	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

15th Meeting: Busan, KR, 16-22 April, 2005
	Document: JVT-O302r1
Filename: JVT-O302r1.doc
NOTE – That first character after the dash up there in the document number is an "O", not a zero.

	Title:
	Core Experiments on improved de-blocking filter settings (CE-2)

	Status:
	Output Document of the JVT

	Purpose:
	Information

	Author(s) or
Contact(s):
	Konstantin Hanke, Mathias Wien
Institut für Nachrichtentechnik
RWTH Aachen University
52054 Aachen, Germany
	
Tel:
Email:
	
+49-241-8027678
hanke@ient.rwth-aachen.de

	Source:
	RWTH Aachen

Coordinator: RWTH Aachen

Contact: hanke@ient.rwth-aachen.de
List of participants

	Company
	Name
	Contact
	Cross-check partner

	RWTH Aachen
	Konstantin Hanke

Mathias Wien
	hanke@ient.rwth-aachen.de
wien@ient.rwth-aachen.de
	France Telecom Division R&D

	Sharp Labs of America
	Shijun Sun
	ssun@sharplabs.com
	RWTH Aachen

The list of participant is opened until the final release of this CE document. Any organization willing to participate to this CE is welcomed and should signal its intention to participate to the coordinator of the CE and on the SVC reflector.

Functionality addressed

This CE addresses the adaptation of the de-blocking filter to the needs of MCTF based coding with SVC and the improvement of the de-blocking filter performance. The CE will also investigate the possible simplification of de-blocking filter operations for macroblocks in I_BL mode in spatial scalable video coding.

Descriptions

Proposal -1

At the Busan Meeting, an input on the adaptation of the de-blocking filter for application with SVC was contributed (JVT-O067). JVT-O067 proposes to introduce an adaptive offset value to the derivation process of the ,  and tC0 threshold values that are used for de-blocking filter control. Two adaptation methods for the offset value are proposed:

a) adaptation on frame basis

b) adaptation on a macroblock basis

In this CE, the following tasks are to be worked on:

1) optimization of the offset values and their derivation for methods a) and b) mentioned above

2) comparison of the performance using the optimized offsets with the method to transmit offsets for the de-blocking filter in the PPS (no change in the de-blocking filter specification needed)

The following proposal for the WD-2 modification is related to method b). The derivation formulas for the offset values are given exemplarily and shall be optimized in this CE.
Proposed modification for the WD-2 De-blocking Filter Process
The following description shall be added in the respective subclauses of WD-2(Annex S).
S.8.7
Deblocking filter process
The specification of this subclause in AVC shall apply with the following modifications.

When interpreting the edges in Figure 8‑10 as chroma edges, depending on chroma_format_idc, the following applies.

· If chroma_format_idc is equal to 1 (4:2:0 format), only the solid bold chroma edges are filtered.

· Otherwise, if chroma_format_idc is equal to 2 (4:2:2 format), the solid bold vertical chroma edges are filtered and both types, the solid bold and dashed bold horizontal chroma edges are filtered

· Otherwise, if chroma_format_idc is equal to 3 (4:4:4 format), both types, the solid bold and dashed bold chroma edges are filtered.

· [image: image2.emf]Vertical Edges

H

o

r

i

z

o

n

t

a

l

E

d

g

e

s

Otherwise (chroma_format_idc is equal to 0 (monochrome)), no chroma edges are filtered.

Figure 8‑10 – Boundaries in a macroblock to be filtered

When deblockMCPredictionFlag is not present, it shall be inferred to be equal to 0.
For the current macroblock address CurrMbAddr proceeding over values 0..PicSizeInMbs – 1, the following applies.

