ITU Telecommunication Standardization Sector
Document Q1-E09
Study Group 16

Q.1/16 Rapporteur Meeting
23 Nov. 2005

Geneva, Switzerland 30 November - 2 December 2005

	Source*:
	Tandberg

	Title:
	Proposed changes to H.241 to support an Additional Computationally Efficient Mode (ACEM) in H.32x systems

	Purpose:
	Proposal

1. Background

In the Q6 meeting in Geneva July 26th to August 5th it was decided to define an additional computationally efficient mode (ACEM) to H.264 by using H.241. This work should be done in Q1. The ACEM solution should consist of:
· Restricting the motion block size to 8x8 or larger.

· Simplified fractional pixel interpolation as already presented in Q6

· Simplified deblocking filter

· Since the other CE tools that had been proposed to Q6 were not to be included, it was mentioned that the deblocking filter could probably be even more simplified to make up for some of complexity reduction that could otherwise have been obtained.

Hence we made some further tests to reduce the deblocking filter complexity a little more. During that work we also discovered that the filter definition was recursive so that filtering for instance some pixels in a line might depend on all previously filtered pixel on that line. This was considered to be undesirable, and we made a fix so that there is a brake in recursion near all macroblock edges. Hence the present definitions consist of the following:

· Simplified fractional pixel interpolation as already presented in Q6

· Simplified deblocking filter with the following small changes to definitions already presented to Q6:
· Use one decision for every 8 edge lines instead of every 4 edge lines whether to filter or not. This reduces the overall complexity by about 2%

· Make a small change in filter definition near macroblock edges to break recursion (see above)

· Concerning filtering due to motion vector differences, revert from difference of “8 in units of quarter pixels” to “4 in units of quarter pixels” which is used in H.264.

The total results of these minor changes are the 2% reduction in complexity and no measurable change in objective or subjective quality.
2. Signaling

Signaling of ACEM needs to be defined in H.241. We propose to do this by defining a new capability parameter, AdditionalModesSupported. Details are given in document Q1-E07, Section 8.3.2.12 in particular.

3. New H.241 Annex B

The following text contains the proposed new H.241 Annex B.
Annex B

Additional Computationally Efficient Mode
(Geneva, 2006)

B.1 Scope

This annex describes a method of using the ITU-T Rec. H.264, 03/2005 (hereafter called H.264) by modifying some of the operations described in H.264. The modifications are defined in the following. In this process reference is made to H.264. For variables and functions that are not defined in this annex, the definitions used in H.264 should be inferred. The modifications in this annex apply only to bitstreams that obey the constraints described in Section A.2.1/H.264 (Baseline Profile). Also, for the purposes of Annex A/H.264, Level requirements are the same in this mode as for the H.264 Baseline Profile.
B.2 Bitstream Conformance
Bitstream conformance with the Additional Computationally Efficient Mode (ACEM) shall be identified in the H.264 bitstream by the presence of a User data unregistered SEI message according to D.1.6/H.264 after each Sequence Parameter Set containing the values given in Table B.1 below:
Table B.1/H.241 - User data unregistered SEI message indicating bitstream conformance with this Annex
	UUID value:
	xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx

	Payload bytes:
	Exactly one payload byte shall follow. This shall contain the AdditionalModesSupported booleanArray according to Table 9f/H.241

In cases where several sequence parameter sets are stored in the decoder, ACEM shall be assumed for each sequence parameter set that was followed by a user data unregistered SEI message as specified above.

B.3 Limiting motion compensated prediction block size downward to 8x8

The parameter sub_mb_type as defined in Table 7-17/H.264 shall be equal to 0 for all 8x8 blocks in a macroblock

B.4 Use of a different subpixel interpolation scheme

The operations defined in section 8.4.2.2/H.264 named “Fractional sample interpolation process” are performed except for the changes defined in this section. The changes are:
1) In section 8.4.2.2:
Add frame_num to the list of inputs to the process.

2) In section 8.4.2.2:
(xFracc,yFracc) is in quarter sample units instead of one-eighth sample units stated in 8.4.2.2.
3) In section 8.4.2.2:

Replace the sentence: “Let (xIntC, yIntC) be a chroma location given in full-sample units and (xFracC, yFracC) be an offset given in one-eighth sample units” with:

“Let (xIntC, yIntC) be a chroma location given in full-sample units and (xFracC, yFracC) be an offset given in one-quarter sample units”.

