and continue from Step 10, otherwise continue from Step 9.

Table 9.1.  Orientation-dependent thresholds used for r(0) in Step 8.

Orientation Relation for r(0)
T1


[image: image56.wmf]}

6

,

2

|

{

)

0

(

=

Î

k

r

r

k


512


[image: image57.wmf]}

4

,

0

|

{

)

0

(

=

Î

k

r

r

k


307

Step 9. Directionality is not yet certain therefore a still higher threshold for checking the directionality can be tried. If r(0) < T2 defined in Table 9.2 classify the block to corresponding class D(k(0)/2+1) and continue from Step 10, otherwise continue from step Step 11.

Table 9.2.  Orientation-dependent thresholds used for r(0) in Step 9.
Orientation Relation r(0)
T2


[image: image58.wmf]}

6

,

2

|

{

)

0

(

=

Î

k

r

r

k


614


[image: image59.wmf]}

4

,

0

|

{

)

0

(

=

Î

k

r

r

k


410

Step 10. In this step a check whether that classification is really based on an edge in the image with certain orientation rather than texture. Find the minimum gradient value gmin = min{gk}. Depending on the classification and the size of the block, choose the threshold T3 from Table 9.3. If gmin
[image: image60.wmf]£

T3 the algorithm ends. Otherwise continue from Step 11.

Table 9.3. Classification-dependent thresholds used for gmin in Step 10.
Classification of the Block
T3 for 4(4 Block
T3 for 8(8 Block

D1, D3
9.210
7.210

D2, D4
14.210
11.210

Step 11. In this step a check whether texture is smooth or coarse is performed. If the maximum gradient value gmin
[image: image61.wmf]£

10.210 the block is classified as D5 (flat). Otherwise the block is classified as D6 (texture).

7.2 Mapping of Directionality Classes to Context Classes

After gradient-based directionality classifier, the 6 directionality classes D1 – D6 are directly mapped to produce the final context classes C1 – C6 for context-dependent prediction method selection. This mapping is illustrated in Figure 9.4. In addition to the six context classes there is one context class C0 used for "Non-Intra" blocks. As defined above, “Non-Intra” block is such a block that either does not exist (i.e. when block “C” is at the image boundary or at the slice boundary is SS mode is enabled) or it is not intracoded.


[image: image62.wmf]F

T

T

F

C3

C4

C2

C6

C5

Directionality

Classes

Context

Classes

D3

D4

D2

D6

D5

C0

"

Non-Intra

"

C1

D1


Figure 9.4. The mapping of the directionality classes D1 – D6 to context classes C1 – C6 for context-dependent prediction method selection.

7.3 Context-Dependent Prediction Method Subset Selection

The results of context classification of "L" and "U" blocks are combined and the prediction method subset for block “C” is selected from the Table 9.4. Each row of prediction methods defines the method subset for a certain context. The chosen prediction method is selected among the methods inside the subset. Table 9.4 defines also the ranking of the prediction methods in the subset. This rank is signaled by IPMR as described in Section 5.2.

Table 9.4. Context-dependent prediction method subsets.



Rank of Prediction Methods

L Class
U Class
Rank 1
Rank 2
Rank 3
Rank 4
Rank 5
Rank 6

C0
C0
P1
P5
P9
P8
P4



C1
P1
P9
P5
P8
P2
P10


C2
P1
P5
P2
P10
P3



C3
P5
P10
P1
P9
P7



C4
P1
P8
P5
P9
P6



C5
P1
P8
P5
P3
P2



C6
P1
P5
P9
P10
P8


C1
C0
P9
P1
P2
P10
P8



C1
P9
P1
P10
P2
P5



C2
P9
P1
P2
P5
P3



C3
P9
P5
P1
P10
P4



C4
P9
P1
P10
P5
P3
P7


C5
P9
P1
P10
P2
P8



C6
P9
P1
P10
P5
P2


C2
C0
P1
P9
P7





C1
P9
P1
P5
P2




C2
P1
P2
P3





C3
P5
P1
P9
P4
P10



C4
P1
P9
P5
P10
P7
P6


C5
P1
P9
P2
P7




C6
P1
P9
P5




C3
C0
P5
P1
P9
P10
P7



C1
P1
P9
P5
P10
P3



C2
P5
P1
P9
P4
P10
P3


C3
P5
P1
P10
P9




C4
P1
P5
P9
P6
P10
P7


C5
P1
P5
P9
P10
P3
P6


C6
P5
P1
P10
P9



C4
C0
P1
P9
P7
P8
P6
P10


C1
P9
P1
P5
P10
P8
P7


C2
P1
P5
P9
P10
P7



C3
P5
P1
P10
P9
P7



C4
P1
P10
P7
P9
P5
P8


C5
P1
P7
P9
P10
P8
P4


C6
P1
P9
P10
P5
P7
P8

Table 9.5. Context-dependent prediction method subsets (concluded).



Rank of Prediction Methods

L Class
U Class
Rank 1
Rank 2
Rank 3
Rank 4
Rank 5
Rank 6

C5
C0
P1
P9
P6
P7




C1
P1
P9
P5
P8
P10



C2
P1
P5
P4
P10




C3
P5
P1
P10
P6
P4



C4
P1
P8
P5
P10
P7



C5
P1
P9
P3
P5
P8
P10


C6
P1
P9
P5
P10
P8


C6
C0
P1
P9
P2
P5
P6



C1
P9
P1
P5
P10
P2
P3


C2
P1
P9
P5
P10
P2



C3
P5
P1
P9
P10




C4
P1
P9
P5
P7
P10



C5
P1
P9
P10
P2
P5
P7


C6
P1
P9
P5
P10



7.4 Prediction Methods

There are alltogether 10 different intra prediction methods, which are depicted for 8(8 blocks in Figure 9.7. Prediction methods for 4(4 block size can be derived similarly. In each case, prediction is done in causal manner using neighbouring reconstructed intracoded blocks as reference. The area used for prediction depends on the prediction method as depicted in Figure 9.5, where block “C” is the current block to be coded. For the case of intra prediction methods P1 – P9, the support for prediction reference is the area covered by four neighbouring blocks “L”, “UL”, “U” and “UR” as shown in Figure 9.5 (a). For prediction method P10, the area of prediction reference is larger, as depicted in Figure 9.5 (b). For chrominance in I frames and luminance in intra blocks of P frames the support for prediction method P10 is almost half smaller than the one depicted in Figure 9.5 (b). Blocks of 4x4 size do not use prediction method P10 at all. Block matching for 4x4 blocks is skipped. 


[image: image63.wmf]U

L

C

UL

UR



[image: image64.wmf]U

UL

UR

L

C



a)
b)

Figure 9.5.   Support of intra prediction reference for
a) prediction methods P1 – P9, b) prediction method P10.

7.4.1 Prediction Method P1

Prediction method P1 predicts the average pixel value of block “C” from the average pixel values of blocks “L”, “UL”, “U” and “UR”. The average pixel values dL, dUL and dU of the reconstructed blocks "L", "UL", and "U" are calculated as the integer division defined as


[image: image65.wmf]2

1

,

1

0

,

0

2

2

1

//

)

,

(

N

N

y

x

I

d

N

N

y

x

÷

÷

ø

ö

ç

ç

è

æ

+

=

å

-

-

=

=


(3)

where N is the size of the block (either 8 or 4), I(x,y) represent the pixel intensity values and "//" denotes division with truncation to integer value. The average pixel value dC of block "C" is predicted according to following rule set:

if all blocks “L”, “U” and “UL” exist then

if dL = dU = dUL then
dC = dUL


else if dUL = dU then
dC = dL

else if dUL = dL then
dC = dU

else if dL = dU then


if chroma prediction then
dC = dL


else if | dUL - dL | < 4 then
dC = s(dL + dU - dUL)



else
dC = dL

else if dUL < dL < dU then
dC = dU

else if dUL < dU < dL then
dC = dL

else if dU < dL < dUL then
dC = dU

else if dL < dU < dUL then
dC = dL

else if dL < dUL < dU OR dU < dUL < dL then
dC = s(dL + dU - dUL)

else if blocks “L and “U” exist then
dC = (dL + dU +1) // 2

else if blocks “L” and “UL” exist then
dC = dL
else if blocks “U” and “UL” exist then
dC = dU
else if block “L” exists then
dC = dL
else if block “U” exists then
dC = dU
else if block “UL” exists then
dC = dUL
else


dC = p
where p is a value that is in the middle of the possible pixel value range (e.g. 128), “//” denotes division with truncation and "s" is a clipping function that saturates the values to 0, …, 255 range. As a result, prediction block for "C" is filled up with the constant pixel value given by dC.

7.4.2 Prediction Methods P2 – P4

Prediction methods P2 through P4 predict diagonal shapes in block “C” by extending image details from the upper right direction to the prediction block for “C”. Prediction is performed by copying reference pixel values at the boundaries of “U” and “UR” blocks to prediction block for "C" as depicted in Figure 9.7. Reference pixels that are marked as gray are connected to one or more prediction pixels. The connection is marked as line with dots for the connected prediction pixels. Value of the reference pixel is copied to all connected prediction pixels. Since one or more reference blocks might be unavailable, i.e. their context class is C0, prediction is done according to following rules.