1. The derivation process for neighbouring macroblocks specified in subclause 6.4.8.1 is invoked and the output is assigned to mbAddrA and mbAddrB.
· If deblockMCPredictionFlag is equal to 1, i.e. the deblocking filter is activated during the inverse motion-compensated prediction specified in subclause S.8.8.4, the following applies.
·
Let qPCurr, qPLeft, and qPTop be 3-dimensional 4x4x(num_ref_frames) arrays of quantisation parameter values. The number of entries per array depends on the maximum number of reference frames num_ref_frames that are used for prediction.
·
For the derivation of qPCurr, subclause S.8.8.5 is invoked with CurrMbAddr as input and the output being assigned to qPCurr.
·
For the derivation of qPLeft, subclause S.8.8.5 is invoked with mbAddrA as input and the output being assigned to qPLeft. If the macroblock mbAddrA is not available, all entries of qPLeft are inferred to be 0.
·
For the derivation of qPTop, subclause S.8.8.5 is invoked with mbAddrB as input and the output being assigned to qPTop. If the macroblock mbAddrB is not available, all entries of qPTop are inferred to be 0.
·

Otherwise (deblockMCPredictionFlag is equal to 0), the arrays qPCurr, qPLeft, and qPTop are inferred to contain only zero-valued entries.

2. The variables fieldModeMbFlag, filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag are derived as follows.
[...]

3. Given the variables fieldModeMbFlag, filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag the deblocking filtering is controlled as follows.

–
When filterLeftMbEdgeFlag is equal to 1, the filtering of the left vertical luma edge is specified as follows.

–
The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPLeft (3,m,n), qPCurrent (m,n) = qPCurr (0,m,n) with m = 0..3, n = 0..num_ref_frames – 1, and (xEk, yEk) = (0, k) with k = 0..15 as input and S'L as output.

–
When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical luma edges is specified as follows.

–
When transform_size_8x8_flag is equal to 0, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPCurr (0,m,n), qPCurrent (m,n) = qPCurr (1,m,n) with m = 0..3, n = 0..num_ref_frames – 1, and (xEk, yEk) = (4, k) with k = 0..15 as input and S'L as output.

–
The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPCurr (1,m,n), qPCurrent (m,n) = qPCurr (2,m,n) with m = 0..3, n = 0..num_ref_frames – 1, and (xEk, yEk) = (8, k) with k = 0..15 as input and S'L as output.

–
When transform_size_8x8_flag is equal to 0, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPCurr (2,m,n), qPCurrent (m,n) = qPCurr (3,m,n) with m = 0..3, n = 0..num_ref_frames – 1, and (xEk, yEk) = (12, k) with k = 0..15 as input and S'L as output.

–
When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal luma edge is specified as follows.

–
If MbaffFrameFlag is equal to 1, [...]
–
Otherwise, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPTop (m,3,n), qPCurrent (m,n) = qPCurr (m,0,n) with m = 0..3, n = 0..num_ref_frames – 1, and (xEk, yEk) = (k, 0) with k = 0..15 as input and S'L as output.

–
When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal luma edges is specified as follows.

–
When transform_size_8x8_flag is equal to 0, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and qPNeighbor (m,n) = qPCurr (m,0,n), qPCurrent (m,n) = qPCurr (m,1,n) with m = 0..3, n = 0..num_ref_frames – 1, (xEk, yEk) = (k, 4) with k = 0..15 as input and S'L as output.

–
The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and qPNeighbor (m,n) = qPCurr (m,1,n), qPCurrent (m,n) = qPCurr (m,2,n) with m = 0..3, n = 0..num_ref_frames – 1, (xEk, yEk) = (k, 8) with k = 0..15 as input and S'L as output.

–
When transform_size_8x8_flag is equal to 0, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and qPNeighbor (m,n) = qPCurr (m,2,n), qPCurrent (m,n) = qPCurr (m,3,n) with m = 0..3, n = 0..num_ref_frames – 1, (xEk, yEk) = (k, 12) with k = 0..15 as input and S'L as output.

–
For the filtering of both chroma components with iCbCr = 0 for Cb and iCbCr = 1 for Cr, the following applies.
–
When filterLeftMbEdgeFlag is equal to 1, the filtering of the left vertical chroma edge is specified as follows.
–
The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPLeft (3,m,n), qPCurrent (m,n) = qPCurr (0,m,n) with m = 0..3, n = 0..num_ref_frames – 1, and (xEk, yEk) = (0, k) with k = 0..MbHeightC ‑ 1 as input and S'C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

–
When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is specified as follows.