4) In section 8.4.2.2:
Equations 8-224 through 8-227 shall be replaced by:

xIntC = (xAL / SubWidthC) + ((mvCLX[0]+(frame_num & 1)) >> 3) + xC
(8-224)
yIntC = (yAL / SubHeightC) + ((mvCLX[1]+(frame_num & 1)) >> 3) + yC
(8-225)

xFracC = ((mvCLX[0]+(frame_num & 1)) >>1) & 3
(8-226)
yFracC = ((mvCLX[1]+(frame_num & 1)) >>1) & 3
(8-227)
5) In section 8.4.2.2.1:
Replace the sentence: “The luma prediction values at half sample positions shall be derived by applying a 6-tap filter with tap values (1, -5, 20, 20, -5, 1)” with:

“The luma prediction values at half sample positions b and s shall be derived by applying a 6-tap filter with tap values (1, -5, 20, 20, -5, 1). The luma prediction values at half sample positions h and m shall be derived by applying a 4-tap filter with tap values (-1, 5, 5, -1)”.

6) In section 8.4.2.2.1:
Equations 8-237, 8-238, 8-241 and 8-242 to define b1, h1 and j1 are not used since the intermediate values are not used for calculating any of the fractional pixel values.
7) In section 8.4.2.2.1:
Equations 8-239, 8-240, 8-243, 8-244, 8-245, 8-250, 8-251, 8-252 and 8-252 shall be replaced by:

b = Clip1Y((E – 5 * F + 20 * G + 20 * H – 5* I + J + 6) >> 5)
(8-239)
h = Clip1Y((– C + 5 * G + 5 * M – R + 1) >> 3)
(8-240)
j = (H + M) >> 1)

(8-243)
s = Clip1Y((K – 5 * L + 20 * M + 20 * N – 5* P + Q + 6) >> 5)
(8-244)
m = Clip1Y((– D + 5 * H + 5 * N – S + 1) >> 3)
(8-245)
f = (G + m + 1) >> 1

(8-250)
i = (M + b + 1) >> 1

(8-251)
k = (H + s + 1) >> 1

(8-252)
q = (N + h + 1) >> 1

(8-253)

8) In section 8.4.2.2.2:
Figure B.1 depict the position of integer and fractional chroma pixel positions.

[image: image1]
Figure B.1/H.241 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks with lower-case letters) for quarter sample chroma interpolation

For further definition of integer and fractional chroma pixel positions, let Table 8-12 also apply for ”Assignment of chroma prediction sample predPartLXC[xC,yC]” by replacing subscript L by subscript C , and by replacing G with A.

To define predPartLXC[xC, yC] replace equation 8-266 with the expressions.

b = (A + B) >> 1

h = (A + C) >> 1
j = (B+ C) >> 1
m = (B + D) >> 1
s = (C + D) >> 1

a = (A + b + 1) >> 1
c = (B + b + 1) >> 1
d = (A + h + 1) >> 1
e = (b + h + 1) >> 1
f = (A + m + 1) >> 1
g = (b + m + 1) >> 1
i = (C + b + 1) >> 1
k = (B + s + 1) >> 1
n = (B + h + 1) >> 1
p = (h + s + 1) >> 1
q = (D + h + 1) >> 1
r = (m + s + 1) >> 1
B.5 Use of a different deblocking filter

Section 8.7/H.264 named “Deblocking filter process” shall be replaced by sections B.5.1 and B.5.2 in this annex, except for the definitions of indexA and indexB where Eqs. 8-462 and 8-463 are used.
B.5.1 Deblocking filter process

A conditional filtering shall be applied to all 4x4 block edges of a picture, except edges at the boundary of the picture and any edges for which the deblocking filter process is disabled by disable_deblocking_filter_idc, as specified below. This filtering process is performed on a macroblock basis after the completion of the picture construction process prior to deblocking filter process (as specified in subclauses 8.5/H.264 and 8.6/H.264) for the entire decoded picture, with all macroblocks in a picture processed in order of increasing macroblock addresses.