Rule 1 If both blocks “U” and “UR” are classified into one of classes C1 – C6, the pixel prediction is performed as illustrated in Figure 9.7. For the method P2, pixels without reference pixel in “UR” block are filled with value of the rightmost reference pixel in “UR” block.

Rule 2 If block “U” is classified into one of classes C1 – C6 and block “UR” is classified as C0, pixel prediction is performed as in Figure 9.7 for pixels that have reference pixel in block “U”. The rest of the pixels are set to value of the pixel in the lower right corner of the reference block “U”.

Rule 3 If block “U” is classified as C0, prediction block is filled with constant pixel value that is in the middle of the possible range of pixel values, e.g. 128.

7.4.3 Prediction Methods P5 and P9

Prediction methods P5 and P9 predict vertical and horizontal shapes in block “C” by extending image details either from up or from left to the prediction block for “C”. Depending on the selected method (P5 or P9), the reference pixel values at the boundary of either "U" or "L" block are copied to prediction block as depicted in Figure 9.7.

Rule 4 If the context class of the reference block is C0 then the prediction block is filled with the constant pixel value that is in the middle of the possible range of pixel values, e.g. 128.

7.4.4 Prediction Methods P6 – P8

Prediction methods P6 through P8 predict diagonal shapes in block “C” by extending image details from the upper left direction to the prediction block for “C” as depicted in Figure 9.7. Prediction is performed by copying reference pixel values at the boundaries of “L”, “UL” and “U” blocks to prediction block for "C" according to following rules.

Rule 1 If all blocks “L”, “UL” and “U” are classified into one of classes C1 – C6, the pixel prediction is performed as illustrated in Figure 9.7. 

Rule 2 If blocks “UL” and “U” are classified into one of classes C1 – C6 and block “L” is classified as C0, pixel prediction is performed as in Figure 9.7 for those pixels that have reference pixel in blocks “UL” and “L”. The rest of the pixels are set to value of the pixel in the lower left corner of the reference pixel area in block “UL”.

Rule 3 If blocks “L” and “UL” are classified into one of classes C1 – C6 and block “U” is classified as C0, pixel prediction is performed as in Figure 9.7 for those pixels that have reference pixel in blocks “L” and “UL”. The rest of the pixels are set to value of the pixel in the upper right corner of the reference pixel area in block “UL”.

Rule 4 If blocks “L” and “U” are classified into one of classes C1 – C6 and block “UL” is classified as C0, pixel prediction is performed as in Figure 9.7 for those pixels that have reference pixel in blocks “L” and “U”. Pixels with reference pixel in block “UL” are predicted as shown in Figure 9.6. In case of method P7, the prediction is average of the two reference pixel values rounded to nearest integer value.


[image: image66.wmf]P6

P7

P8


Figure 9.6.  Prediction of pixels that have reference pixels in non-existing block “UL”.

Rule 5 If block “L” is classified into one of classes C1 – C6 and blocks “UL” and “U” are classified as C0, pixel prediction is performed as in Figure 9.7 for those pixels that have reference pixel in block “L”. The rest of the pixels are set to value of the pixel in the upper right corner of the reference pixel area in block “L”.

Rule 6 If block “UL” is classified into one of classes C1 – C6 and blocks “L” and “U” are classified as C0, pixel prediction is performed as in Figure 9.7 for those pixels that have reference pixel in blocks “UL”. Pixels that have reference pixel in block “L” are set to value of the lower/left reference pixel in block “UL”. Pixels that have reference pixel in block “U” are set to value of upper/right reference pixel in block “UL”.

Rule 7 If block “U” is classified into one of classes C1 – C6 and blocks “L” and “UL” are classified as C0, pixel prediction is performed as in Figure 9.7 for those pixels that have reference pixel in block “U”. The rest of the pixels in prediction block are set to value of the pixel in the lower left corner of the reference pixel area in block “U”.

Rule 5 If all blocks “L”, “UL” and “L” are classified as C0, prediction block is filled with constant pixel value that is in the middle of the possible range of pixel values, e.g. 128.

7.4.5 Prediction Method P10

Prediction method P10 tries to predict the content of block “C” from the causal neighbouring image content. The prediction of the block "C" is done by copying reconstructed pixel values of reference block "B" that is inside the search range depicted in Figure 9.7. Search range is defined by a causal set of integer-valued horizontal and vertical displacements (dX, dY) decoded from bitstream (see Section 5.5). Such pair defines a displacement vector between the coordinates of upper left corner of block “C” and upper left corner of the reference block “B”. Prediction is allowed only for those displacements corresponding to reference block that is completely inside the reconstructed part of the frame. For luminance blocks in I frames the search range consists of 320 vectors whereas for chrominance in I frames and luminance in intra blocks of P frames the search range consists of 136 vectors. Intracoded blocks of 4x4 size do not use prediction method P10 (Block Matching) at all, P10 is simply skipped for this case.


[image: image67.wmf]DC

UL

DC

U

DC

L

DC

C

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

U

UL

UR

L

C

B


Figure 9.7.   Available intra prediction methods.

7.5 Restoring Intra Prediction DC Error

After intra prediction is performed a constant integer value is added for all pixels inside the block and then clipping to 0, 1, …, 255 range is applied. This constant value corresponds to restoration of DC intra prediction error and it is signaled in bitstream by IDCD item as described in Section 5.4. On top of this adjustment of DC the prediction error decoding is performed as described in following section.

8. Prediction Error Decoding

When prediction is done using either motion compensated prediction for INTER frames (see Section 8) or spatial prediction for INTRA frames (see Section 9), information about the prediction error is decoded.

Prediction error is coded using either 8(8 or 4(4 blocks as a basis. Therefore, coding methods are divided into 8(8 coding methods and 4(4 coding methods. Prediction error for the luminance is coded using 8(8 coding methods, while prediction error for chrominance components is coded in two different ways. If the whole macroblock is coded in one mode, the corresponding two 8(8 chrominance blocks are coded using 8(8 coding methods. If the 8(8 luminance blocks of the macroblock are coded in different modes, 4(4 chrominance blocks for each luminance block are coded using 4(4 coding methods.

8.1 Coding Methods for 8(8 Blocks

Coding method for each 8(8 block is signaled using the METH8 field of Section 6.1. Family of 8(8 coding methods include 5 different method categories:

1. 8(8 DCT with 3 different scanning orders: normal, horizontal and vertical.

2. 8(8 KLT
for 6 different diagonal orientations k(22.5(, k = 1, …, 3, 5, …, 7.

3. 8x4 DCT for 8 different error locations.

4. 8x4 Extrapolation for 4 different error locations.

5. Signaling of 4x4 coding of 8(8 block Quadrants, which involves also 4(4 coding methods described in Section 10.2.

The following five sections describe the decoding process for each of the 8(8 coding method categories.

8.1.1 8(8 Discrete Cosine Transform

Decoding of 8(8 DCT is performed as follows:

1. Sequence of Run-Length coded DCT coefficients signaled with TCOEFF field of Section 6.3 are decoded and inverse scanned. The choice of the scanning order for the coefficients is based on method information in METH8 field of Section 6.1 as described in Table 10.1 and also on coding mode of the block. INTRA and INTER blocks are scanned differently, as can be seen from Figure 10.1 and Figure 10.2. For example, if the coding method signaled in METH8 field is 52 and block is coded as INTRA, inverse scanning is done using horizontal scanning order for INTRA block shown in Figure 10.2. As can be seen, for INTRA scanning tables the DC component is skipped. This is due to the fact that for INTRA blocks DC component is being sent separately as IDCD Index as described in Section 5.4.

Table 10.1.   8(8 DCT methods for coding of an 8(8 block.
Method Number
Scanning 

Order

1
Normal

52
Horizontal

56
Vertical


[image: image68.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

2

6

7

15

21

22

36

3

5

8

14

20

23

35

37

4

9

13

19

24

34

38

49

10

12

18

25

33

39

48

50

11

17

26

32

40

47

51

58

16

27

31

41

46

52

57

59

28

30

42

45

53

56

60

63

29

43

44

54

55

61

62

64

Normal scanning



 EMBED Word.Picture.8  [image: image69.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

9

16

24

31

38

46

54

2

10

17

25

32

39

47

56

3

11

18

26

33

40

48

58

4

12

19

27

34

42

49

59

5

13

20

28

36

43

51

60

6

14

22

29

37

45

53

61

7

15

23

35

44

50

55

63

8

21

30

41

52

57

62

64

Horizontal scanning



[image: image70.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

21

16

17

18

19

20

22

23

30

24

25

26

27

28

29

35

41

31

32

33

34

36

37

44

52

38

39

40

42

43

45

50

57

46

47

48

49

51

53

55

62

54

56

58

59

60

61

63

64

Vertical scanning


Figure 10.1.   8(8 DCT coefficient scanning orders 8(8 INTER block.


