	ITU – Telecommunications Standardization Sector

STUDY GROUP 16

February, 7-15, 2000
	Temporary Document

PLEN/16

	Question:
	15/16

	Source:
	Gary J. Sullivan
Rapporteur – Q.15/16
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA
	Tel:
Fax:
Email:
	+1 (425) 703-5308
+1 (425) 936-7329
garys@ieee.org

	Title:
	Draft Submitted for Determination: H.263 Draft Annexes, U, V, and W

	Purpose:
	Draft

Summary
This document presents drafts for determination of three additional annexes to Recommendation H.263:

Annex U: An optional Enhanced Reference Picture Selection (ERPS) mode capable of providing enhanced coding efficiency.

Annex V: An optional Data Partitioned Slice mode capable of providing enhanced error resilience.

Annex W: Optional Additional Supplemental Enhancement Information which can be added to an H.263 bitstream to provide backward-compatible enhancements, including:

· Indication of use of a specific fixed-point IDCT

· Picture Messages, including the message types of:

· Arbitrary Text

· Arbitrary Binary

· Copyright Text

· Caption Text

· Current Picture Header Repetition

· Previous Picture Header Repetition, and

· URI

Minor alterations made during this meeting include:

· Specifying how the ERPS mode is indicated in the picture header (bit 16 of OPPTYPE)

· Changing how the DPS mode is indicated in the picture header (from bit 16 to bit 17 of OPPTYPE, in order to provide a logical order to the bits for activation of annexes U and V)

· Removal of an erroneous remark indicating that HM could not occur within MVD in the DPS mode.

· Addition of interlaced field coding indications to Annex W.
Annex U
Enhanced Reference Picture Selection mode

(This annex forms an integral part of this Recommendation.)

U.1
Introduction

This annex describes the optional Enhanced Reference Picture Selection mode of H.263. The capability of this mode of H.263 is signaled by external means (for example Recommendation H.245). The amount of additional picture memory accommodated in the decoder and the allowed fragmentation of that picture memory into minimum picture units (MPUs) for Reference Picture Pruning as defined herein may also be signaled by external means to help the memory management at the encoder. The use of this mode shall be indicated by setting the formerly-reserved bit 16 of the optional part of the PLUSPTYPE (OPPTYPE) to ‘1’. The mode provides benefits for both error resilience and coding efficiency.

For error resilience, it can use backward channel messages, which are defined and signaled by external means (e.g. Recommendation H.245) sent from a decoder to an encoder to inform the encoder which part of which pictures have been incorrectly decoded.

For coding efficiency, motion compensation can be extended to multi-frame prediction. The extension of motion compensation to multi-frame prediction is achieved by extending the motion vector by a picture reference parameter which may be used to address a block for motion compensation in each of the multiple reference pictures. The picture reference parameter is a variable length code specifying a buffer index. For that, the reference pictures are assembled in a buffering scheme that can be controlled by the encoder. The combination of the buffering scheme with the error resilience capabilities enables the use of Reference Picture Selection (Annex N). Moreover, a CRC is specified to detect buffer misalignment between encoder and decoder. The specifications determine the extensions to the syntax for the frame buffering scheme and the macroblock syntax.

The enhanced reference picture selection mode contains a feature called Reference Picture Pruning. The purpose of Reference Picture Pruning is to reduce on average, the amount of memory required to save multiple reference pictures. The memory reduction is accomplished by partitioning each reference picture into sub-frames. While encoding, the encoder may discard (“prune”) sub-frames from reference pictures in the multi-frame buffer. A detailed description of Reference Picture Pruning is found in Section U.5.

U.2
Video source coding algorithm

The source coder of this mode is shown in generalized form in Figure U.1. This figure shows a structure which uses a number of picture memories.

The video source coding algorithm can be extended to multi-frame motion compensation. Enhanced coding efficiency may be achieved by allowing reference picture selection on the macroblock level. A picture buffering scheme with relative indexing is employed for efficient addressing of pictures in the multi-frame buffer. The multi-frame buffer control may work in several modes of operation. For example, a sliding window over time can be accommodated by the buffer control unit. Past decoded and reconstructed pictures starting with the immediately preceding one ending with the picture which is decoded M time instants before are collected in the picture memories PM0... PMM-1. If the number of pictures maximally accommodated by the multiple reference picture buffer corresponds to M, the motion estimation when coding picture m, if 0M, the maximum number of pictures M can be used. Alternatively, an adaptive buffer control can be utilized.
M-1, can utilize m pictures. In case mm
The source coder may select one or several of the picture memories to suppress temporal error propagation caused by inter-frame coding. The Independent Segment Decoding mode (see Annex R), which treats boundaries of GOBs with non-empty headers or slices as picture boundaries, can be used to avoid spatial error propagation due to motion compensation across the boundaries of the GOBs or slices when this mode is applied to a smaller unit than a picture, such as a GOB or slice. The information to signal which picture is selected for prediction is included in the encoded bitstream.

The strategy used by the encoder to select the picture to be used for prediction is out of the scope of this Recommendation.

[image: image1.wmf]CC

T

Q

Q

T

p

t

qz

q

v

Video

in

To

video

multiplex

coder

–

1

–

1

T

Q

P

PM

CC

p

t

qz

q

v

Transform

Quantizer

Picture Memory with motion compensated variable delay

Picture Memory

Coding control

Flag for INTRA/INTER

Flag for transmitted or not

Quantizer indication

Quantizing index for transform coefficients

Motion vector

P

PM

0

PM

1

PM

M-1

FIGURE U.1/H.263

Source coder for Enhanced Reference Picture Selection

U.3
Back-Channel messages

An out-of-band channel, which does not have to be reliable, can be used to convey backchannel messages. The syntax of this out-of-band channel (which will usually be a separate logical channel of H.223 or H.225.0) should be the one defined in Annex N.

U.4
Syntax

The syntax is altered in the Picture, Group of Blocks (GOB), slice, and macroblock layer. On the Picture, GOB, and Slice layer, an Enhanced Reference Picture Selection layer (ERPS layer) is optionally inserted. Furthermore, a TR check is optionally inserted at the Picture or GOB or Slice layer as well.

The syntax for the PLUS header is shown in Figure U.2. The fields of ERPSI, TRPI, TRP, ERPS, and TRCI are inserted into the PLUS header. The fields ERPSI, TRPI, TRP, ERPS, and TRCI are added to Figure 8/H.263.

FIGURE U.2/H.263

Structure of PLUS Header.

The syntax for the Picture is shown in Figure U.3. The field of TRC is inserted into the Picture layer. The field TRC is added to Figure 7/H.263.

FIGURE U.3/H.263

Structure of Picture layer.

The syntax for the GOB layer is shown in Figure U.4. The fields of ERPSI, TRI, TR, TRPI, TRP, ERPS, TRCI, and TRC are added to Figure 9/H.263.

FIGURE U.4/H.263

Structure of Gob layer.

When the optional Slice Structured mode (see Annex K) is in use, the syntax of the slice layer is modified in the same way as the GOB layer. The syntax for the Slice layer is shown in Figure U.5.

 FIGURE U.5/H.263

Structure of Slice layer.

The ERPS layer is shown in Figure U.6.

FIGURE U.6/H.263

ERPS layer.

Variable length codes for the NRPA, NRI, RPS, RPP, APP, NPP, and PR fields are given in Table U.1.

Table U.1/H.263

Variable length codes for NRPA, NRI, RPS, RPP, APP, NPP, and PR.

	Absolute position
	number

of bits
	Codes

	0
	1
	1

	‘x0’+1 (1:2)
	3
	0x00

	‘x1x0’+3 (3:6)
	5
	0x11x00

	‘x2x1x0’+7 (7:14)
	7
	0x21x11x00

	‘x3x2x1x0’+15 (15:30)
	9
	0x31x21x11x00

	‘x4x3x2x1x0’+31 (31:62)
	11
	0x41x31x21x11x00

	‘x5x4x3x2x1x0’+63 (63:126)
	13
	0x51x41x31x21x11x00

	‘x6x5x4x3x2x1x0’+127 (127:254)
	15
	0x61x51x41x31x21x11x00

	‘x7x6x5x4x3x2x1x0’+255 (255:510)
	17
	0x71x61x51x41x31x21x11x00

	‘x8x7x6x5x4x3x2x1x0’+511 (511:1022)
	19
	0x81x71x61x51x41x31x21x11x00

	‘x9x8x7x6x5x4x3x2x1x0’+1023 (1023:2046)
	21
	0x91x81x71x61x51x41x31x21x11x00

	‘x10x9x8x7x6x5x4x3x2x1x0’+2047 (2047:4094)
	23
	0x101x91x81x71x61x51x41x31x21x11x00

U.4.1.1
Enhanced Reference Picture Selection layer Indicator (ERPSI) (1 bit)

ERPSI is a bit that is present only if Enhanced Reference Picture Selection is indicated in the PLUS header. ERPSI indicates whether the ERPS layer is present. If ERPSI is set to ‘1’, the ERPS layer is present. If ERPSI is set to ‘0’, the ERPS layer is not present. When the ERPS layer is not present, the default Annex U operates in Reference Picture Selection mode (Annex N) but without VideoMux back-channel. The fields TRI, TR, TRPI, and TRP are used as in Annex N of this Recommendation. The decoder operates as specified in Annex N. The macroblock syntax remains unaltered to Annex N.

