- 3 -

UIT - Secteur de la normalisation des télécommunications

ITU - Telecommunication Standardization Sector

UIT - Sector de Normalización de las Telecomunicaciones

Study Period 1997-2000

eq \b\rc\}(\a\al(Commission d'études ;Study Group;Comisión de Estudio)) 16
eq \b\rc\}(\a\al(Contribution tardive;Delayed Contribution ;Contribución tardía)) D.xxx

Geneva, 7-18 February 2000

eq \b\rc\}(\a\al(Texte disponible seulement en ;Text available only in;Texto disponible solamente en)) E
Question(s):
15

SOURCE*:
PictureTel Corp.

TITLE:
Proposed changes to H.263 Annex W – bit-exact IDCT

1. Introduction

In reviewing the latest draft of H.263 Annex W which is up for Determination (q15i58), several anomalies were found which should be corrected or addressed in the final draft. The proposed changes concern section W.4.3 (Reference IDCT), these changes are separated them into three categories:

(1) Changes that make the code easier to understand, but do not affect its operation

(2) Portability issues

(3) Changes that affect the results.

2. Improved Comprehension (No Affect on Results)

(A) It would be helpful to know the origin of this algorithm. With that knowledge,we can easily get a butterfly diagram and refer to it while coding. Knowing the algorithm provides information about its limitations. (We believe this is the Chen, Smith, Fralick algorithm with a trivial change: scaling up or down by sqrt(2)).

(B)
Near the beginning of the file are some constants. Some of the comments are incorrect:

const REGISTER cpo8 = 0x539f;
/* 16384*cos(pi/2) */

should be
const REGISTER cpo8 = 0x539f;
/* 16384*cos(pi/2)*sqrt(2) */

const REGISTER spo8 = 0x4546;
/* 32768*sin(pi/2) */

should be
const REGISTER spo8 = 0x4546;
/* 32768*sin(pi/2)*sqrt(2) */

const REGISTER OoR2 = 0x5a82;
/* 16384*sqrt(1/2) */

should be
const REGISTER OoR2 = 0x5a82;
/* 16384*sqrt(2) */

(C)
In the "Round" subroutine is the line:

if (block[i] < 0x00007FFF - (1<<(sh-1)))

The purpose of this test is to avoid adding (1<<(sh-1)) if doing that would cause overflow.

Overflow is impossible at equality, so "<" should be replaced by "<=".

(D)
In the "Multiply" subroutine is the line:

if(tmp < 0x7FFFFFFF - 0x00007FFF)

Once again, the test is being done to avoid overflow, which is impossible at equality so

"<" should be replaced by "<=".

(E)
The "Round" subroutine has a pointless conditional statement:

if(block[i])

When (block[i] == 0), the result of this subroutine is the same regardless of whether

the conditional code is executed. Having this conditional statement just makes the

code more complicated.

(F)
The "Multiply" subroutine has a similarly pointless conditional statement:

if(tmp)

3. Portability Issues
There are a few code snippets which work correctly if an "int" is 32 bits, but not if an "int" is 16 bits.

(A)
At the end of the "Multiply" subroutine is the line:

reg_out = (REGISTER)((signed)tmp>>16);

Assuming the processor can shift a 16-bit value by 16 bits, this will produce either 0 or -1.

(B)
At the end of the "Rotate" subroutine are the two lines:

*x = (REGISTER)((signed)tmp1>>16);

*y = (REGISTER)((signed)tmp2>>16);

Assuming the processor can shift a 16-bit value by 16 bits, these will produce either 0 or -1.

4. Changes That Affect the Results

(A)
Near the end of the "Rotate" subroutine are the following lines:

if(tmplxa)

 tmplxa += 0x00007FFF;

if(tmplxb)

 tmplxb += 00007FFF;

tmp1 = tmplxb - tmplya;

tmp2 = tmplxa + tmplyb;

We don't see how sometimes truncating instead of rounding can improve the accuracy.

We recommend removing the lines:

if(tmplxa)

if(tmplxb)

(B) About 1/3 of the way through “Butterfly” are the lines:

a = tmp+b;

b = -tmp+b;

column[0] = (a – ((tmp<0) ? 1 : 0)) >> 1;

column[4] = (b – ((tmp<0) ? 1 : 0)) >> 1;

The intent of the last two lines appears to be division by 2, but with an inexplicable

negative bias. Here are three ways of doing division by 2 with no positive or

negative bias:

column[0] = (a + ((a < 0) ? 1 : 0)) >> 1;
/* Round toward from 0 */

column[4] = (b + ((b < 0) ? 1 : 0)) >> 1;

column[0] = (a + ((a < 0) ? 0 : 1)) >> 1;
/* Round away from 0 */

column[4] = (b + ((b < 0) ? 0 : 1)) >> 1;

column[0] = (a + ((a >> 1) & 1) >> 1;
/* Round toward an even number */

column[4] = (b + ((b >> 1) & 1) >> 1;

(C) This subroutine performs the IDCT on rows and then on columns. Doing this in the opposite order will tend to result in more efficient implementations of an IDCT combined with pixel updating, especially for SIMD processing, as in MMX.

(D) Some processors can perform ((a * b + 0x8000L) >> 16) or ((a * b + 0x4000) >> 15) in one operation. Replacing all instances of 0x7FFF in this subroutine by 0x8000L would make the IDCT run faster on those processors. While it is true that adding 0x8000 results in a slight positive bias, adding 0x7FFF results in an equal negative bias. The code that would have to be changed is in "Round", "Multiply" and "Rotate".
-- END --

* Contact:
Qunshan Gu
Tel:
+1 978 292-4293

Fax:
+1 978 292-3309

E-mail: qgu@pictel.com

TSB:\SG2\Delayed\AnnexW_IDCT.doc
01/20/00