[image: image71.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

5

6

14

15

27

28

2

4

7

13

16

26

29

42

3

8

12

17

25

30

41

43

9

11

18

24

31

40

44

53

10

19

23

32

39

45

52

54

20

22

33

38

46

51

55

60

21

34

37

47

50

56

59

61

35

36

48

49

57

58

62

63

Normal scanning



 EMBED Word.Picture.8  [image: image72.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

8

15

23

30

37

45

53

1

9

16

24

31

38

46

55

2

10

17

25

32

39

47

57

3

11

18

26

33

41

48

58

4

12

19

27

35

42

50

59

5

13

21

28

36

44

52

60

6

14

22

34

43

49

54

62

7

20

29

40

51

56

61

63

Horizontal scanning



[image: image73.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

2

3

4

5

6

7

8

9

10

11

12

13

14

20

15

16

17

18

19

21

22

29

23

24

25

26

27

28

34

40

30

31

32

33

35

36

43

51

37

38

39

41

42

44

49

56

45

46

47

48

50

52

54

61

53

55

57

58

59

60

62

63

Vertical scanning


Figure 10.2.   8(8 DCT coefficient scanning orders for 8(8 INTRA block.

2. DCT coefficients are inverse quantized using


[image: image74.wmf]INTRA

for 

      

          

)

1

2

(

)

(

INTER

for 

   

)

1

2

/

2

(

)

(

-

+

´

=

-

+

+

´

=

QP

LEVEL

QP

LEVEL

sign

v

QP

QP

LEVEL

QP

LEVEL

sign

v


(10-1)

3. Inverse DCT is calculated using fixed-point transform as described in the following.

First, one-dimensional inverse DCT is computed in horizontal direction for each line of the 8(8 DCT coefficient block and the intermediate result is rounded to use 4 bits for the fractional part as


[image: image75.wmf]11

10

8

2

2

1

×

+

=

VC

'

U


(10-2)

where V is the 8(8 DCT coefficient block, 1 is 8(8 matrix of ones, U’ is the intermediate 8(8 result of the horizontal inverse DCT and C8 is 8(8 DCT matrix. C8 is defined with 15 bits for the fractional part as


[image: image76.wmf]ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

=

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

3196

9102

13623

16069

16069

13623

9102

3196

6270

15137

15137

6270

6270

15137

15137

6270

9102

16069

3196

13623

13623

3196

16069

9102

11585

11585

11585

11585

11585

11585

11585

11585

13623

3196

16069

9102

9102

16069

3196

13623

15137

6270

6270

15137

15137

6270

6270

15137

16069

13623

9102

3196

3196

9102

13623

16069

11585

11585

11585

11585

11585

11585

11585

11585

8

C


(10-3)

Second, inverse DCT is calculated in vertical direction for each column of the 8(8 intermediate result block and the final result is rounded to integer precision as


[image: image77.wmf]19

18

8

2

2

1

×

+

=

U'

C

U

T


(10-4)

where U is the final difference block and T denotes transpose.

8.1.2 8(8 Karhunen-Loeve Transform

Karhunen-Loeve Transform (KLT) is designed to code error blocks with diagonal appearance. This can be seen from Figure 10.3 which shows the two KLT basis function sets trained for error blocks with diagonal orientations 22.5( and 45(. Other diagonal orientations k(22.5(, k = 3, 5, 6, 7 can be coded with one of these KLT basis functions by performing one of the block operations defined in (6-1).

Decoding of 8(8 KLT is performed in four steps:

1. Sequence of Run-Length coded KLT coefficients signaled with TCOEFF field of Section 6.3 are decoded  corresponding to order of the basis functions.

2. Coefficients are inverse quantized using (10-1).

3. KLT basis function set is selected according to coding method information signaled with METH8 field of Section 6.1 and inverse KLT for the is calculated with integer arithmetic as 


[image: image78.wmf]15

15

0

2

å

=

=

k

k

k

v

A

U


(10-5)

where vk is the kth KLT coefficient, Ak is the kth 8(8 KLT basis function defined in using fixed-point numbers with 15 bits for the fractional part and U is the result of the inverse KLT. The selected basis functions are the first 16 basis functions of the full set of 64 basis functions. Actual KLT basis functions aredefined in Annex I. 

4. Final difference block is obtained by applying block operation according to coding method signaled with METH8 field of Section 6.1, as shown in Table 10.2. For example, if the method is 46, block U is flipped with respect to its diagonal in order to obtain the final reconstruction block.

[image: image79.png]



(a)

[image: image80.png]



(b)

Figure 10.3.   Basis functions for 8(8 KLT (a) 22.5( orientation and (b) 45( orientation.

Table 10.2.   8(8 KLT methods for coding of an 8(8 block.
Method Number
Basis 

Functions
Block

Operation

44
22.5(
---

45
45(
---

46
22.5(
Flip Diagonal

48
22.5(
Rotate Right

49
45(
Flip Vertical

50
22.5(
Flip Vertical

8.1.3 Combination of 8(4 Discrete Cosine Transforms

In case of 8(4 DCT Combinations, the coding method information signaled with METH8 field of Section 6.1 defines the coded parts of an 8(8 block and 8x4 DCT is applied for those areas, as shown in Figure 10.4. As an example, method 2 codes the left half of the 8(8 block with 8x4 DCT, whereas method 4 codes the whole block by applying 8(4 DCT to both left and right halves separately. Therefore, the set of 8(4 DCT methods allows efficient coding of localized prediction error and prediction error that is distributed over the whole 8(8 block but has different statistical nature in different parts of the block.


[image: image81.wmf]DOCUMENTTYPE

NOKIA RESEARCH CENTER

Joni Vahteri

TypeDateHere

2

3

5

4

6

9

7

8


Figure 10.4.   Combinations of 8(4 DCT for coding of an 8(8 block. Coded area is shaded.

1. Sequence of Run-Length coded DCT coefficients signaled with TCOEFF field of Section 6.3 are decoded and inverse scanned according to the scanning order shown in Figure 10.5.


[image: image82.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

2

6

7

3

5

8

14

4

9

13

15

10

12

16

22

11

17

21

23

18

20

24

29

19

25

28

30

26

27

31

32


Figure 10.5.   8(4 DCT coefficient scanning order.

2. DCT coefficients are inverse quantized according to (10-1).

3. Inverse DCT is calculated using fixed-point transform as described in the following.

First, one-dimensional inverse DCT is computed in horizontal direction for each line of the 8(4 DCT coefficient block and the intermediate result is rounded to use 4 bits for the fractional part as


[image: image83.wmf]11

10

4

2

2

1

×

+

=

VC

U'


(10-6)

where V is the 8(4 DCT coefficient block, 1 is 4(4 matrix of ones, U’ is the intermediate 8(4 result of the horizontal inverse DCT and 4(4 DCT matrix C4 is defined as


[image: image84.wmf]ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

=

8867

21407

21407

8867

16384

16384

16384

16384

21407

8867

8867

21407

16384

16384

16384

16384

4

C


(10-7)

Second, inverse DCT is calculated in vertical direction for each column of the 8(4 intermediate result block and the final result is rounded to integer precision as


[image: image85.wmf]19

18

8

2

2

1

×

+

=

U'

C

U

T


(10-8)

where U is the final reconstruction block and C8 is defined (10-3).

8.1.4 4(4 Quadrants Coded Separately

Method 42 is used to signal separate coding of the 4(4 Quadrants of the 8(8 block. This requires that 4x4 coding method information (See Sections 6.2 and 10.2) is decoded for each of the Quadrants.

8.1.5 8x8 Extrapolation

The possible 8x8 extrapolation methods are depicted in Figure 10.6. In each case, the shaded part of the block is filled with the median of the intensity values of reference pixels. The reference pixels are the neighboring pixels in the corresponding prediction block, marked by dots for each extrapolation method.


[image: image86.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

66

68

67

69


Figure 10.6.   Extrapolation methods for 8(8 block. Coded area is shaded and pixels used for median calculation are marked with dots.

8.2 Coding Methods for Quadrant and 4(4 Chrominance Block

4(4 coding methods are used to code prediction error in 4x4 Quadrants of the 8x8 block and in single 4x4 chrominance blocks. In case of 4x4 Quadrants, scanning order of the Quadrants is from left to right starting from upper left Quadrant.
Coding method for each 4(4 block is signaled using the METH4 field of Section 6.2. Family of 4(4 coding methods include four different method categories:

1. 4(4 DCT with 3 different scanning orders: normal, horizontal and vertical.

2. 4(4 KLT
for 6 different diagonal orientations k(22.5(, k = 1, …, 3, 5, …, 7.

3. 4x4 Extrapolation

4. Signaling that the 4x4 block in question is not coded.

The following four sections describe the decoding process for each of the 4(4 coding method categories.

8.2.1 4(4 Discrete Cosine Transform

Decoding of 4(4 DCT is performed as follows:

1. Sequence of Run-Length coded DCT coefficients signaled with TCOEFF field of Section 6.3 are decoded and inverse scanned. The scanning order of the coefficients is chosen from Table 10.3 according to coding method information signaled with METH4 field of Section 6.2. For example, if the coding method is 4 then depending on whether the block is a single INTRA 4x4 chrominance or not, inverse scanning is done using either the horizontal scanning shown in Figure 10.8 or the horizontal scanning of Figure 10.7. As can be seen in Figure 10.8 for single 4x4 INTRA coded chrominance blocks the DC component is skipped. This is due to the fact that for single 4x4 INTRA coded blocks DC component is being sent separately as IDCD Index, as described in Section 5.4.