U.4.1.2
Temporal Reference Indicator (TRI) (1 bit)

A code word that is only present on the GOB or Slice layer. TRI indicates whether or not the following TR field is present.

0: TR field is not present.
1: TR field is present.

U.4.1.3
Temporal Reference (TR) (8/10 bits)

When present, TR is an eight bit number unless a custom picture clock frequency is in use, in which case it is a ten bit number consisting of the concatenation of ETR and TR of the picture header.

U.4.1.4
Temporal Reference for Prediction Indicator (TRPI) (1 bit)

TRPI indicates whether or not the following TRP field is present.

0: TRP field is not present.
1: TRP field is present.

TRPI shall be equal to zero whenever the picture is an I or EI picture.

U.4.1.5
Temporal Reference for Prediction (TRP) (10 bits)

TRP is a ten bit number. If a custom picture clock frequency was not in use for the reference picture, the two MSBs of TRP are zero and the LSBs contain the eight bit TR found in the picture header of the reference picture. If a custom picture clock frequency was in use for the reference picture, TRP is a ten bit number consisting of the concatenation of ETR and TR from the reference picture header.

When present (as indicated in TRPI), TRP has two meanings:

When the ERPS layer is not present (ERPSI is set to ‘0’), TRP indicates the Temporal Reference which is used for prediction of the encoding, except in the case of B pictures and the B-picture part of an Improved PB frame. For B pictures or the B-picture part of an Improved PB frame, the picture having the temporal reference TRP is used for the prediction in the forward direction. (Prediction in the reverse-temporal direction always uses the immediately temporally-subsequent picture.) When TRP is not present, the most recent temporally-previous anchor picture shall be used for prediction, as when not in the Reference Picture Selection mode. TRP is valid until the next PSC, GSC, or SSC.

When the ERPS layer is present (ERPSI is set to ‘1’), TRP specifies that all pictures in the complete multi-frame buffer having buffer-index less than the picture associated with TRP are not used for motion compensation. The picture in the multi-frame buffer assigned to TRP has buffer index 0, the pictures in the multi-frame buffer having buffer-index greater than the picture associated with TRP are available for motion compensation for P-pictures. It is assumed that the decoder replicates the multi-frame buffer of the encoder according to the specified buffering mode. The TRs are attached to the buffered frames. For B-pictures or the B-picture parts of an Improved PB frame, the picture having the temporal reference TRP is used for the prediction in the forward direction. (Prediction in the reverse-temporal direction always uses the immediately temporally-subsequent picture.) If TRP is not present, the buffer remains as assembled.

U.4.1.5
Enhanced Reference Picture Selection layer (ERPS) (Variable Length)

The ERPS layer is present only if Enhanced Reference Picture Selection is indicated and if ERPSI is set to ‘1’. The ERPS layer specifies the buffer indexing to decode the current frame. The Number of Reference Picture Active (NRPA) indicates how many reference pictures out of the multi-frame buffer are used for motion compensation. The Reference Picture Buffer Sub-sampling mode (RPBS) indicates what kind of pointer table is used to reference the NRPA frames in the multi-frame buffer. If RPBS indicates the use of a pointer table other than incrementally indexing according to the assembled buffering scheme, the fields of Number of Indices to be Remapped (NRI) and Reference Picture Selection (RPS) are present to specify the used pointer table. Moreover, the ERPS layer specifies the buffering of the currently decoded frame. The Reference Picture Buffering mode specifies the buffering of the currently decoded frame. Two modes are specified. The Sliding Window mode operates as a (First-In-First-Out) FIFO buffer. The Adaptive Remove/Add Picture (ARAP) mode permits a more general buffering scheme. The fields of RPI, RPP, API, and APP are present if the ARAP mode is selected permitting flexible buffer handling.

Number of Reference Pictures Active (NRPA) (Variable Length)

NRPA is a variable length code word that is present only if Enhanced Reference Picture Selection layer is present and the picture coding type indicates a P-picture. NRPA specifies the number of active reference frames for decoding the current picture. The NRPA field is transmitted using Table U.1. The corresponding index in Table U.1 is equal to NRPA-1. If NRPA indicates the use of only 1 reference picture (index=0), the macroblock syntax remains unchanged and the syntax extentions in section U.1.4.6 do not apply.

Reference Picture Buffer Sub-sampling mode (RPBS) (Variable length)

RPBS is a variable length code word that is present only if the Enhanced Reference Picture Selection layer is present and the picture coding type indicates a P-picture. RPBS indicates the multiple reference picture buffer sub-sampling mode. The RPBS code word does not change the buffering of decoded reference frames. It provides a pointer table to use for decoding the currently transmitted frame. The RPBS mode is applied relative to the shifted buffer indexing if TRP is present. Otherwise, it is applied to the non-subsampled buffer.

Table U.2/H.263.

Modes of operation for Reference Picture Buffer Sub-sampling.

	Code word
	RPBS mode

	‘0’
	No sub-sampling

	‘10’
	Sub-sampling

	‘11’
	Reserved for future use

If RPBS is set to ‘0’, meaning no sub-sampling, all pictures in the multiple reference picture buffer starting from index 0 ending with index NRPA-1 may be utilized for prediction. The picture indexing is kept the same. If RPBS is set to ‘10’, meaning sub-sampling, the multiple reference picture buffer is sub-sampled. The sub-sampled NRPA reference pictures are indexed as 0 through NRPA-1 in the order of their selection using the following two fields.

Number of Remapped Indices (NRI)

A variable length code word that is present only if Enhanced Reference Picture Selection layer is indicated and the RPBS is set to ‘10’. NRI is transmitted using Table U.1 indicating the number of indices for which an index mapping is transmitted. The indices for which no index mapping is transmitted are used in their default incremental order by removing those index values with index mapping from the non-subsampled multiframe buffer.

Reference Picture Selection (RPS) (Variable length)

A variable length code word that is present only if Enhanced Reference Picture Selection layer is indicated and the RPBS is set to ‘10’. RPS is transmitted using Table U.1 indicating which picture is to be sampled out of the multiple reference picture buffer. The RPS code word is transmitted as many times as the value of the NIR symbol. The buffer-indexing applied to decode the current picture follows the order of the selection in increasing numbers.

Reference Picture Buffering mode (RPB) (Variable length)

A variable length code word that is present only if the Enhanced Reference Picture Selection layer is indicated. RPB specifies the buffering of the currently decoded picture. RPB is carried out relative to the indexing of the non-subsampled buffer. The multiple reference picture modes are signaled using Table U.3.

Table U.3./H.263

Modes of operation for multiple reference picture buffer management.

	Code word
	RPB mode

	‘0’
	Sliding Window

	‘10’
	Adaptive Remove/Add Picture

	‘11’
	Inherited RPB mode

The Sliding Window mode stands for removing the picture with index NRPA-1 in the buffer and adding the current decoded picture at position 0 to the multiple reference picture buffer. The Adaptive Remove/Add Picture mode stands for a more general version of the sliding window mode. Here any picture can be removed from the multiple reference picture buffer while the currently decoded picture can be inserted at any position into the buffer. This mode should be used to build-up a multiple reference picture buffer. Finally, the Inherited RPB mode stands for applying the RPB mode specified in the Picture layer in the GOB or Slice layer. This mode is not valid if chosen in the Picture layer. If the Inherited RPB mode is chosen on the GOB or Slice layer, the RPB mode is either set to ‘0’ or ‘10’.

Remove Picture Indication (RPI) (1 bit)

RPI is a fixed length code word that is present only if the Enhanced Reference Picture Selection layer is present and if the RPB code is set to ‘10’. If RPI is set to ‘0’, no picture is removed from the memory unless a picture is added and the physical multiple reference picture buffer size is exceeded. In that case, the picture with the largest index in the complete physical buffer is removed from the multiple reference picture buffer. If RPI is set to ‘1’, a picture is removed from the multiple picture memory and the RPP field is following.

Remove Picture Position (RPP) (Variable length)

RPP is a variable length code word that is present only if the Enhanced Reference Picture Selection layer is present and if RPI is set to ‘1’. The code table for the picture reference parameter (PR) as given in Table U.1 is used to specify the index m of the picture that is to be removed from the multiple reference picture buffer. After removing the indexed picture from the mth position in the multiple reference picture buffer, the indexes greater than m are decrement by one.

Add Picture Indication (API) (1 bit)

API is a fixed length code word that is present only if the Enhanced Reference Picture Selection layer is indicated and if the RPB code is ‘10’. If API is set to ‘0’, the currently decoded picture is not added to the multiple picture memory. If API is set to ‘1’, the currently decoded picture is added to the multiple picture memory and the APP field is following.

Add Picture Position (APP) (Variable length)

APP is a variable length code word that is present only if the Enhanced Reference Picture Selection layer is present and the API is set to ‘1’. The VLC as given in Table U.1 is used to indicate at which position the currently decoded frame is to be added to the multiple frame memory. After adding the currently decoded frame at the m’th position in the multiple frame memory, the indexes greater or equal than m are incremented by one.