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock and each component, vertical edges are filtered first, starting with the edge on the left-hand side of the macroblock proceeding through the edges towards the right-hand side of the macroblock in their geometrical order, and then horizontal edges are filtered, starting with the edge on the top of the macroblock proceeding through the edges towards the bottom of the macroblock in their geometrical order.

Macroblocks of type I_PCM should be treated as Intra macroblocks with qPz = 0. This is in accordance with deblocking filtering in H.264.
Table B.2 - Value of tC and (as a function of index

	index
	0-15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33

	tC
	0
	1
	1
	1
	1
	1
	2
	2
	2
	2
	2
	2
	2
	2
	2
	2
	3
	3
	3

	(
	0
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	20
	22
	24
	26
	28

To obtain tC use index = index A. To obtain (use index = index B.

Table B.2 (concluded) - Value of tC and (as a function of index

	index
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51

	tC
	3
	4
	4
	4
	5
	5
	6
	6
	7
	8
	9
	9
	11
	12
	13
	13
	16
	18

	(
	30
	32
	34
	36
	38
	40
	42
	44
	46
	48
	50
	52
	54
	56
	58
	60
	62
	64

To obtain tC use index = index A. To obtain (use index = index B.
B.5.2 Filtering process for luma pixels

In the present definition this process takes place within units of 8x8 luma pixels. Figure B.2 illustrates how the 8x8 blocks are organized when filtering both across vertical and horizontal edges.

[image: image2.wmf]

p3

0

 p2

0

 p1

0

 p0

0

p3

1

 p2

1

 p1

1

 p0

1

p3

2

 p2

2

 p1

2

 p0

2

p3

3

 p2

3

 p1

3

 p0

3

q0

0

 q1

0

 q2

0

 q3

0

q0

1

 q1

1

 q2

1

 q3

1

q0

2

 q1

2

 q2

2

 q3

2

q0

3

 q1

3

 q2

3

 q3

3

p3

4

 p2

4

p1

4

 p0

4

p3

5

 p2

5

 p1

5

 p0

5

p3

6

 p2

6

 p1

6

 p0

6

p3

7

 p2

7

 p1

7

 p0

7

q0

4

 q1

4

 q2

4

 q3

4

q0

5

 q1

5

 q2

5

 q

3

5

q

0

6

 q

1

6

 q

2

6

 q

3

6

q

0

7

 q

1

7

 q

2

7

 q

3

7

p3

0

 p

3

1

 p

3

2

 p

3

3

p

2

0

 p2

1

 p

2

2

 p

2

3

p

1

0

 p

1

1

 p

1

2

 p

1

3

p

0

0

 p

0

1

 p

0

2

 p0

3

p3

4

p

3

5

p

3

6

 p

3

7

p

2

4

 p2

5

 p

2

6

 p

2

7

p

1

4

 p

1

5

 p1

6

 p

1

7

p

0

4

 p

0

5

 p

0

6

 p0

7

q0

4

 q

0

5

 q

0

6

 q

0

7

q

1

4

 q

1

5

 q

1

6

 q

1

7

q

2

4

 q

2

5

 q

2

6

 q

2

7

q

3

4

 q

3

5

 q

3

6

 q

3

7

q0

0

 q

0

1

 q

0

2

 q

0

3

q

1

0

 q1

1

 q

1

2

 q

1

3

q

2

0

 q

2

1

 q

2

2

 q

2

3

q

3

0

 q

3

1

 q

3

2

 q3

3

 a) b)

Figure B.2 a) arrangement of 8x8 blocks when filtering across vertical edges and b) arrangement of 8x8 blocks when filtering across horizontal edges

Figure B.2 should be interpreted as follows:

· A, B, C and D are 4x4 blocks

· pni and qni, n=0,3 and i=0,7 are pixels within the 8x8 block

· The bold line indicates a horizontal or vertical block edge across which deblocking filtering takes place.

· The 8x8 blocks are arranged such that the pixels (p30 to q30) or the pixels (p37 to q37) are at a macroblock boundary

The parameter d, defined below, is used for deciding whether the pixels within an 8x8 block shall be modified or not:

- If the block edge is part of a macroblock edge:

 d = (p12 – p02 (+ (q02 – 2*q12 + q22 (+ (p15 – p05 (+ (q05 – 2*q15 + q25 (
- Otherwise:

 d = (p22 – 2*p12 + p02 (+ (q02 – 2*q12 + q22 (+ (p25 – 2*p15 + p05 (+ (q05 – 2*q15 + q25 (
If any of the following conditions are true, no filtering across a block edge takes place.