Table 10.3.   4x4 DCT methods for 4x4 Quadrants and 4x4 chrominance blocks.
Method Number
Scanning 

Order

3
Normal

4
Horizontal

8
Vertical


[image: image87.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

2

6

7

3

5

8

13

4

9

12

14

10

11

15

16

Normal scanning



 EMBED Word.Picture.8  [image: image88.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

5

9

13

2

6

10

14

3

7

11

15

4

8

12

16

Horizontal scanning



 EMBED Word.Picture.8  [image: image89.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Vertical scanning


Figure 10.7.   4(4 DCT coefficient scanning orders for 4(4 Quadrant.


[image: image90.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

5

6

2

4

7

12

3

8

11

13

9

10

14

15

Normal scanning



 EMBED Word.Picture.8  [image: image91.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

Horizontal scanning



 EMBED Word.Picture.8  [image: image92.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Vertical scanning


Figure 10.8.   4(4 DCT coefficient scanning orders for INTRA Single
4(4 Chrominance block.

2. DCT coefficients are inverse quantized using (10-1).

3. Inverse DCT is calculated according to 


[image: image93.wmf]10

9

4

2

2

1

×

+

=

VC

U'


(10-9)

and


[image: image94.wmf]20

19

4

2

2

1

×

+

=

U'

C

U

T


(10-10)

where U is the final reconstruction block and C4 is defined in (10-7).

8.2.2 4(4 Karhunen-Loeve Transform

Decoding of 4(4 KLT is similar to decoding of 8(8 KLT, but 4(4 KLT uses only 8 basis functions and inverse KLT is thus calculated as 


[image: image95.wmf]15

7

0

2

å

=

=

k

k

k

v

A

U


(10-11)

where Ak is the kth 4(4 KLT basis function. The two basis function sets are depicted in Figure 10.9 and the actual values are given in Annex II.

Block operation for obtaining the final reconstruction block is selected according to coding method information signaled with METH4 field of Section 6.2, as shown in Table 10.4.

Table 10.4. 4(4 KLT methods for 4x4 Quadrants and 4(4 chrominance blocks.
Method Number
Basis 

Functions
Block

Operation

33
22.5(
---

34
45(
---

35
22.5(
Flip Diagonal

37
22.5(
Rotate Left

38
45(
Flip Vertical

39
22.5(
Flip Vertical

[image: image96.png]



[image: image97.png]i
il
]




(a)


(b)

Figure 10.9.   Basis functions for 4(4 KLT (a) 22.5( orientation and (b) 45( orientation.

8.2.3 4(4 Not Coded

Method 0 is used to signal that the error in the 4(4 block is not coded and the corresponding prediction is copied to reconstruction frame.

8.2.4 4(4 Extrapolation

Operation of the method 1 depends on whether the 4x4 pixel area is a 4x4 Quadrant of 8x8 block or a single 4x4 chrominance block, as can be seen from Figure 10.10. The shaded area is filled with the median of the intensity values of reference pixels that are marked by dots. The reference pixels are the pixels of the corresponding prediction block. In case of 4x4 Quadrant, reference pixels are the 9 neighboring pixels outside the Quadrant. For 4x4 chrominance block the reference pixels are the 12 boundary pixels of the 4x4 block.


[image: image98.wmf]NOKIA RESEARCH CENTER

Joni Vahteri

(

a)

(

b)


Figure 10.10.   Extrapolation methods for (a) 4(4 Quadrant and (b) 4(4 chrominance block. Coded area is shaded and pixels used for median calculation are marked with dots.

9. Deblocking Filter

Deblocking filtering is performed at the 8x8 block boundaries using the adaptive filter described in Annex III. For all the I-frames and those P-frames for which the LOOPF indicates loopfiltering the filtering is done inside the block coding loop. In I-frames all luminance and chrominance components are filtered whereas in P-frames the filtering is performed only on the luminance component.

9.1 Deblocking Filtering in I-frames

The deblocking filtering in I-frames is done inside the block coding loop in a recursive fashion as illustrated in Figure 11.1. As soon as an 8x8 block (luminance or chrominance) is reconstructed in decoder the filtering is performed first across its left side then across its upper side. At a given time, the filter input consists of a frame buffer containing (a) all the previous reconstructed and filtered 8x8 blocks and (b) the current reconstructed block (which is just about to be filtered). Upon filtering, pixel values (inside the current, left, or upper block) are updated in the same frame buffer. Subsequently, when intra prediction is performed for the next block the texture used for prediction is the one contained in the frame buffer. In this way, a much smoother texture is used in intra prediction resulting in reduced amount of visual artefacts due to intra prediction itself. 

In case the block is lying at a border of the frame then the filtering is not performed to that side where there exists no neighbouring (left or upper) block.


[image: image99.wmf]DOCUMENTTYPE

1

 (

TypeUnitOrDepartmentHere

TypeYourNameHere

TypeDateHere

BLOCK

CODING

BLOCK

DECODING

BLOCK

FILTERIN

G

FRAME

BUFFER

INTRA

PREDICTI

ON

INTRA

PREDICTI

ON

ESTIMATI

ON

MULTIPLEXING

DEMULTIPLEXING

BLOCK

DECODIN

G

BLOCK

FILTERI

NG

FRAME

BUFFER

INTRA

PREDICTI

ON


Figure 11.1.  Embedded intra coding loop filtering in I-frames.

9.2 Deblocking Filtering in P-frames

Deblocking filtering in P-frames is done inside the frame coding loop only if indicated by LOOPF. Filtering is performed at 8x8 block boundaries after the entire P-frame is reconstructed using adaptive filter described in Annex III. Filtering is done one 8x8 block at a time scanning from upper left corner to the lower right corner of the picture. Filter is applied first on the left boundary of the block and right after that on the upper boundary using fixed point intermediate values with 16 fractional bits. Chrominace components are not filtered.