Pruning Information Indicator (PII) (1bit)

The PII is a bit that is present only if the ERPS layer is present. PII indicates whether or not data fields describing the sub-frame pruning process are present. If the PII is set to “1,” the pruning information data fields are present. If the PII is set to “0,” the data fields are not present. No pruning information may be sent in an ERPS layer occurring in a GOB or slice header. Consequently, the PII bit shall be set to ‘0’ in any ERPS layer occurring in a GOB or slice header. If Reference Picture Pruning is in use, the PII must be set to “1” in the ERPS layer in the PLUS header of an intra-frame to indicate the presence of sub-frame dimension information. For details regarding Reference Picture Pruning, see Section U.5.
Sub-Frame Dimension Indicator (SDI) (1 bit)

The SDI is a bit that is present only if the PII is set to “1.” SDI indicates whether or not data fields describing sub-frame dimensions are present. If the SDI is set to “1,” the data fields describing sub-frame dimensions are present. If the SDI is set to “0,” the data fields are not present. The encoder must send sub-frame dimension information every intra-frame but may send the information more frequently. A change in the sub-frame dimensions must be indicated in the ERPS layer of an intra-frame.

Horizontal Sub-frame Dimension (HSD) (6 bits)

A 6 bit codeword that is present only if the SDI is set to “1.” The HSD specifies the horizontal dimension of a sub-frame in units of macroblocks. Each frame has a width of ceil(fwMB / sfwMB) sub-frames where fwMB is the width of a frame in macroblocks and sfwMB is the width of a sub-frame in macroblocks. For positive numbers, the ceiling function, ceil(x), equals x if x is an integer otherwise ceil(x) equals one plus the integer part of x. The horizontal dimension must be an integer multiple of the horizontal size of the MPU.

Vertical Sub-frame Dimension (VSD) (6 bits)

A 6 bit codeword that is present only if the SDI is set to “1.” The VSD specifies the vertical dimension of a sub-frame in units of macroblocks. Each frame has a height of ceil(fhMB / sfhMB) sub-frames where fhMB is the height of a frame in macroblocks and sfhMB is the height of a sub-frame in macroblocks. For positive numbers, the ceiling function, ceil(x), equals x if x is an integer otherwise ceil(x) equals one plus the integer part of x. The vertical dimension must be an integer multiple of the vertical size of the MPU.
Sub-frame Pruning Indicator (SPI) (1 bit)

The SPI is a bit that is present only if the PII is set to “1.” SPI indicates whether or not data fields describing sub-frame pruning are present. If the SPI is set to “1,” the data fields describing sub-frame pruning are present. If the SPI is set to “0,” the data fields are not present.

Number of Pictures to Prune (NPP) (Variable Length)

A variable length codeword that is present only if the SPI is set to “1.” The NPP uses the code table for the picture reference parameter given in Table U.1 of the draft Annex U specification to indicate the number of reference pictures to be pruned.

Reference Picture Selection (RPS) (Variable Length)

A variable length codeword that is present only if the SPI is set to “1.” The RPS uses the code table for the picture reference parameter given in Table U.1 of the draft Annex U specification to indicate which reference picture is to be pruned. The RPS codeword and associated sub-frame pruning bitmap (described below) are always transmitted as pairs and are transmitted N times where N is the value of NPP.

Sub-frame Pruning Bitmap (SPB)
A fixed length codeword that contains one bit for each sub-frame and is present only if the SPI is set to “1.” The sub-frames are numbered in raster scan order starting from the upper-left of the frame. For example, consider a case in which a reference picture, specified by RPS, is partitioned into six sub-frames. Let “s1 s2 s3 s4 s5 s6” represent the six bits in the SPB. If bit si = “1”, then the decoder should prune the ith sub-frame in the reference picture. For instance, if the SPB = “000110” then sub-frames 4 and 5 are pruned. To prevent start code emulation, a “1” is inserted (if necessary) into the bitmap in the 15th, 30th, 45th, etc. bit position. The SPB codeword and associated RPS are always sent as pairs and are transmitted N times where N is the value of NPP.

TR Check Indicator (TRCI) (1 bit)

TRCI is a fixed length code word that is present only if the Enhanced Reference Picture Selection layer is present. TRCI indicates whether the TRC field which is placed after the macroblock layer is present. A value of 0 indicates that TRC is not present. A value of 1 indicates that TRC is present.

TR Check (TRC) (12 bit)

A fixed length code word that is present only if TRCI has a value of 1. When present, TRC is a 12 bit field that is generated by calculating a cyclic redundancy check (CRC) over a set of TR fields. Its purpose is to assure that the encoder and decoder use the same reference frames for prediction when using the picture reference parameter (PR) at the macroblock layer. Though this is not necessary in error free environments, a mismatch between the content of the reference picture buffer at the encoder and decoder may result from transmission errors. In this case it is important to detect the mismatch at the decoder in order to initiate appropriate recovery mechanisms, e.g. requesting a fast INTRA update. Using TRC it is possible to detect the mismatch by comparing the received value with the locally generated CRC.

The CRC is calculated as follows. First, the appropriate set of TRs must be determined. For each transmitted PR in the macroblock layer, the corresponding TR is selected. If a PR is selected, it is labeled not to be used for CRC again. Second, a message block is built from the selected set of TRs. The TR values are represented by 10-bit numbers and concatenated to the message block in the order of their transmission in the macroblock layer. Finally, in the third step, the CRC is calculated from the message block. The generator polynomial is g(x) = x12 + x11 + x3 + x2 + x + 1. The resulting 12-bit CRC is assigned to TRC.

U.4.1.6
Macroblock layer syntax

The macroblock layer syntax is modified against H.263 version 2 syntax for P-pictures if the number of selected reference pictures (NRPA value) is greater than one. The field NRPA is signaled in the ERPS layer.

If the COD bit is set to "1", no further information is transmitted for this macroblock. In that case, the decoder shall treat the macroblock as an INTER macroblock with motion vector for the whole block equal to zero, picture reference parameter equal to zero, and with no coefficient data. If the COD bit is set to "0", indicating that the macroblock is coded, the syntax of the macroblock layer is depicted in Figure U.8 with the fields PR0, PR, PR2, PR3, and PR4 being inserted into Figure 10. PR0, PR, PR2, PR3, and PR4 consist of a variable length code word as given in Table U.1.

If the field PR0 is not set to zero, no further information is transmitted for this macroblock; in that case the decoder shall treat the macroblock as an INTER macroblock with motion vector for the whole block equal to zero, picture reference parameter equal to PR0, and with no coefficient data. If three times PR0 is set to 1 (code word ‘000’ is transmitted), a bit ‘1’ is inserted to prevent start code emulations.

If the field PR0 is set to zero, the macroblock is coded. The meaning of fields MCBPC, MODB, CBPB, CBPY, and DQUANT remains unaltered. The field PR is included together with the field MVD for all INTER macroblocks (in PB frames mode also for INTRA macroblocks).

The three code words PR2-4 are included together with MVD2-4 if indicated by PTYPE and if MCBPC specifies the INTER4V type. PR2-4 and MVD2-4 are only present when in Advanced Prediction mode (see Annex F) or Deblocking Filter mode (see Annex J).

FIGURE U.7/H.263

H.263 macroblock syntax layer.

U.5 Reference Picture Pruning

Reference Picture Pruning reduces, on average, the amount of memory required to save multiple reference pictures. The memory reduction is accomplished by partitioning each reference picture into sub-frames. While encoding, the encoder may discard (“prune”) sub-frames from a reference picture in the multi-frame buffer. The strategy used by the encoder to decide which of the sub-frames to prune is outside the scope of this document. The encoder signals to the decoder the size of the sub-frames and which of the sub-frames to prune using the enhanced reference picture selection (ERPS) layer whose syntax is described in Section U.4. The decoder shall not prune the most recent frame checked into the Annex U multi-frame buffer to ensure that at least one complete reference picture resides in the buffer at all times.

While it is suggested that the encoder refrain from referencing pixels in sub-frames that it has pruned, it is sometimes difficult to avoid doing so (e.g. when OBMC of Annex F is in use). In the event that the encoder references a pixel in a sub-frame that it has pruned, the decoder shall reference the pixel at the same position in the closest temporally succeeding picture from which a sub-frame containing the pixel has not been pruned. The temporal order of the pictures in the multi-frame buffer is given by their TR field which is attached to them during the buffer management process as specified in this annex. If no temporally succeeding picture contains the pixel, the closest temporally preceding picture containing the pixel is used instead.
As an example of how Reference Picture Pruning may be used effectively, consider two reference pictures whose upper-right quadrant are nearly identical. If all sub-frames completely contained within that quadrant were pruned from the older reference picture, then an encoder wishing to reference pixels in the upper-right quadrant could reference those pixels in the newer picture with little or no loss in coding efficiency.

The Reference Picture Pruning capability is negotiated by external means (e.g. Recommendation H.245). In addition, the decoder signals, also by external means, the minimum partition unit (MPU) which is described in terms of a minimum vertical and horizontal size (in macroblocks) of a sub-frame and the amount of memory it has available for its multi-frame buffer. Memory management is facilitated by the simple partition rules described below.