· Disable_deblocking_filter_idc for the slice containing block D is equal to 1

· Disable_deblocking_filter_idc for the slice containing block D is equal to 2 and block B and D belong to different slices

· d >= (
Otherwise filtering takes place if and only if any of the following conditions are true:

· Block A is intra coded or Block C is intra coded

· One or more of the blocks A,B,C, and D contains nonzero transform coefficients.

· The absolute difference between the horizontal or vertical component of the motion vectors used for block A and block C is greater than or equal to 4 in units of quarter luma frame samples

· Block A and block C are predicted from different reference frames

For block edges where filtering is performed, all values pni, qni , with n=0,1 and i=0,7, are modified in the following way.

If the block edge is not part of a macroblock edge:

(= Clip3(-tC,tC,((q0i +((p2i + q1i) >> 1)) >> 1) –((p0i +((q2i + p1i) >> 1)) >> 1))

Otherwise:

(= Clip3(-tC,tC,((q0i + (q1i >> 1)) >> 1) – ((p0i + (q2i >> 1)) >> 1))

The filtered samples p1i, p0i, q0i, q1i are derived by

p0i = Clip1Y(p0i + ()

q0i = Clip1Y(q0i - ()

p1i = Clip1Y(p1i + (/2)

q1i = Clip1Y(q1i - (/2)

B.5.3 Filtering process for chroma pixels

The chroma filtering process takes place across an edge between two 4x4 chroma blocks. Figure B.3 illustrates how two such adjacent blocks are arranged when filtering both across vertical and horizontal edges.

[image: image3.wmf]

p3

0

 p2

0

 p1

0

 p0

0

p3

1

 p2

1

 p1

1

 p0

1

p3

2

 p2

2

 p1

2

 p0

2

p3

3

 p2

3

 p1

3

 p0

3

q0

0

 q1

0

 q2

0

 q3

0

q0

1

 q1

1

 q2

1

 q3

1

q0

2

 q1

2

 q2

2

 q3

2

q0

3

 q1

3

 q2

3

 q3

3

p3

0

 p

3

1

 p

3

2

 p

3

3

p

2

0

 p2

1

 p

2

2

 p

2

3

p

1

0

 p

1

1

 p

1

2

 p

1

3

p

0

0

 p

0

1

 p

0

2

 p0

3

q0

0

 q

0

1

 q

0

2

 q

0

3

q

1

0

 q1

1

 q

1

2

 q

1

3

q

2

0

 q

2

1

 q

2

2

 q

2

3

q

3

0

 q

3

1

 q

3

2

 q3

3

 a) b)

Figure B.3 a) arrangement of 2 4x4 chroma blocks when filtering across a vertical edge and b) arrangement of 2 4x4 chroma blocks when filtering across a horizontal edge

· A and B are 4x4 .

· pni and qni, n=0,3 and i=0,3 are pixels within the two 4x4 blocks

· The bold line indicates a horizontal or vertical block edge across which deblocking filtering takes place.

If any of the following conditions are true, no filtering across a block edge takes place.

· Disable_deblocking_filter_idc for the slice containing block B is equal to 1

· Disable_deblocking_filter_idc for the slice containing block B is equal to 2 and block A and B belong to different slices

Otherwise, filtering takes place if and only if the following condition is true

· Block A is intra coded or block B is intra coded

For block edges where filtering takes place, all values p0i, q0i with i=0,3 are modified in the following way.

(= Clip3(-tC,tC,((((q0i - p0i) << 2) + p1i - q1i + 4) >> 3))

The filtered result samples p0i, q0i are derived by

p0i = Clip1C(p0i + ()

q0i = Clip1C(q0i - ()

D

s

C

r

q

p

n

m

k

j

i

h

g

f

e

d

B

c

b

a

A

* Contact:	Arild Fuldseth	Phone: +47 67 12 60 08

		E-mail: arild.fuldseth@tandberg.net

PAGE
3