10. Annex I
8x8 KLT Basis Functions

kltBasisFunc8x8Diag1[1024] = { 

    -3988,   -4922,   -5553,   -5857,   -6051,   -6243,   -6425,   -6392,

    -2112,   -3129,   -4125,   -4897,   -5484,   -5886,   -6080,   -6172,

     -230,    -986,   -1866,   -2736,   -3563,   -4282,   -4889,   -5256,

     1877,    1264,     481,    -362,   -1223,   -1954,   -2730,   -3446,

     3588,    3332,    2866,    2193,    1313,     464,    -391,   -1248,

     4479,    4484,    4334,    4032,    3579,    2846,    1945,    1026,

     4781,    4979,    5044,    4859,    4691,    4426,    3772,    2943,

     4549,    4783,    5014,    5084,    5111,    4975,    4800,    4420,  

      654,    2036,    3439,    4487,    5386,    6036,    6497,    6643,

    -2787,   -1941,    -616,     796,    2345,    3594,    4471,    5153,

    -4377,   -4832,   -4650,   -3800,   -2549,   -1115,     366,    1544,

    -2884,   -4316,   -5566,   -5965,   -5905,   -5346,   -4239,   -2874,

      478,   -1039,   -2834,   -4442,   -5714,   -6149,   -6129,   -5604,

     3604,    2672,    1262,    -377,   -2250,   -3796,   -4996,   -5321,

     5195,    5042,    4509,    3536,    2135,     598,   -1338,   -2900,

     5365,    5566,    5721,    5450,    4936,    4010,    2787,    1345,  

    -2576,   -1207,     570,    2722,    4844,    6566,    7756,    8423,

    -4211,   -4809,   -4699,   -3482,   -1603,     495,    2603,    4531,

     -974,   -2525,   -4275,   -5242,   -5664,   -5085,   -3584,   -1739,

     3028,    2318,     901,    -875,   -2896,   -4141,   -4836,   -4753,

     2908,    4471,    5045,    4527,    3180,    1665,    -334,   -1972,

    -1457,     581,    2949,    4812,    5852,    5785,    4840,    3283,

    -5321,   -4555,   -2706,    -322,    2227,    4080,    5265,    5427,

    -6539,   -6751,   -6317,   -5167,   -3426,   -1345,    1092,    2799,  

     3083,    3465,    2654,     453,   -2732,   -5606,   -7631,   -8772,

     -132,    2363,    4754,    5629,    4866,    3050,     513,   -2415,

    -3503,   -3410,   -1544,    1081,    3843,    5398,    5687,    4285,

     -515,   -2570,   -4813,   -5111,   -3657,   -1671,     964,    2592,

     3072,    3302,    1462,   -1612,   -4490,   -5553,   -4702,   -2989,

      642,    3231,    5556,    5633,    3509,     335,   -2681,   -3834,

    -4569,   -2718,     559,    3655,    6023,    6184,    4172,    1430,

    -8259,   -7756,   -6149,   -3755,    -692,    1960,    4024,    4255,  

    -5377,   -4591,   -3777,   -2454,    -782,    1417,    3478,    4406,

    -5794,   -4378,   -3263,   -2427,   -1920,   -1151,     176,    1756,

    -7267,   -4906,   -1644,    1014,    2419,    2678,    2141,    2215,

    -8930,   -7555,   -4717,    -836,    3431,    6320,    7463,    6997,

    -5998,   -6317,   -5757,   -3655,    -613,    2924,    6994,    9282,

    -1553,   -1066,   -1159,    -972,    -534,     185,    2042,    4689,

    -1370,     274,    1824,    3127,    3667,    3943,    3554,    3231,

    -3706,   -2350,    -821,    1142,    3127,    4617,    5342,    5075,  

     1076,    -968,   -2881,   -2943,    -447,    2998,    6964,    9880,

     5817,    4699,    1217,   -2993,   -5883,   -6348,   -4790,   -1065,

     4016,    5275,    6300,    5121,    1887,   -2125,   -5845,   -7056,

     1336,     -42,      91,    1631,    3536,    4068,    2171,    -667,

     4280,    2253,   -1369,   -3837,   -4797,   -3421,    -643,    1017,

     4105,    5300,    4451,    1565,   -2677,   -6039,   -7390,   -6249,

    -1947,      -1,    2687,    4116,    3861,    1650,   -2639,   -6084,

    -6631,   -6556,   -4469,   -1907,     944,    2490,    2277,     444,  

    -9786,   -9086,   -5449,   -2010,    -365,     249,     -43,    -851,

    -6767,   -7274,   -5749,   -2738,     697,    2947,    4004,    3570,

     -225,   -1645,   -1783,    -769,    1322,    4021,    6915,    7875,

     6005,    3365,    1000,      16,     485,    2081,    4926,    7270,

     8092,    7206,    4530,    1584,    -395,   -1081,      80,    2015,

     4475,    4674,    4112,    2283,    -586,   -3031,   -3991,   -3428,

     1296,     970,     576,       5,   -1436,   -3818,   -5922,   -6722,

      150,    -140,    -694,   -1111,   -1768,   -2916,   -4552,   -6169,  

     7360,    8742,    5987,    2424,    -579,    -991,    1037,    3463,

    -3355,     519,    2949,    2461,    -961,   -4457,   -6336,   -5408,

    -8797,   -8645,   -5226,   -1435,     672,    -342,   -3882,   -6764,

     -705,   -4333,   -5554,   -3965,    -215,    3239,    4097,    2168,

     7093,    5343,    2572,     759,     293,    2134,    5662,    7957,

     4518,    4345,    3505,    2678,    1509,     756,    1411,    3792,

     2886,    1098,    -760,   -1530,   -2145,   -2687,   -2744,   -1561,

     3902,    2261,    -316,   -2398,   -4206,   -5220,   -5562,   -5414,  

     -926,   -2819,   -4908,   -5669,   -4002,     124,    4788,    7983,

     1127,    1922,    2107,     247,   -2461,   -3761,   -2876,     -83,

     -722,    -650,    1359,    3732,    5096,    4321,    2024,     -40,

     2268,     268,   -2764,   -3805,   -1949,    1083,    3592,    3879,

       40,    3020,    3488,     235,   -3807,   -6033,   -5141,   -2380,

    -7468,   -5884,    -632,    3683,    4965,    1967,   -2202,   -4186,

     -780,   -5779,   -8078,   -5696,    -248,    4004,    5224,    3749,

    12165,    8941,    2547,   -2395,   -4725,   -2651,    1828,    4538,  

     1477,    5100,    7761,    8270,    5729,    1433,   -2194,   -3637,

    -7121,   -6169,   -3530,    -573,     594,    -860,   -3433,   -5148,

      917,   -1642,   -3379,   -2812,   -1537,    -982,   -2044,   -3284,

     6903,    6853,    4822,    3162,    2985,    4290,    4621,    3704,

     -934,    1986,    3187,    1876,     273,     195,    1688,    3749,

    -6445,   -5701,   -2652,   -1129,   -2463,   -5465,   -7199,   -6563,

    -3365,   -4123,   -3277,    -684,    2227,    2301,    -977,   -4762,

     2087,    1240,     642,    1438,    3273,    6253,    8260,    6553,  

    -2180,   -3131,    -551,    3613,    6407,    3459,   -4060,  -11296,

     4520,    3033,   -1809,   -3532,    -435,    4622,    7885,    5070,

    -1241,    2449,    4386,    1762,   -3152,   -6138,   -4797,    -513,

    -4720,   -5919,   -3354,    1188,    4457,    3159,   -1917,   -4795,

     3821,    1776,   -2345,   -4279,   -2749,    1378,    5241,    4748,

      -61,    2890,    5240,    4071,     470,   -2454,   -2235,    1028,

    -2632,   -5354,   -4256,    -306,    3269,    3521,      56,   -2410,

    10713,    5324,   -2223,   -5782,   -5240,   -1495,    1889,    1811,  

     3477,    -229,   -5661,   -8213,   -6452,   -3132,     384,    2678,

     3594,    5444,    5076,    2911,    1392,    2303,    4499,    6802,

    -4411,   -4321,   -2558,   -1453,   -1266,   -1897,   -1292,    1648,

     2130,    -311,   -2600,   -2998,   -1860,   -1635,   -3532,   -4574,

     3177,    5425,    4545,    3060,    3225,    4898,    5571,    3457,

    -7056,   -2844,     359,     178,   -1491,   -2151,     -47,    2766,

    -7143,   -5578,   -2595,    -673,    -833,   -3613,   -7607,   -8116,

    -1598,    -222,    2582,    5470,    7703,    8057,    5143,     380,  

    -8504,   -3442,    1280,    3810,    4776,    3274,     872,   -1723,

    -5709,    -546,    3564,    4448,    2597,     711,   -1100,   -2687,

    -6604,   -1432,    4691,    8911,    8296,    3223,   -2850,   -6711,

    -6206,   -3124,      78,    3104,    5100,    3312,   -1880,   -7444,

    -3772,     411,    4855,    5889,    3979,    1180,   -2279,   -6167,

    -4469,   -2250,    2031,    5985,    6813,    4325,     190,   -4038,

     -927,     643,     931,    1435,    1326,     223,   -2227,   -5452,

    -2731,     294,    3644,    4246,    3053,     823,   -2876,   -6649,  

     9954,    4500,   -1551,   -2745,   -1298,    -403,     -69,     127,

     4439,    2228,   -2582,   -5796,   -4271,    -642,    2202,    3427,

    -1353,      74,   -1662,   -5025,   -6330,   -3864,    1661,    5203,

    -5784,    -882,    3227,    3239,     730,    -282,    3001,    8095,

    -9040,   -4729,    3688,    6813,    4083,    1054,   -1111,      95,

    -3249,   -2460,    2557,    7671,    7689,    2387,   -3883,   -7254,

     2490,    2659,    2918,    4393,    5409,    4221,    -980,   -7380,

      398,     907,     114,   -1169,   -1859,   -1960,   -3025,   -6102,  

    -1911,   -1529,     424,    1953,     618,    -911,   -1382,   -1162,

      513,   -4261,   -6670,   -6310,   -4583,   -5349,   -8379,   -9999,

     1055,    1975,   -1068,   -3876,   -2456,     982,    3146,    1562,

    -8271,   -6107,   -3174,   -2581,   -4647,   -6029,   -2870,    1213,

    -1139,   -2789,   -3679,   -2951,   -1155,   -1665,   -4162,   -5477,

    -3117,     543,    2402,     519,   -1455,    -504,    2277,    2211,

   -10745,   -9553,   -4243,   -1146,   -2432,   -5771,   -7356,   -5485,

     1893,    -975,   -2403,    -522,    2066,    1989,   -1222,   -4995,  

     2115,   -2296,   -2955,    2009,    8001,    6730,    -939,   -9805,

     5654,    4378,   -2186,   -7467,   -7160,   -2119,    1747,    -130,

    -1631,   -1517,     479,    1027,    -931,   -2501,   -2399,    -975,

     3258,   -1211,   -6475,   -6759,   -2136,    2069,    3637,    4206,

     1543,    3836,    3085,    -632,   -4887,   -5327,   -1583,    2940,

    -3515,   -4624,   -3621,    -348,    2788,    2748,      66,    -762,

      973,    2713,    -887,   -5226,   -5599,   -3018,    1041,    3740,

   -11443,   -2424,    7235,    7819,    2920,   -1939,   -2607,    -207  

};