Each reference picture is partitioned into rectangular sub-frames of equal size. The encoder specifies the sub-frame size which must be an integer multiple of the MPU. That is, the sub-frame’s vertical and horizontal dimensions must be integer multiples of the minimum sizes signaled externally by the decoder. The sub-frame dimensions must be sent with every intra-frame but may be sent more frequently if desired. In addition, the upper-left-hand corner of the first sub-frame is coincident with the upper-left-hand corner of the reference picture. Consequently, the entire partition may be described by specifying the horizontal and vertical dimensions of a sub-frame. Sub-frames may extend beyond the right and bottom boundaries of the reference picture. When a sub-frame that extends past the reference picture boundary is saved, the decoder may wish to set aside enough memory to save the entire sub-frame and not just the memory necessary to save the portion of the reference picture that lies within that sub-frame. A decoder designed such that each sub-frame occupies the same amount of memory will prevent the possibility of memory fragmentation.

Example partition

FIGURE U.8/H.263

Example Partition with Sub-frames Extending Past the Picture Border.

Finally, whenever the reference picture partition is redefined, which may occur when the source picture format changes, the encoder must send the new sub-frame dimensions using the ERPS layer as specified in the following section. A partition redefinition is recognized only if it is sent in the PLUS header of an intra-frame. All reference pictures that have been pruned using the old partition should be discarded.

U.6
Decoder Process

The decoder of this mode may need an additional number of picture memories to store the decoded video signals and their Temporal Reference (TR) information. If the Enhanced Reference Picture Selection layer is present, the decoder stores the reference pictures for inter-frame decoding in a multi-frame buffer-based scheme with buffer indexes. When the field of TRP is present, the buffer indexes are modified. The reference picture that is addressed with TRP is associated with buffer index 0. The reference pictures associated with indexes greater than the TRP picture are assigned new indexes. These indexes are given by subtracting the old indexes of these pictures by an offset that is the value of the old index of the TRP picture. The indexes into the buffer can be further re-arranged by the reference picture buffer sub-sampling mode. The buffering of the currently decoded picture can be specified using the reference picture buffering mode. The buffering may follow a first-in, first-out mode. Alternatively, the buffering may follow a customized adaptive scheme specified by the encoder in the forward channel.

When any employed reference picture is not available at the decoder or the CRC for the TRs in the multi-frame buffer indicates an error, the decoder may send a forced INTRA update signal to the encoder by external means (see for example Recommendation H.245). The decoder replicates the multi-frame buffer of the encoder according to the specified buffering mode. The TRs are attached to the buffered frames. The buffering scheme is operated also when partially erroneous frames are decoded according to the specified buffer mode information.

Multi-frame motion compensation proceeds in a similar way as Reference Picture Selection. They differ in that, the reference picture is variable as indicated in the PR. In case four motion vectors per macroblock are used and the NRPA field indicates the use of more than one reference picture, the motion vector for both chrominance blocks is inherited from the first of the four motion vectors. For that, the motion vector for both chrominance blocks is derived by dividing the component values of the first of the four macroblock values by two, due to the lower chrominance format. The component values of the resulting quarter pixels resolution values are modified towards the nearest half pixel position as indicated in Table 18.

If the Enhanced Reference Picture Selection layer is not present, the mode is operated as if Reference Picture Selection (see Annex N) were enabled without VideoMux back-channel.

Finally, let us give an example for a possible operation of this mode:

[image: image2.wmf]

1. Assume a complete multi

-

frame buffer with 5 frames as externally negotiated:

TR

 10

 12

 14

 16

 18

 Index

 4

 3

 2

 1

 0

2. Assume TRP is transmitted as 14. The buffer indexing is then modified as:

TR

 10

 12

 14

 16

 18

 Index

 2

 1

 0

 X

 X

Index X means that this frame is not used.

3. Further, assume NRPA is transmitted as 2. RPBS is set to ‘10’. NRI is set to 1. One RPS code wordis

transmitted as: {2}. The buffer indexing is modified as:

TR

 10

 12

 14

 16

 18

 Index

0

 X

 1

 X

 X

Usi

ng this buffer, the current frame is decoded using the multi

-

frame motion compensation as specified in

the macroblock layer.

4. Assume in the macroblock layer, PR=1 is transmitted first, PR=0 is transmitted later. The resulting

message block is 0000001010

0000001110 and TRC is 101001000101.

5. Assume the TR of the currently decoded frame is 20. The RPB mode is set to adaptive remove/add. RPI

is set to ‘1’. RPP is transmitted as 3, since frame 12 has been detected as erroneously decoded. The

complete multi

-

frame buffer is modified to

TR

 10

 14

 16

 18

 Index

 3

 2

 1

 0

6. Assume API is set to ‘0’. The complete multi

-

frame buffer is modified to

TR

 10

 14

 16

 18

 20

 Index

4

 3

 2

 1

 0

Annex V
Data Partitioned Slice Mode

(This annex forms an integral part of this Recommendation.)

V.1

Introduction

This annex describes the optional data-partitioned slice (DPS) mode of H.263. The capability of this mode is signaled by external means (for example Recommendation H.245). The use of this mode shall be indicated by setting the formerly-reserved bit 17 of the optional part of the PLUSPTYPE (OPPTYPE) to ‘1’. This mode uses the header structure defined in Annex K.

Data partitioning provides robustness in error prone environments. This is accomplished using a rearrangement of the H.263 syntax to enable early detection of and recovery from errors that have been introduced during transmission.

V.2

Structure of data partitioning

When data partitioning is used, the data is arranged as a video picture segment, as defined in Section R.2. The MB’s in the segment are rearranged so that the header information for all the MB’s in the segment are transmitted together, followed by the MV’s for all the MB’s in the segment, and then by the DCT coefficients for all the MB’s in the segment. The segment header uses the same syntax as described in Section K.2. The header, MV, and DCT partitions are separated by markers, allowing for resynchronization at the end of the partition in which an error occurred. Each segment shall contain the data for an integer number of MB’s. When this mode is in use the syntax shown in Figure V.1 shall be used.

	SSTUF
	SSC
	SEPB1
	SSBI
	MBA
	SEPB2
	SQUANT
	SWI
	SEPB3
	GFID
	Macroblock Data

	HD
	HM
	MVD
	LMVV
	MVM
	Coeff Data

FIGURE V.1/H.263
Data Partitioning Syntax

Note that when this annex is not active, the MV and DCT data are transmitted in an interleaved fashion for all the MB’s in a video picture segment, in which case an error normally results in the loss of all information for the remaining MB’s in the packet.

V.2.1
Header Data (HD) (Variable length)
The Header Data field contains the COD and MCBPC information for all the MB's in the packets, plus the MODB data in case of PB-frames or Improved PB-frames. A reversible variable length code (RVLC) is used to combine the COD and the MCBPC for all the MB’s in the packet. This code is shown in Tables V.1 through V.5/H.263. If COD=0 and Annex G or Annex M is in use, the codeword for the COD+MCBPC shall be immediately followed by the reversible variable-length encoded data corresponding to the MODB field of the macroblock. Table V.6 shall be used for PB-frames, Table V.7 shall be used for Improved PB-frames.
V.2.2
Header Marker (HM) (9 bits)

A codeword of 9 bits. Its value is 1010 0010 1. The HM terminates the header partition. When reversed decoding is used by a decoder, the decoder searches for this marker. This value cannot occur naturally in the HD field.

V.2.3
Motion Vector Data Layer(Variable length)
V.2.3.1
Motion Vector Difference Coding
For the motion vectors, the RVLC codewords shown in Table D.3/H.263 are used to encode the difference between the motion vector and the motion vector prediction. Note that this annex only uses the entropy coding from Annex D, but not the other aspects of it unless Annex D is also in use.

V.2.3.2
Prediction of Motion Vector Values

The MV for the first MB is coded using a predictor value of 0 for both horizontal and vertical components, and the MV’s for the subsequent coded MB’s are coded predictively using the MV difference (MVD). This differs from the method otherwise used for coding the MV’s in which the MV’s following a skipped or INTRA MB are coded using a predictor value of 0 for both horizontal and vertical components.

Forward Direction: MVi = MVi-1 + MVDi=MVi-1 + (MVi- MVi-1)

Backward Direction: MVi-1 = MVi – MVDi =MVi - (MVi- MVi-1).

(MVi and MVDi are the ith MV and MV Difference in the packet respectively)

The motion vector information for the last MB in the packet is coded in this manner and is also coded again in the LMVV field as described below in V.2.4. This allows the decoder to independently decode the sequence of MV’s using two different prediction paths: 1) in the forward direction, starting from the beginning of the motion data of the packet, and 2) in the backward direction, from the end of the motion data in a packet. This provides robustness for better error detection and concealment.

NOTE: When the DPS mode is not in use, motion vectors are predictively coded, with the prediction of the current motion vector being the median value of 3 motion vectors of neighboring locations as described in Section 6.1.1. Because packets in this annex are formed in a way such that the number of MB’s coded in each packet is variable, using the median predictive coding method (which involves motion vectors on different rows of the frame) would prevent reversible decoding of the motion vectors in a slice. When the DPS mode is in use, a single prediction thread is formed for the MV’s in the whole packet. This is shown in Figure V.2.