kltBasisFunc8x8Diag2[1024] = {

     -258,    1540,    3133,    4404,    5305,    5895,    6083,    5860,

    -1855,     -29,    1770,    3620,    4862,    5607,    6114,    6150,

    -3595,   -2031,     -36,    2032,    3840,    5133,    5884,    6165,

    -4610,   -3802,   -2166,     -48,    1880,    3778,    5061,    5627,

    -5047,   -4806,   -3954,   -2337,    -250,    1731,    3482,    4693,

    -5215,   -5265,   -4970,   -4003,   -2370,    -399,    1649,    3313,

    -5273,   -5388,   -5391,   -4941,   -3845,   -2217,    -348,    1511,

    -4996,   -5297,   -5544,   -5332,   -4851,   -3524,   -2101,    -562,  

     2947,    2580,     881,   -1222,   -3301,   -5794,   -7101,   -6674,

     2428,    4216,    3575,    1280,   -1316,   -3584,   -6105,   -7066,

      244,    3242,    5222,    4408,    1870,   -1032,   -3607,   -5625,

    -1939,     842,    3792,    5671,    5050,    2289,    -645,   -2860,

    -4042,   -2092,    1058,    4015,    6039,    5310,    2866,      33,

    -5371,   -4432,   -1902,    1228,    4101,    6053,    5424,    2948,

    -6023,   -5742,   -4416,   -1849,    1174,    3947,    5736,    4838,

    -5795,   -5990,   -5412,   -3948,   -1807,    1047,    3707,    5085,  

    -1932,   -3381,   -3601,   -2788,    -115,    4689,    7654,    7719,

      774,   -1435,   -3647,   -4148,   -3003,    -213,    4835,    7887,

     2551,    2210,    -847,   -3870,   -4625,   -3706,    -476,    4377,

     1678,    4290,    3576,    -122,   -3327,   -4472,   -3678,    -784,

    -1445,    2779,    5707,    4774,     829,   -3047,   -4412,   -3535,

    -5553,   -1786,    3459,    6320,    5605,    1143,   -2650,   -3650,

    -7463,   -5823,   -1792,    3192,    6125,    5280,    1637,   -1577,

    -7116,   -7024,   -5179,   -1500,    2643,    5246,    4650,    1992,  

     6033,    3883,     368,   -3539,   -3155,    2411,    7788,    9131,

     4184,    6306,    3823,   -1065,   -5269,   -4354,    1998,    7424,

      186,    3320,    6236,    2903,   -2650,   -6512,   -4817,    1291,

    -2285,   -1844,    2043,    5405,    2037,   -3251,   -6381,   -4864,

    -1302,   -4444,   -3623,     842,    4472,    1095,   -3514,   -6131,

     2798,   -2117,   -5619,   -4546,    -355,    3426,     386,   -3962,

     5688,    2650,   -2388,   -5434,   -4733,    -935,    1691,    -745,

     6089,    5178,    1778,   -2382,   -4859,   -4222,   -1484,     799,  

    -7229,   -7026,   -6590,   -5245,   -2637,    -319,     995,    1683,

    -7035,   -6080,   -5361,   -4840,   -3404,   -1414,     794,    2086,

    -6594,   -5599,   -3620,   -3026,   -2240,   -1110,     498,    2236,

    -4711,   -4979,   -2759,   -1036,    -151,     506,    1321,    2262,

    -1919,   -3469,   -2799,      -4,    2118,    2904,    3384,    3621,

     1566,   -1304,   -2442,    -946,    2562,    5065,    6037,    5400,

     5097,    1984,    -830,   -1074,     957,    4983,    8009,    7927,

     5340,    5030,    2255,     137,     337,    2691,    6978,    9602,  

     1293,   -2794,   -2672,    1871,    4124,     287,   -5095,   -8047,

     5257,    1071,   -4185,   -3512,    2905,    5901,    1454,   -4765,

     4036,    5884,    1222,   -4723,   -3737,    3384,    7131,    2531,

     -597,    3393,    6072,    1037,   -5234,   -4045,    3255,    6270,

    -2860,   -3386,    2252,    5400,     600,   -5205,   -3697,    2098,

      912,   -5563,   -4791,    1090,    4419,     553,   -4469,   -3151,

     6346,    -260,   -6603,   -5455,    -262,    3281,     272,   -3534,

     8004,    5352,   -2053,   -6639,   -5455,    -862,    2053,     393,  

     -868,    4144,    8522,    6968,    3691,    1340,    -334,   -1409,

    -6275,   -1597,    4759,    7530,    4992,    2073,     -63,   -1539,

    -7271,   -5159,    -793,    3616,    3399,    1047,    -599,   -2240,

    -6133,   -5147,   -2739,    -310,     545,   -1332,   -3319,   -4086,

    -4636,   -4390,   -1492,     561,      32,   -2596,   -5818,   -6908,

    -1689,   -3173,   -1581,    2288,    3697,     941,   -5031,   -8602,

     2340,     468,   -1024,    2179,    5855,    6082,    1529,   -6048,

     2900,    3270,    1506,    1114,    5146,    7500,    7336,    2093,  

     4625,   -1191,   -3797,    -744,    4061,    2553,   -3944,   -7857,

     1337,    4819,   -1280,   -4979,    -718,    4975,    4419,   -1818,

    -5008,     454,    5551,    -899,   -5271,   -1176,    5594,    5452,

    -5259,   -5687,     -70,    5806,    -486,   -5024,   -1243,    4915,

      157,   -3283,   -5538,    -567,    5479,    -389,   -4150,   -1332,

     1597,    4654,    -422,   -4474,   -1078,    4210,    -715,   -3445,

    -5597,    3663,    8066,    2483,   -2416,    -866,    2541,    -803,

    -9689,   -4519,    5811,    9064,    3686,   -1006,    -559,    1581,  

     -128,   -2029,   -4609,   -4509,   -2954,    -655,     599,    1535,

     3123,    1674,     -56,   -1770,   -3243,   -2879,    -543,    1474,

    -3091,    4115,    2742,    1993,    1248,     109,    -927,     787,

   -10348,   -1107,    4674,    2509,    2520,    3728,    3320,    1593,

   -10861,   -6741,    1762,    3858,    -105,    1253,    4856,    5410,

    -4743,   -5861,    -163,    3882,    1077,   -4467,   -1285,    4246,

     1700,    -315,    1506,    5439,    5113,   -2022,   -8971,   -3967,

     3615,    2794,    3176,    6422,    7745,    3980,   -4040,   -9670,  

     7781,    7338,   -1087,   -7308,   -3909,     970,   -2704,   -7447,

      -86,    6461,    5618,   -2843,   -7042,   -1091,    4200,     532,

    -1515,   -4236,    1503,    2909,   -2278,   -3154,    3309,    7899,

     2998,   -2500,   -7458,   -2031,     669,    -882,     -97,    5765,

     2099,    3811,   -1376,   -7254,   -3691,    -665,    -247,    1815,

    -2424,   -1031,    3365,      58,   -5011,   -3131,   -1339,      92,

     1585,   -6151,   -4444,    2901,    3694,    -666,    -535,     230,

     8274,    -155,   -7845,   -3897,    4677,    6335,    2221,    2367,  

    -8876,   -4230,      84,     -79,    2514,    6103,   -1708,  -10442,

    -6229,   -5525,     252,     718,    -808,    3403,    7097,     238,

     -400,   -2432,     -72,    4181,     967,   -3365,    1133,    5966,

     1863,    2173,    1521,    4471,    7525,     363,   -6202,   -2691,

     -235,    3159,    3367,    3069,    5971,    7558,   -1004,   -7811,

    -1963,     -13,    3333,    3024,    1414,    3659,    5198,   -1582,

     1980,   -2315,     -46,    1635,    -116,   -3430,   -2156,     972,

     6389,     692,   -3177,   -1765,   -1610,   -4405,   -8623,   -6952,  

     4171,    2325,    4273,    6648,    7084,    6191,     797,   -3897,

     6649,     713,   -2327,    -333,    2272,    3153,    2561,    -825,

     5145,    3656,   -3487,   -5416,   -4067,   -4002,   -2818,   -2207,

    -1381,    2927,    -790,   -5739,   -3966,   -3634,   -5645,   -6373,

    -7143,   -2366,     409,   -3569,   -4235,     958,    1344,   -3227,

    -5410,   -5814,    -119,    -439,   -4658,   -1044,    6806,    6552,

      536,   -2511,     812,    3239,    -613,   -3754,    2418,   10719,

     3655,    1895,    2426,    5985,    4742,     712,   -1167,    5226,  

    -2958,    5865,    6134,   -3475,   -5558,    2275,    -741,  -10666,

     2009,   -4104,    4822,    4273,   -5519,   -4250,    5912,    3051,

     2207,    1971,   -5448,    1686,    1131,   -4645,    -665,    8712,

     -723,    1804,    2397,   -6522,    -523,     -21,   -3063,    1079,

      -56,   -4059,     758,    3299,   -5991,    -580,    1477,    1142,

     4190,    -516,   -5427,     630,    4101,   -3796,     681,    3728,

    -1169,    6868,    -114,   -5001,     911,    4392,   -2716,    2039,

   -10622,    1256,    6759,    -928,   -4291,     336,    4419,   -2580,  

     1854,   -4048,   -8512,   -1547,    6651,    9337,    3675,   -4151,

     5847,    1479,   -3354,   -3858,    1345,    4015,    3688,   -2041,

      875,    2505,     695,    1105,    2303,    1462,   -2938,   -6438,

      561,   -3803,   -1293,    -611,    4150,    5554,    -302,   -9618,

     7104,   -2263,   -5150,   -1973,   -1558,    4106,    5238,   -2735,

     8010,    2274,   -3544,   -2642,     -95,   -3061,    1826,    1440,