[image: image3.wmf]16 pixels

MB with 1 MV

16 pixels

MB with 4

MVs

MB with 1 MV

MB with 4 MVs

FIGURE V.2/H.263

Single Thread Motion Vector Prediction

In case of B pictures or EP pictures (Annex O), MVDFW is predictively encoded using the same single prediction thread as described above and MVDBW (when present in B pictures) shall be encoded as specified in O.4.6. MVDFW and MVDBW shall be coded with the codewords from Table D.3/H.263.

In case of PB-frames (Annex G) and Improved PB-frames (Annex M), the MVDB data shall be encoded as specified in corresponding annexes and shall be coded using the codewords from Table D.3/H.263.

NOTE – If the backward decoding mode is engaged in a B frame (Annex O) or in Improved PB-frames (Annex M), MVDB and MVDBW should be discarded by the decoder as the Motion Vector data for the backward prediction may not be recovered properly across the packet boundaries.

V.2.3.3
Start-Code Emulation Prevention in Motion Vector Difference Coding

The MVD start-code-emulation avoidance method is changed from the method described in Section D.2 of Annex D, in order to facilitate independent parsing in the backward direction. A MVD=0 (codeword “1”) shall be inserted between any two consecutive MVD’s that are both equal to 1 (codeword “000”). This differs from Annex D, in which the bit is only inserted when two consecutive MVD=1 form a pair (i.e. when the first MVD is the horizontal component, and the second is the vertical component). If Annex D and Annex V are both in use, this Annex V method of start-code-emulation avoidance method shall be used instead of the method described in Section D.2.

V.2.4
Last Motion Vector Value (LMVV) (Variable length)
The LMVV field contains the MV for the last macroblock in the packet. It is coded using a predictor value of 0 for both the horizontal and vertical components. . (This use of a fixed zero-valued predictor enables the use of reversible decoding.)

V.2.5
Motion Vector Marker (MVM) (10 bits)

A codeword of 10 bits having the value ‘0000 0000 01’. The MVM terminates the motion vector partition. When reverse decoding is used in a decoder, the decoder searches for this marker. The Motion Vector Marker (MVM) shall not be included in the packet if the packet does not contain Motion Vector Data (if all the macroblocks in the packet are intra-coded or with COD's equal to 1).
V.2.6
Coefficient Data Layer (Variable length)

The DCT data layer contains CBPB (if present), CBPY, DQUANT (if present), and DCT coefficients coded as specified in Section 5.3.4, 5.3.5, 5.3.6, and 5.4.2, respectively. The syntax diagram of DCT Data is illustrated in Figure V.3.

[image: image4.wmf]BLOCK LAYER

Fixed Length

Code

Variable Length

Code

DQUANT

CBPY

CBPB

INTRA MODE

B and EP pictures

I and P pictures

PB and Improved PB frames

B, EP, and EI pictures

FIGURE V.3/H.263

Coefficient Data syntax

V.3

Interaction with Other Optional Modes

The DPS mode acts effectively as a sub-mode of the Slice Structured mode of Annex K, and uses its outer picture and slice header structures. The SS mode shall therefore be indicated as being in use whenever the DPS mode is in use. Both of the other sub-modes of the Slice Structured mode (the Arbitrary Slice Ordering and Rectangular Slice sub-modes) may be used in conjunction with the DPS mode.

The Syntax-Based Arithmetic Coding mode of Annex E shall not be used with this annex, as it does not allow for reversible decoding.

Annex H Forward Error Correction should not be used with this annex, as it can result in the bitstream being disrupted in undesirable places. However, the use of Annex H with the DPS mode is not forbidden, as the FEC defined in Annex H is required in some existing standard system designs.

The Temporal, SNR, and Spatial Scalability (TSSS) mode of Annex O may be used in conjunction with the DPS mode. When the TSSS and DPS modes are used together, the codewords provided in Tables V.3, V.4, and V.5 shall be used instead of those defined in Annex O.

TABLE V.1/H.263

COD + MCBPC RVLC table for INTRA MB’s
	MB type

	CBPC (56)
	Codeword

(for combined COD+MCBPC)
	Number of Bits

	3 (INTRA)
	00
	1
	1

	3
	01
	010
	3

	3
	10
	0110
	4

	3
	11
	01110
	5

	4 (INTRA+Q)
	00
	00100
	5

	4
	01
	011110
	6

	4
	10
	001100
	6

	4
	11
	0111110
	7

	stuffing
	0011100
	7

TABLE V.2/H.263

COD + MCBPC RVLC Table for INTER MB’s

	MB type

	CBPC (56)
	Codeword

(for combined COD+MCBPC)
	Number of Bits

	
	
	1
	1

	0 (INTER)
	00
	010
	3

	0
	10
	00100
	5

	0
	01
	011110
	6

	0
	11
	0011100
	7

	1 (INTER + Q)
	00
	01110
	5

	1
	10
	00011000
	8

	1
	01
	011111110
	9

	1
	11
	01111111110
	11

	2 (INTER4V)
	00
	0110
	4

	2
	10
	01111110
	8

	2
	01
	00111100
	8

	2
	11
	000010000
	9

	3 (INTRA)
	00
	001100
	6

	3
	11
	0001000
	7

	3
	10
	001111100
	9

	3
	01
	000111000
	9

	4 (INTRA + Q)
	00
	0111110
	7

	4
	11
	0011111100
	10

	4
	10
	0001111000
	10

	4
	01
	0000110000
	10

	5 (INTER4V + Q)
	00
	00111111100
	11

	5
	01
	00011111000
	11

	5
	10
	00001110000
	11

	5
	11
	00000100000
	11

	stuffing
	0111111110
	10

TABLE V.3/H.263

COD + MCBPC RVLC Table for B MB’s

	Prediction type

	Codeword

(for combined COD+MCBPC)
	Number of Bits

	Direct (skipped)
	1
	1

	Direct
	010
	3

	Direct + Q
	001100
	6

	Forward (no texture)
	00100
	5

	Forward
	011110
	6

	Forward + Q
	01111110
	8

	Backward (no texture)
	0110
	4

	Backward
	01110
	5

	Backward + Q
	00111100
	8

	Bi-Dir (no texture)
	0011100
	7

	Bi-Dir
	0001000
	7

	Bi-Dir + Q
	0111110
	7

	INTRA
	00011000
	8

	INTRA + Q
	011111110
	9

	Stuffing
	001111100
	9

TABLE V.4/H.263

COD + MCBPC RVLC Table for EP MB’s

	Prediction type

	Codeword

(for combined COD+MCBPC)
	Number of Bits

	Forward (skipped)
	1
	1

	Forward
	010
	3

	Forward + Q
	0110
	4

	Upward (no texture)
	01110
	5

	Upward
	00100
	5

	Upward + Q
	011110
	6

	Bi-Dir (no texture)
	001100
	6

	Bi-Dir
	0111110
	7

	Bi-Dir + Q
	0011100
	7

	INTRA
	0001000
	7

	INTRA + Q
	01111110
	8

	Stuffing
	00111100
	8

TABLE V.5/H.263

COD + MCBPC RVLC Table for EI MB’s

	Prediction type
	QCBP (56)
	Codeword

(for combined COD+MCBPC)
	Number of Bits

	Upward (skipped)
	
	1
	1

	0 (Upward)
	00
	010
	3

	0
	01
	0110
	4

	0
	10
	01110
	5

	0
	11
	00100
	5

	1 (Upward + Q)
	00
	011110
	6

	1
	01
	001100
	6

	1
	10
	0111110
	7

	1
	11
	0011100
	7

	2 (INTRA)
	00
	0001000
	7

	2
	01
	01111110
	8

	2
	10
	00111100
	8

	2
	11
	00011000
	8

	3 (INTRA + Q)
	00
	011111110
	9

	3
	01
	001111100
	9

	3
	10
	000111000
	9

	3
	11
	000010000
	9

	Stuffing
	0111111110
	10

TABLE V.6/H.263

RVLC Table for MODB

	Index
	CBPB
	MVDB
	Number of bits
	Code

	0
	
	
	3
	010

	1
	
	x
	4
	0110

	2
	x
	x
	5
	01110

Note: “x” means that the item is present in the macroblock

TABLE V.7/H.263

RVLC Table for MODB for Improved PB-frames mode

	Index
	CBPB
	MVDB
	Number
of bits
	Code
	Coding Mode

	0
	
	
	3
	010
	Bi-directional prediction

	1
	x
	
	4
	0110
	Bi-directional prediction

	2
	
	x
	5
	01110
	Forward prediction

	3
	x
	x
	5
	00100
	Forward prediction

	4
	
	
	6
	011110
	Backward prediction

	5
	x
	
	6
	001100
	Backward prediction

Note — The symbol “x” in the table above indicates that the associated syntax element is present.

Annex W
Additional Supplemental Enhancement Information Specification

(This annex forms an integral part of this Recommendation.)