     1941,    1161,   -3526,   -1637,    3863,    3994,   -3355,   -3407,

    -3451,   -1442,   -3976,   -4705,    2353,    8035,    5728,   -4700,  

    -5118,   -6090,   -4115,   -4382,   -5205,   -2483,     -59,   -2058,

     4606,   -1623,    -876,    3231,    2234,   -1162,    2032,    3174,

     9611,    5320,    -137,    3926,    8245,    5614,    2512,    4004,

     5724,    4613,      14,    -783,    5032,    6242,    2125,    1153,

    -2900,    -485,   -3177,   -4782,   -1614,    1737,   -2359,   -6187,

    -5881,   -3908,   -3176,   -7167,   -4616,      61,   -1092,   -8499,

    -1642,   -2208,    2426,    -412,   -4067,     495,    3080,   -2244,

     2702,     261,    4117,    7028,    3458,    1930,    6421,    5060,  

     7201,    3156,   -6569,   -6319,    2970,    8406,    4660,   -2395,

    -6164,    4919,    1543,   -2118,   -1181,    2661,    2610,   -3322,

       94,   -5931,     617,    1046,    3365,    3188,    -434,   -5088,

     4125,    4664,   -3934,     385,    1008,    4560,    3988,   -2153,

    -5041,    4235,    7388,    -514,     882,    -781,    1579,    1351,

    -6031,   -4582,    2337,    6004,     465,    1780,   -2359,   -2088,

      176,    4717,   -1311,   -1590,     415,   -1261,    3495,   -1729,

    -6759,    8200,   11233,   -1115,   -4370,   -2511,   -2002,    4005  

};

11. Annex II
4x4 KLT Basis Functions

kltBasisFunc4x4Diag1[128] = {

    -7446,   -6782,   -5521,   -4008,   -9684,   -9742,   -9275,   -8279,

    -8636,   -9522,   -9999,   -9844,   -5792,   -6883,   -7981,   -8698,

     7671,   10629,   12751,   13614,    -308,    2831,    6332,    8951,

    -7576,   -5912,   -3198,    -195,  -10076,   -9854,   -8802,   -6844, 

     -404,    4676,   10975,   14787,   -7807,   -8455,   -5973,   -1321,

     2767,   -2287,   -7236,   -9149,   14108,   11894,    7053,    1858, 

     7486,    4611,   -4944,  -14020,   -1301,    4939,   10104,    8797,

    -6371,  -10502,   -8075,   -1814,   15263,    7174,   -3040,   -7530, 

   -14798,   -6925,     761,    3136,  -14831,   -5817,    6419,   13209,

    -5880,   -3268,    5521,   15180,    2762,     474,    -160,    3570,

    11777,   13550,    1455,  -12289,  -14832,   -9062,   -1594,   -1865,

    -1560,    -117,     874,    2662,   -9338,    -700,    8017,   11306,

    -7647,   -2425,     211,   -4786,     -23,   -1934,    7098,   16607,

    12002,    5112,   -9806,  -14096,  -11748,    1774,    7019,    -980,

     1206,    5922,    3038,   -4477,   -7347,   -7203,   -2352,    -338,

    17736,    9096,    3817,    6481,    4302,   -1105,  -12065,  -16649 

};

kltBasisFunc4x4Diag2[128] = {

    -9234,   -9510,   -7990,   -5254,   -8003,   -9860,   -9856,   -8025,

    -5686,   -8261,   -9830,   -9609,   -3088,   -5600,   -8038,   -9413,

     1138,   -5589,  -10863,  -11885,    7294,    1268,   -6328,  -10835,

    11539,    8172,    1518,   -5579,   12083,   11409,    7617,    1426,

    -7056,   -1868,    9470,   14748,   -1597,   -8429,   -1824,    9405,

    10264,    -599,   -8410,   -2847,   14317,   10163,    -871,   -7365,

      835,    9063,    -132,  -15550,   -9023,     266,    9533,     694,

      426,  -10131,    -809,    9097,   16800,     329,  -10316,   -1071,

   -18954,   -2689,    3749,  -12140    -3475,  -10202,    4530,    6038,

     3412,    3871,     -94,    9498,  -10296,    5539,    9254,    5779,

     6818,    9908,    5138,  -11113,    9472,     250,    3678,    4220,

     5105,    4119,   -9920,   -4938,  -11109,    3746,   -2091,  -18717,

    -1428,  -13192,   -9061,    1432,   14056,     632,     578,    7189,

     9125,     780,     623,   14463,   -1327,   -6568,  -14820,   -2341,

      756,   -7078,    7288,   -9916,    9565,   -1489,   -4249,   13806,

   -12813,    3952,   -2182,   -5483,   12110,  -12309,    7440,    1011

};
12. Annex III
Deblocking filter 

The aim of the deblocking filter is to remove blocking artefacts without altering the real edges in the reconstructed frames. To determine which pixels can be updated without degrading real edges, the following two assumptions are made:

· The gray-level difference in case of real edges are larger than that of blocking artefacts.

· Real edges having small gray level changes are not destroyed visually if smoothed by the filter.

The method used can be summarised as follows:

1. Determine the pixels at left and right (above and below) of the 8x8 grid boundary which are to be updated.

2. Determine the size of the support window. That is, pixels which will be used to update the pixel close to the boundary.

3. Update by averaging over the window.

4. Round the average to nearest gray-level.

All calculations are carried out using fixed point arithmetics with 16 bits fractional part.

12.1 Filter Description

In the following description it is assumed that vertical grid boundary is to be filtered (that is, horizontal filtering takes place). Horizontal grid boundaries are filtered utilizing the same algorithm, but 'left' pixels should be substituted by 'above' pixels and 'right' pixels by 'below' pixels.

Up to three pixels can be updated as a result of the filtering process on both sides of the boundary (l3, l2, l1, r1, r2, r3 in Figure 14.1). The number of updated pixels on both sides of the boundary depends on corresponding right and left activity parameters dr and dl. Both activity parameters are limited by the overall activity parameter n (See Figure 14.1).




Figure 14.1 Pixels that can be used in filtering and an example of related activity parameters.
The calculation of the overall activity parameter n is done as follows:




where (=|r1-l1| is the gray level difference across the boundary and ( = QP*log(QP) is a QP dependent parameter for thresholding.

The right filter activity parameter dr is equal to the smallest i, not larger than n/2, for which |r1-ri+1| > (/i (i > 0). If no i < n/2 satisfies the condition, dr is set to n/2. The left filter activity parameter dl is obtained using the same set of rules substituting pixels on the right of the boundary ri  with pixels li  on the left of the boundary.

Once dr and dl are calculated, the pixels to be updated and their support windows are determined using Table 14.1 below. The same table applies for both right pixels and left pixels, although only right pixels are listed in the table. Information for the left pixels is obtained by swapping dr and dl and substituting r1, r2, r3 with l1, l2, l3. Numbers in the table give the number of pixels used in filtering on both left and right side of the pixel to be updated. For example, if dr equals to 4, pixel values of l1, r1, r2, r3 and r4 are averaged to obtain updated value of r2. X in the table is used to denote that pixel is not to be updated.

dr (dl>1)
pixel r1
pixel r2
pixel r3

1
X
X
X

2
1
X
X

3
1
1(1)
X

4
2
2
X

5
2
2
2(2)

6
3, if dl > 2

2, if dl = 2
3
3(3)

Table 14.1 Pixels to be updated and their support window with respect to dr.
There are three special cases in the table above marked (1), (2) and (3). In these cases some updated pixel values are used in filtering instead of the original pixel values as follows:

(1) Updated pixel value of r1 is used

(2) Updated pixel values of r1 and r2 are used

(3) Updated pixel values of r2 used

When filtering P frames, the left and right activity parameters are upper bounded depending on the coding modes of the neighboring macroblocks/blocks. Maximum numbers for activity parameters with different combinations of left neighbor – right neighbor modes are given in Table 14.2
Left \ Right 
INTRA
COPY
CODED
NOTCODED

INTRA
N
N
2
2
N
4
N
2

COPY
2
2
2
2
2
4
2
2

CODED
4
N
4
2
4
4
4
2

NOTCODED
2
N
2
2
2
4
2
2

Table 14.2 Activity Parameter Truncation Table for P frames 

In the table above each cell is splitted into two parts. Left sub-cell gives the maximum left activity parameter and the right sub-cell gives maximum for the right activity parameter. 'CODED' above is used to denote all the INTER CODED modes. 'COPY' is the INTER NOMOTION NOTCODED mode, 'NOTCODED' contains all the INTER MOTION NOTCODED modes and 'INTRA' corresponds to the INTRA mode. N is used to indicate that no truncation is done (maximum value of six is allowed).

















