W.1
Introduction

This annex describes the format of the additional supplemental enhancement information sent in the PSUPP field of the picture layer of H.263, which adds to the functionality defined in Annex L. The capability of a decoder to provide any or all of the capabilities described in this annex may be signaled by external means (for example Recommendation H.245). Decoders which do not provide the additional capabilities may simply discard any of the newly defined PSUPP information bits that appear in the bitstream. The presence of this supplemental enhancement information is indicated by the presence of both the PEI bit, and by the following PSUPP octet whose FTYPE field has one of the two newly defined values. The basic interpretation of PEI, PSUPP, FTYPE, and DSIZE is identical to Annex L and to sections 5.1.24 and 5.1.25.

W.2
References

The following Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; all users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below.

[8]
ISO/IEC 10646-1 (19xx):
[9]
IETF RFC 2396 (19xx):
W.3
Additional FTYPE Values

Two values that were reserved in Annex L, Table L.1 are defined as follows.

TABLE W.1/H.263

FTYPE Function Type Values

	13
	Fixed-Point IDCT

	14
	Picture Message

W.4
Maximum Number of PSUPP Octets

When using any of the aforementioned FTYPE functions defined in this annex, the total number of PSUPP octets per picture should, in relation to the coded picture size, be kept reasonably small, and should not exceed 256 octets regardless of the coded picture size.

W.5
Fixed-Point IDCT

The fixed-point IDCT function indicates that a particular IDCT approximation is used in construction of the bitstream. DSIZE shall be equal to 1 for the fixed-point IDCT function. The octet of PSUPP data that follows specifies the particular IDCT implementation. A value of 0 indicates the reference IDCT 0 as described in W.5.3; values of 1 through 255 are reserved.

W.5.1
Decoder Operation

The capability of a decoder to perform a particular fixed-point IDCT may be signaled to the encoder by external means. When receiving an encoded bitstream with the fixed-point IDCT indication, a decoder shall use the particular fixed-point IDCT if it is capable.

W.5.2
Removal of Forced Updating

Annex A specifies the accuracy requirements for the inverse discrete cosine transform (IDCT), allowing numerous compliant implementations. To control accumulation of errors due to mismatched IDCTs at the encoder and decoder, Section 4.4 Forced Updating requires that macroblocks be coded in INTRA mode at least once every 132 times when coefficients are transmitted.

If the fixed-point IDCT function type is indicated in the bitstream, then the forced updating requirement is removed, and the frequency of INTRA coding is unregulated. An encoder should continue to use forced updating, however, unless it has ascertained through external means that the decoder is capable of the particular fixed-point IDCT, otherwise there may be mismatch.

W.5.3
Reference IDCT 0

The reference IDCT 0 is any implementation that, for every input block, produces identical output values as the C source program listed below. Note that this fixed-point IDCT is compliant with Annex A of H.263, as well as Annex A of H.262 | ISO/IEC 13818-2.

/***

 *

 * FIXED-POINT IDCT

 *

 * Fixed-point fast, separable idct

 * Storage precision: 16 bits signed

 * Internal calculation precision: 32 bits signed

 * Input range: 12 bits signed, stored in 16 bits

 * Output range: [-256, +255]

 * All operations are signed

 *

 ***/

/*

 * Includes

 */

#include <stdlib.h>

#include <stdio.h>

/*

 * Typedefs

 */

typedef short int REGISTER; /* 16 bits signed */

typedef long int LONG; /* 32 bits signed */

/*

 * Global constants

 */

const REGISTER cpo8 = 0x539f; /* 32768*cos(pi/8)*1/sqrt(2) */

const REGISTER spo8 = 0x4546; /* 32768*sin(pi/8)*sqrt(2) */

const REGISTER cpo16 = 0x7d8a; /* 32768*cos(pi/16) */

const REGISTER spo16 = 0x18f9; /* 32768*sin(pi/16) */

const REGISTER c3po16 = 0x6a6e; /* 32768*cos(3*pi/16) */

const REGISTER s3po16 = 0x471d; /* 32768*sin(3*pi/16) */

const REGISTER OoR2 = 0x5a82; /* 32768*1/sqrt(2) */

/*

 * Function declarations

 */

void Transpose(REGISTER block[64]);

void HalfSwap(REGISTER block[64]);

void Swap(REGISTER block[64]);

void Scale(REGISTER block[64], signed char sh);

void Round(REGISTER block[64], signed char sh,

 const REGISTER min, const REGISTER max);

REGISTER Multiply(const REGISTER a, REGISTER x, signed char sh);

void Rotate(REGISTER *x, REGISTER *y,

 signed char sha, signed char shb,

 const REGISTER a, const REGISTER b,

 int inv);

void Butterfly(REGISTER column[8], char pass);

void IDCT(REGISTER block[64]);

/*

 * Transpose():

 * Transpose a block

 * Input:

 * REGISTER block[64]

 * Output:

 * block

 * Return value:

 * none

 */

void Transpose(REGISTER block[64])

{

 int i, j;

 REGISTER temp;

 for (i=0; i<8; i++) {

 for (j=0; j<i; j++) {

 temp = block[8*i+j];

 block[8*i+j] = block[8*j+i];

 block[8*j+i] = temp;

 }

 }

 return;

}

/*

 * HalfSwap():

 * One-dimensional swap

 * Input:

 * REGISTER block[64]

 * Output:

 * block

 * Return value:

 * none

 */

void HalfSwap(REGISTER block[64])

{

 int i;

 REGISTER temp;

 for (i=0; i<8; i++) {

 temp = block[8+i];

 block[8+i] = block[32+i];

 block[32+i] = temp;

 temp = block[24+i];

 block[24+i] = block[48+i];

 block[48+i] = temp;

 temp = block[40+i];

 block[40+i] = block[56+i];

 block[56+i] = temp;

 }

 return;

}

/*

 * Swap():

 * Swap and transpose a block

 * Input:

 * REGISTER block[64]

 * Output:

 * block

 * Return value:

 * none

 */

void Swap(REGISTER block[64])

{

 HalfSwap(block);

 Transpose(block);

 HalfSwap(block);

}

/*

 * Scale():

 * Scale a block

 * Input:

 * REGISTER block[64]

 * signed char sh

 * Output:

 * block

 * Return value:

 * none

 */

void Scale(REGISTER block[64], signed char sh)

{

 int i;

 if (sh>0) {

 for (i=0; i<64; i++)

 block[i] >>= sh;

 }

 else {

 for (i=0; i<64; i++)

 block[i] <<= -sh;

 }

}

/*

 * Round():

 * Performs the final rounding of an 8x8 block

 * Input:

 * REGISTER block[64]

 * signed char sh

 * const REGISTER min

 * const REGISTER max

 * Output:

 * block

 * Return value:

 * none

 */

void Round(REGISTER block[64], signed char sh,

 const REGISTER min, const REGISTER max)

{

 int i;

 for (i=0; i<64; i++) {

 if (block[i] < 0x00007FFF - (1<<(sh-1)))

 block[i] += (1<<(sh-1));

 else

 block[i] = 0x00007FFF;

 block[i] >>= sh;

 block[i] = (block[i]<min) ? min : ((block[i]>max) ? max : block[i]);

 }

 return;

}

/*

 * Multiply():

 * Multiply by a constant with shift

 * Input:

 * const REGISTER a

 * REGISTER x

 * signed char sh

 * Output:

 * none

 * Return value:

 * REGISTER, the result of the multiply

 */

REGISTER Multiply(const REGISTER a, REGISTER x, signed char sh)

{

 LONG tmp;

 REGISTER reg_out;

 /* multiply */

 tmp = (LONG)a * (LONG)x;

 /* shift */

 if (sh > 0)

 tmp >>= sh;

 else

 tmp <<= -sh;

 /* rounding and saturating */

 if (tmp < 0x7FFFFFFF - 0x00007FFF)

 tmp = tmp + 0x00007FFF;

 else

 tmp = 0x7FFFFFFF;

 reg_out = (REGISTER)(tmp >>16);

 return(reg_out);

}

/*

 * Rotate():

 * Perform rotate operation on two registers

 * Input:

 * REGISTER *x pointer to the 1st register

 * REGISTER *y pointer to the 2nd register

 * signed char sha shift associated with factor a

 * signed char shb shift associated with factor b

 * const REGISTER a factor a

 * const REGISTER b factor b

 * int inv 1 for inverse dct, 0 for forward dct

 * Output:

 * *x, *y

 * Return value:

 * none

 */

void Rotate(REGISTER *x, REGISTER *y,

 signed char sha, signed char shb,

 const REGISTER a, const REGISTER b,

 int inv)

{

 LONG tmplxa, tmplya, tmplxb, tmplyb;

 LONG tmpl1, tmpl2;

 /*

 * intermediate calculation

 */

 tmplxa = (LONG)(*x) * (LONG)a;

 if (sha > 0)

 tmplxa >>= sha;

 else

 tmplxa <<= -sha;

 tmplya = (LONG)(*y) * (LONG)a;

 if (sha > 0)

 tmplya >>= sha;

 else

 tmplya <<= -sha;

 tmplxb = (LONG)(*x) * (LONG)b;

 if (shb > 0)

 tmplxb >>= shb;

 else

 tmplxb <<= -shb;

 tmplyb = (LONG)(*y) * (LONG)b;

 if (shb > 0)

 tmplyb >>= shb;

 else

 tmplyb <<= -shb;

 /*

 * rounding and rotation

 */

 if (inv) {

 tmplxa += 0x00007FFF;

 tmplxb += 0x00007FFF;

 tmpl1 = tmplxb - tmplya;

 tmpl2 = tmplxa + tmplyb;

 }

 else {

 tmplya += 0x00007FFF;

 tmplyb += 0x00007FFF;

 tmpl1 = tmplxb + tmplya;

 tmpl2 = -tmplxa + tmplyb;

 }

 /*

 * final rounding

 */

 *x = (REGISTER) (tmpl1 >>16);

 *y = (REGISTER) (tmpl2 >>16);

 return;

}

/*

 * Butterfly():

 * Perform 1D IDCT on a column

 * Input:

 * REGISTER column[8]

 * char pass

 * Output:

 * column

 * Return value:

 * none

 */

void Butterfly(REGISTER column[8], char pass)

{

 int i;

 REGISTER shadow_column[8];

 /*

 * For readability, we use a shadow column

 * that contains the state of column at the

 * preceding stage of the butterfly.

 */

 /*

 * Initialization

 */

 for (i=0; i<8; i++)

 shadow_column[i] = column[i];

 /*

 * First Phase

 */

 Rotate(column+2, column+6, pass-2, pass-1, cpo8, spo8, 1);

 Rotate(column+1, column+7, pass-1, pass-1, cpo16, spo16, 1);

 Rotate(column+3, column+5, pass-1, pass-1, c3po16, s3po16, 1);

 if (pass) {

 int a, tmp=column[4], b=column[0];

 a = b+tmp;

 b = b-tmp;

 column[0] = (a - ((tmp<0) ? 1 : 0)) >> 1;

 column[4] = (b - ((tmp<0) ? 1 : 0)) >> 1;

 }

 else {

 column[0] = shadow_column[0] + shadow_column[4];

 column[4] = shadow_column[0] - shadow_column[4];

 }

 for (i=0; i<8; i++)

 shadow_column[i] = column[i];

 /*

 * Second Phase

 */

 column[1] = shadow_column[1] - shadow_column[3];

 column[3] = shadow_column[1] + shadow_column[3];

 column[7] = shadow_column[7] - shadow_column[5];

 column[5] = shadow_column[7] + shadow_column[5];

 column[0] = shadow_column[0] + shadow_column[6];

 column[6] = shadow_column[0] - shadow_column[6];

 column[4] = shadow_column[4] + shadow_column[2];

 column[2] = shadow_column[4] - shadow_column[2];

 for (i=0; i<8; i++)

 shadow_column[i] = column[i];

 /*

 * Third Phase

 */

 column[7] = shadow_column[7] - shadow_column[3];

 column[3] = shadow_column[7] + shadow_column[3];

 column[1] = Multiply(OoR2, shadow_column[1], -2);

 column[5] = Multiply(OoR2, shadow_column[5], -2);

 for (i=0; i<8; i++)

 shadow_column[i] = column[i];

 /*

 * Fourth Phase

 */

 column[4] = shadow_column[4] + shadow_column[3];

 column[3] = shadow_column[4] - shadow_column[3];

 column[2] = shadow_column[2] + shadow_column[7];

 column[7] = shadow_column[2] - shadow_column[7];

 column[0] = shadow_column[0] + shadow_column[5];

 column[5] = shadow_column[0] - shadow_column[5];

 column[6] = shadow_column[6] + shadow_column[1];

 column[1] = shadow_column[6] - shadow_column[1];

 return;

}

/*

 * IDCT():

 * Perform 2D IDCT on a block

 * Input:

 * REGISTER block[64]

 * Output:

 * block

 * Return value:

 * none

 */

void IDCT(REGISTER block[64])

{

 int i;

 Scale(block, -4);

 for (i=0; i<8; i++)

 Butterfly(block+8*i, 0);

 Transpose(block);

 for (i=0; i<8; i++)

 Butterfly(block+8*i, 1);

 Round(block, 6, -256, 255);

 Swap(block);

}

For informative purposes, a related forward discrete cosine transform implementation is shown below. This fixed-point FDCT does not form an integral part of this Recommendation.

/***

 *

 * FIXED-POINT FDCT

 *

 * Fixed-point fast, separable fdct

 * Storage precision: 16 bits signed

 * Internal calculation precision: 32 bits signed

 * Input range: 9 bits signed, stored in 16 bits

 * Output range: [-2048, +2047]

 * All operations are signed

 *

 ***/

/*

 * Function declarations

 */

void FButterfly(REGISTER column[8]);

void FDCT(REGISTER block[64]);

/*

 * FButterfly():

 * Perform 1D FDCT on a column

 * Input:

 * REGISTER column[8]

 * Output:

 * column

 * Return value:

 * none

 */

void FButterfly(REGISTER column[8])

{

 int i;

 REGISTER shadow_column[8];

 /*

 * For readability, we use a shadow column

 * that contains the state of column at the

 * preceding stage of the butterfly.

 */

 /*

 * Initialization

 */

 for (i=0; i<8; i++)

 shadow_column[i] = column[i];

 /*

 * First Phase

 */

 for (i=0; i<4; i++) {

 column[i] = shadow_column[i] + shadow_column[7-i];

 column[7-i] = shadow_column[i] - shadow_column[7-i];

 }

 for (i=0; i<8; i++)

 shadow_column[i] = column[i];

 /*

 * Second Phase

 */

 column[0] = shadow_column[0] + shadow_column[3];

 column[3] = shadow_column[0] - shadow_column[3];

 column[1] = shadow_column[1] + shadow_column[2];

 column[2] = shadow_column[1] - shadow_column[2];

 column[4] = Multiply(OoR2, shadow_column[4], -2);

 column[7] = Multiply(OoR2, shadow_column[7], -2);

 column[6] = shadow_column[6] - shadow_column[5];

 column[5] = shadow_column[6] + shadow_column[5];

 for (i=0; i<8; i++)

 shadow_column[i] = column[i];

 /*

 * Third Phase

 */

 column[0] = shadow_column[0] + shadow_column[1];

 column[1] = shadow_column[0] - shadow_column[1];

 column[6] = shadow_column[6] - shadow_column[4];

 column[4] = shadow_column[6] + shadow_column[4];

 column[7] = shadow_column[7] - shadow_column[5];

 column[5] = shadow_column[7] + shadow_column[5];

 for (i=0; i<8; i++)

 shadow_column[i] = column[i];

 /*

 * Fourth Phase

 */

 Rotate(column+2, column+3, -2, -1, cpo8, spo8, 0);

 Rotate(column+4, column+5, -1, -1, cpo16, spo16, 0);

 Rotate(column+6, column+7, -1, -1, c3po16, s3po16, 0);

 return;

}

/*

 * FDCT():

 * Perform 2D FDCT on a block

 * Input:

 * REGISTER block[64]

 * Output:

 * block

 * Return value:

 * none

 */

void FDCT(REGISTER block[64])

{

 int i;

 for (i=0; i<8; i++)

 FButterfly(block+8*i);

 Transpose(block);

 for (i=0; i<8; i++)

 FButterfly(block+8*i);

 Round(block, 3, -2048, 2047);

 Swap(block);

}

W.6
Picture Message

The picture message function indicates the presence of one or more octets representing message data. The first octet of the message data is a message header with the following structure.

FIGURE W.1/H.263

Structure of first message octet

	CONT
	EBIT
	MTYPE

DSIZE shall be equal to the number of octets in the message data corresponding to a picture message function, including the first octet shown in Figure W.1.

Decoders shall parse picture message data as required by basic PSUPP syntax, but decoder response to picture messages is otherwise undefined.

W.6.1
Continuation (CONT) (1 bit)

If equal to 1, indicates that the message data associated with this picture message function is part of the same logical message as the message data associated with the next picture message function. If equal to 0, indicates that the message data associated with this picture message function terminates the current logical message. CONT may be used, for example, to represent logical messages that span more than 14 octets.

W.6.2
End Bit Position (EBIT) (3 bits)

Specifies the number of least significant bits that shall be ignored in the last message octet. If CONT is 1, or if there is only one message octet (i.e. the octet in Figure W.1), EBIT shall equal 0. The number of valid message bits for a picture message function excluding the CONT/EBIT/MTYPE bits is equal to (DSIZE-1)*8 – EBITS. The number of valid message bits for a logical message may be greater due to continuation.

W.6.3
Message Type (MTYPE) (4 bits)

MTYPE indicates the type of message. The defined types are shown in Table W.2.

TABLE W.2/H.263

MTYPE Message Type Values

	0
	Arbitrary Text

	1
	Arbitrary Binary

	2
	Copyright Text

	3
	Caption Text

	4
	Current Picture Header Repetition

	5
	Previous Picture Header Repetition

	6
	URI

	7
	Top Interlaced Field Indication

	8
	Bottom Interlaced Field Indication

	9..15
	Reserved

W.6.3.1
Arbitrary Text

Arbitrary text is used to convey a generic ISO/IEC 10646-1 UTF-8 coded text message. More specific text messages such as copyright information should be represented with other message types (e.g. copyright text) as appropriate. EBIT for arbitrary text shall be zero.

W.6.3.2
Arbitrary Binary

Arbitrary binary is used to convey any non - ISO/IEC 10646-1 UTF-8 coded binary message.