ISI





MBA





SQUANT





EHI





EXTHEAD





PFMT





CPFMT





CPI





TRI





SSC





SSTUFF





PTYPE





TR





MB LAYER




































































_997175545

_1006771537.vsd

_1011173340.vsd
TCOEFF�

TCOEFF�

METH4�

METH8�


_1019223965.vsd
DQUANT�

MPRSELMB�

MCOEFF�

CNCMB�

BLOCK LAYER�

MPRDIRMB�

MBTYPE�

BLOCK LAYER�

I Macroblock�

P Macroblock�

Splitted
Macroblock�

MCP�

RFI�

RFI�

BLOCK LAYER�


_1019394756.unknown

_1019412502.vsd
COEFF LAYER�

IBMY�

DCDRANGE�

      IDCD�

     IBMV�

ICNCB�

MPRDIRB�

MCP�

SUBDCD�

DCDSIGN�

MCOEFF�

I block�

P block�

BTYPE�

IPMR�

IBMX�

CNCB�

COEFF LAYER�


_1019395439.unknown

_1019394339.unknown

_1016031353.vsd
DCUL�

DCU�

DCL�

DCC�

�

B�

P1�

P2�

P3�

P4�

P5�

P6�

P7�

P8�

P9�

P10�

U�

UL�

UR�

�

�

�

�

�

�

�

L�

C�

�


_1017559907.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











1�

2�

3�

4�

5�

6�

7�

8�

�

9�

10�

11�

12�

13�

14�

15�

21�

�

16�

17�

18�

19�

20�

22�

23�

30�

�

24�

25�

26�

27�

28�

29�

35�

41�

�

31�

32�

33�

34�

36�

37�

44�

52�

�

38�

39�

40�

42�

43�

45�

50�

57�

�

46�

47�

48�

49�

51�

53�

55�

62�

�

54�

56�

58�

59�

60�

61�

63�

64�

�

Vertical scanning











_946107478.doc







_1017560764.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











�

1�

2�

3�

�

4�

5�

6�

7�

�

8�

9�

10�

11�

�

12�

13�

14�

15�

�

Vertical scanning











_946107478.doc







_1018881785.vsd
SSI�

TR�

PTYPE�

PFMT�

CPFMT�

EHI�

EXTHEAD�

PQUANT�

NRF�

MRFI�

MB layer�

Slice�

ESTUFF�

EOS�

PSTUFF�

LOOPF�

PSC�


_1017560587.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











1�

2�

3�

4�

�

5�

6�

7�

8�

�

9�

10�

11�

12�

�

13�

14�

15�

16�

�

Vertical scanning











_946107478.doc







_1017490956.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











�

8�

15�

23�

30�

37�

45�

53�

�

1�

9�

16�

24�

31�

38�

46�

55�

�

2�

10�

17�

25�

32�

39�

47�

57�

�

3�

11�

18�

26�

33�

41�

48�

58�

�

4�

12�

19�

27�

35�

42�

50�

59�

�

5�

13�

21�

28�

36�

44�

52�

60�

�

6�

14�

22�

34�

43�

49�

54�

62�

�

7�

20�

29�

40�

51�

56�

61�

63�

�

Horizontal scanning











_946107478.doc







_1017558577.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











�

1�

5�

6�

�

2�

4�

7�

12�

�

3�

8�

11�

13�

�

9�

10�

14�

15�

�

Normal scanning











_946107478.doc







_1017558629.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











�

4�

8�

12�

�

1�

5�

9�

13�

�

2�

6�

10�

14�

�

3�

7�

11�

15�

�

Horizontal scanning











_946107478.doc







_1017498140.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











�

1�

2�

3�

4�

5�

6�

7�

�

8�

9�

10�

11�

12�

13�

14�

20�

�

15�

16�

17�

18�

19�

21�

22�

29�

�

23�

24�

25�

26�

27�

28�

34�

40�

�

30�

31�

32�

33�

35�

36�

43�

51�

�

37�

38�

39�

41�

42�

44�

49�

56�

�

45�

46�

47�

48�

50�

52�

54�

61�

�

53�

55�

57�

58�

59�

60�

62�

63�

�

Vertical scanning











_946107478.doc







_1017490616.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











�

1�

5�

6�

14�

15�

27�

28�

�

2�

4�

7�

13�

16�

26�

29�

42�

�

3�

8�

12�

17�

25�

30�

41�

43�

�

9�

11�

18�

24�

31�

40�

44�

53�

�

10�

19�

23�

32�

39�

45�

52�

54�

�

20�

22�

33�

38�

46�

51�

55�

60�

�

21�

34�

37�

47�

50�

56�

59�

61�

�

35�

36�

48�

49�

57�

58�

62�

63�

�

Normal scanning











_946107478.doc







_1017489334.unknown

_1014029378.unknown

_1016029604.vsd
UL�

U�

UR�

L�

C�

�

�

�

�

�

�

�

�


_1014025943.vsd
g2 (45�)�

g0 (0�)�

g4 (90�)�

g6 (135�)�


_1014017590.vsd
C1�

C3�

C4�

F�

D0�

C2�

C6�

Ts�

Tc�

C5�

Directionality
Classes�

Context
Classes�

D4�

D7�

D3�

D10�

F�

D8�

D6�

D2�

D9�

D5�

D1�

"Non-Intra"�

C0�

T�


_1010311928.unknown

_1010345827.unknown

_1010408948.vsd
Directionality
Classification�

Mapping of
Classes�

Selection of
Prediction Method Set�

Signaling of
Prediction Method�

Spatial Prediction�

Context-Dependent 
Selection of
Prediction Set�

Spatial Prediction and Signaling�


_1010413263.unknown

_1010924268.doc



DOCUMENTTYPE



1 (1)













TypeUnitOrDepartmentHere









TypeYourNameHere

TypeDateHere











BLOCK FILTERING







FRAME BUFFER







INTRA PREDICTION







BLOCK DECODING







DEMULTIPLEXING







MULTIPLEXING







BLOCK FILTERING







BLOCK DECODING







FRAME BUFFER







BLOCK CODING







INTRA PREDICTION ESTIMATION







INTRA PREDICTION











_935227290.doc







_1010346215.unknown

_1010356759.unknown

_1010312757.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











2







3







5







4







6







9







7







8











_935227290.doc







_1010312944.unknown

_1010313001.unknown

_1010312836.unknown

_1010312882.unknown

_1010311967.unknown

_1010261058.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











1�

2�

6�

7�

15�

21�

22�

36�

�

3�

5�

8�

14�

20�

23�

35�

37�

�

4�

9�

13�

19�

24�

34�

38�

49�

�

10�

12�

18�

25�

33�

39�

48�

50�

�

11�

17�

26�

32�

40�

47�

51�

58�

�

16�

27�

31�

41�

46�

52�

57�

59�

�

28�

30�

42�

45�

53�

56�

60�

63�

�

29�

43�

44�

54�

55�

61�

62�

64�

�

Normal scanning











_946107478.doc







_1010264937.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











1�

2�

6�

7�

�

3�

5�

8�

14�

�

4�

9�

13�

15�

�

10�

12�

16�

22�

�

11�

17�

21�

23�

�

18�

20�

24�

29�

�

19�

25�

28�

30�

�

26�

27�

31�

32�

�













_946107478.doc







_1010265320.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











1�

5�

9�

13�

�

2�

6�

10�

14�

�

3�

7�

11�

15�

�

4�

8�

12�

16�

�

Horizontal scanning











_946107478.doc







_1010309789.unknown

_1010265071.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











1�

2�

6�

7�

�

3�

5�

8�

13�

�

4�

9�

12�

14�

�

10�

11�

15�

16�

�

Normal scanning











_946107478.doc







_1010261080.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











1�

9�

16�

24�

31�

38�

46�

54�

�

2�

10�

17�

25�

32�

39�

47�

56�

�

3�

11�

18�

26�

33�

40�

48�

58�

�

4�

12�

19�

27�

34�

42�

49�

59�

�

5�

13�

20�

28�

36�

43�

51�

60�

�

6�

14�

22�

29�

37�

45�

53�

61�

�

7�

15�

23�

35�

44�

50�

55�

63�

�

8�

21�

30�

41�

52�

57�

62�

64�

�

Horizontal scanning











_946107478.doc







_1010258062.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











(a)







(b)











_935227290.doc







_1010259835.doc



DOCUMENTTYPE



1 (1)













NOKIA RESEARCH CENTER









Joni Vahteri

TypeDateHere











66







68







67







69











_935227290.doc







_1006950879.vsd

_998718675.vsd

_1006331348.unknown

_1006340503.unknown

_1006607649.unknown

_1006333793.unknown

_998828722.unknown

_1006331326.unknown

_998718763.vsd

_998726736.vsd

_997187492

_998718641.vsd

_997618058.unknown

_997618080.unknown

_997187759

_997178295

_997185496

_997187430.unknown

_997178128

_989922120.unknown

_989922196

_997175414

_997175518.unknown

_989922215.unknown

_989995925

_989922200

_989922137

_989922143.unknown

_989922181.unknown

_989922132.unknown

_989921601

_989922090

_989922105

_989922080

_989922074.unknown

_989921069

_989921095

_989921105

_989921081

_989491639

_989762271.unknown

_911397616

_911400656.unknown