W.6.3.3
Copyright Text

Copyright text shall be used only to convey intellectual property information of the source or the encoded representation in the bitstream. The copyright message shall be coded according to ISO/IEC 10646-1 UTF-8. EBIT for copyright text shall be zero.

W.6.3.4
Caption Text

Caption text shall be used only to convey caption information associated with the current and subsequent pictures of the bitstream. The caption message shall be coded according to ISO/IEC 10646-1 UTF-8. EBIT for caption text shall be zero.

W.6.3.5
Current Picture Header Repetition

The picture header from the current picture is repeated in this message. The repeated bits exclude any supplemental enhancement information (PEI/PSUPP). All other bits up to the GOB or Slice layer should be included, subject to the limitations of W.4.

W.6.3.6
Previous Picture Header Repetition

The picture header from the previously transmitted picture is repeated in this message. The repeated bits exclude the first two bytes of picture start code (PSC) and any supplemental enhancement information (PEI/PSUPP). All other bits up to the GOB or Slice layer should be included, subject to the limitations of W.4.

W.6.3.7
URI

The message consists of a URI, as defined in IETF RFC 2396.

W.6.3.8
Interlaced Field Indications

In the case of interlaced field indications, the message consists of an indication of interlaced field coding. This indication does not affect the decoding process. However, it indicates that the current picture was not actually scanned as a progressive-scan picture. In other words, it indicates that the current coded picture contains only half of the lines of the full resolution source picture. DSIZE shall be 1, CONT shall be 0, and EBIT shall be 0 for interlaced field indications. In the case of interlaced field coding, each increment of the temporal reference denotes the time between the sampling of alternate half-picture fields of a picture, rather than the time between two complete pictures. In the case of a top interlaced field indication, the current picture contains the first (i.e., top), third, fifth, etc. lines of the complete picture. In the case of a bottom interlaced field indication, the current picture contains the second, fourth, sixth, etc. lines of the complete picture. When sending interlaced field indications, an encoder shall conform to the following conventions:

1. The encoder shall use a picture clock frequency (custom picture clock frequency, if necessary) such that each new field of the original source video corresponds to an increment of 1 in the temporal reference.

2. The encoder shall use a picture size (custom picture size, if necessary) such that the picture dimensions correspond to those of a single field.

3. The encoder shall use a pixel aspect ratio (custom pixel aspect ratio, if necessary) such that the full-height picture aspect ratio corresponds to the picture aspect ratio derived from the pixel aspect ratio of a single field.

Interlaced field scanning was introduced in the first half of the previous century as an analog video compression technique. Although progressive picture scanning is superior for digital compression and display, the use of interlaced field scanning has persisted in many camera and display designs. Interlaced field coding (which can be implemented with lower delay than either interlaced full-picture coding or progressive-scan picture coding at half the interlaced field rate) is therefore supported by the indications herein.

An encoder shall not send interlaced field indications unless the capability of the decoder to receive and properly process such field-based pictures has been established by external means (for example, Recommendation H.245). Failure to establish such a decoder capability is likely to produce a visually annoying vertical shaking behavior in the decoded picture received by a decoder.

For example, an encoder may use interlaced field coding with application of the Reference Picture Selection mode (specified in Annex N) or the Enhanced Reference Picture Selection mode (specified in Annex U) to allow the addressing of more than one prior field. For “525/60” interlaced field coding for a 4:3 picture aspect ratio with 704 coded luminance samples per line and 240 coded luminance lines per field, the encoder shall use a custom picture size having a picture width of 704 and a picture height of 240, a custom pixel aspect ratio of 5:11, and a custom picture clock frequency specified with a clock conversion code ‘1’ and a clock divisor of 30. For “625/50” interlaced field coding for a 4:3 picture aspect ratio with 704 coded luminance samples per line and 288 coded luminance lines per field, the encoder shall use a custom picture size having a picture width of 704 and a picture height of 288, a custom pixel aspect ratio of 6:11, and a custom picture clock frequency specified with a clock conversion code ‘0’ and a clock divisor of 36.

The vertical sampling positions of the chrominance samples in interlaced field coding of a top field picture are specified as shifted up by 1/4 luminance sample height relative to the field sampling grid in order for these samples to align vertically to the usual position relative to the full-picture sampling grid. The vertical sampling positions of the chrominance samples in interlaced field coding of a bottom field picture are specified as shifted down by 1/4 luminance sample height relative to the field sampling grid in order for these samples to align vertically to the usual position relative to the full-picture sampling grid. The horizontal sampling positions of the chrominance samples are specified as unaffected by the application of interlaced field coding. The vertical sampling positions are shown with their corresponding temporal sampling positions in Figure W.1/H.263.

[image: image5.wmf]Time

Top

Field

Bottom

Field

Top

Field

= Luminance Sample

= Chrominance Sample

FIGURE W.1/H.263

Vertical and Temporal Alignment of Chrominance Samples
for Interlaced Field Coding

Sub-frame 2

Picture Border

PII

VSD

HSD

SDI

RPS

SPB

NPP

SPI

RPI

Annex K Header

APP

API

RPP

RPB

RPS

NRI

RPBS

NRPA

34

_975935912.doc

����SSTUF�

SSC�

SEPB1�

SSBI�

MBA�

SEPB2�

SQUANT�

SWI�

SEPB3�

GFID�

�

Macroblock Data�

�

�

��

�������

ERPSI�

�

TRI�

TR�

�

TRPI�

TRP�

�

ERPS layer�

�

TRCI�

�

TRC�

�

_1001934409.doc

PMM-1

PM1

PM0

Picture Memory

T

Q

P

PM

CC

p

t

qz

q

v

Transform

Quantizer

Picture Memory with motion compensated variable delay

Coding control

Flag for INTRA/INTER

Flag for transmitted or not

Quantizer indication

Quantizing index for transform coefficients

Motion vector

P

T

–1

–1

To

video

multiplex

coder

Video

in

v

q

qz

t

p

Q

Q

CC

T

_1011127359.doc
1. Assume a complete multi-frame buffer with 5 frames as externally negotiated:

		TR

		 10

		 12

		 14

		 16

		 18

		 Index

		 4

		 3

		 2

		 1

		 0

2. Assume TRP is transmitted as 14. The buffer indexing is then modified as:

		TR

		 10

		 12

		 14

		 16

		 18

		 Index

		 2

		 1

		 0

		 X

		 X

Index X means that this frame is not used.

3. Further, assume NRPA is transmitted as 2. RPBS is set to ‘10’. NRI is set to 1. One RPS code wordis transmitted as: {2}. The buffer indexing is modified as:

		TR

		 10

		 12

		 14

		 16

		 18

		 Index

		0

		 X

		 1

		 X

		 X

Using this buffer, the current frame is decoded using the multi-frame motion compensation as specified in the macroblock layer.

4. Assume in the macroblock layer, PR=1 is transmitted first, PR=0 is transmitted later. The resulting message block is 00000010100000001110 and TRC is 101001000101.

5. Assume the TR of the currently decoded frame is 20. The RPB mode is set to adaptive remove/add. RPI is set to ‘1’. RPP is transmitted as 3, since frame 12 has been detected as erroneously decoded. The complete multi-frame buffer is modified to

		TR

		 10

		 14

		 16

		 18

		 Index

		 3

		 2

		 1

		 0

6. Assume API is set to ‘0’. The complete multi-frame buffer is modified to

		TR

		 10

		 14

		 16

		 18

		 20

		 Index

		4

		 3

		 2

		 1

		 0

_1012021107.vsd
Time�

Top
Field�

Bottom
Field�

Top
Field�

= Luminance Sample�

= Chrominance Sample�

_975944797.doc

�COD�

PR0�

MCBPC�

MODB�

CBPB�

CBPY�

DQUANT�

�

PRgkfljd�

MVD�

PR2�

MVD2�

PR3�

MVD3�

PR4�

MVD4�

MVDB�

Block Data�

�

_1000376660.vsd

_975935211.doc

��PSC�

TR�

PTYPE�

PLUS HEADER�

PQUANT�

CPM�

PSBI�

TRB�

DBQUANT�

PEI�

PSUPP�

�

��

�������������GOB LAYER�

�

EOSBS�

ESBI�

�

�

�����

ESTUFF�

�

TRC�

�

PSTUF�

�

���SLICE LAYER�

�

EOS�

�

�

�

�

_975935295.doc

������

GSTUF�

GBSC�

GN�

GSBI�

GFID�

GQUANT�

�

Macroblock data�

�

��

������ERPSITRI�

�

TRI�

TR�

�

TRPI�

TRP�

�

ERPS layer�

�

TCRI�

�

TRC�

�

�

_975934426.doc

��PLUS PTYPE�

CPM�

PSBI�

CPMFT�

EPAR�

CPCFC�

ETR�

UUI�

SSS�

ELNUM�

RLNUM�

RPSMF�

�

��

�����ERPSITRPI�

TRP�

TRPI�

TRP�

�

ERPS layer�

�

TRCI�

�

_972736980.doc

16 pixels

MB with 1 MV

16 pixels

MB with 4 MVs

MB with 1 MV

MB with 4 MVs