–
The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPCurr (0,m,n), qPCurrent (m,n) = qPCurr (1,m,n) with m = 0..3, n = 0..num_ref_frames – 1, qPCurr, and (xEk, yEk) = (4, k) with k = 0..MbHeightC ‑ 1 as input and S'C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

–
When chroma_format_idc is equal to 3, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPCurr (1,m,n), qPCurrent (m,n) = qPCurr (2,m,n) with m = 0..3, n = 0..num_ref_frames – 1, qPCurr, and (xEk, yEk) = (8, k) with k = 0..MbHeightC ‑ 1 as input and S'C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

–
When chroma_format_idc is equal to 3, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPCurr (2,m,n), qPCurrent (m,n) = qPCurr (3,m,n) with m = 0..3, n = 0..num_ref_frames – 1, qPCurr, and (xEk, yEk) = (12, k) with k = 0..MbHeightC ‑ 1 as input and S'C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

–
When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal chroma edge is specified as follows.

–
If MbaffFrameFlag is equal to 1, [...]

–
Otherwise, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPTop (m,3,n), qPCurrent (m,n) = qPCurr (m,0,n) with m = 0..3, n = 0..num_ref_frames – 1, and (xEk, yEk) = (k, 0) with k = 0..MbWidthC ‑ 1 as input and S'C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

–
When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is specified as follows.

–
The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPCurr (m,0,n), qPCurrent (m,n) = qPCurr (m,1,n) with m = 0..3, n = 0..num_ref_frames – 1, and (xEk, yEk) = (k, 4) with k = 0..MbWidthC ‑ 1 as input and S'C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

–
When chroma_format_idc is not equal to 1, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPCurr (m,1,n), qPCurrent (m,n) = qPCurr (m,2,n) with m = 0..3, n = 0..num_ref_frames – 1, and (xEk, yEk) = (k, 8) with k = 0..MbWidthC ‑ 1 as input and S'C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

–
When chroma_format_idc is not equal to 1, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, qPNeighbor (m,n) = qPCurr (m,2,n), qPCurrent (m,n) = qPCurr (m,3,n) with m = 0..3, n = 0..num_ref_frames – 1, and (xEk, yEk) = (k, 12) with k = 0..MbWidthC ‑ 1 as input and S'C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as output.

[...]

Finally, the arrays S’L, S’Cb, S’Cr are assigned to the arrays SL, SCb, SCr (which represent the decoded picture), respectively.

S.8.7.1
Filtering process for block edges
The specification of this subclause in AVC shall apply with the following modifications.

Inputs to this process are chromaEdgeFlag, the chroma component index iCbCr (when chromaEdgeFlag is equal to 1), verticalEdgeFlag, fieldModeFilteringFlag, the arrays of quantisation parameters qPNeighbor (m,n), qPCurrent (m,n) with m = 0..3, n = 0..num_ref_frames – 1, and a set of nE sample locations (xEk, yEk), with k = 0..nE ‑ 1, expressed relative to the upper left corner of the macroblock CurrMbAddr. The set of sample locations (xEk, yEk) represent the sample locations immediately to the right of a vertical edge (when verticalEdgeFlag is equal to 1) or immediately below a horizontal edge (when verticalEdgeFlag is equal to 0).

The variable nE is derived as follows.

· If chromaEdgeFlag is equal to 0, nE is set equal to 16.

· Otherwise (chromaEdgeFlag is equal to 1), nE is set equal to (verticalEdgeFlag = = 1) ? MbHeightC : MbWidthC.

[...]
The variables xP and yP are derived as follows.

· If chromaEdgeFlag is equal to 0, xP is set equal to xI and yP is set equal to yI.

· Otherwise (chromaEdgeFlag is equal to 1), xP is set equal to xI / SubWidthC and yP is set equal to (yI + SubHeightC – 1) / SubHeightC.

[image: image1.emf]p3p2p1

p0q0q1q2q3

Figure 8‑11 – Convention for describing samples across a 4x4 block horizontal or vertical boundary

For each sample location (xEk, yEk), k = 0 .. nE ‑ 1, the following applies.

-
Let qPp,ref (n), qPq,ref (n) represent 1-dimensional arrays of quantisation parameters that are derived as follows.

qPp,ref (n) = qPNeighbor ((k >> 2) * 16 / nE, n)
with n = 0..num_ref_frames – 1

qPq,ref (n) = qPCurrent ((k >> 2) * 16 / nE, n)
with n = 0..num_ref_frames – 1
-
The filtering process is applied to a set of eight samples across a 4x4 block horizontal or vertical edge denoted as pi and qi with i = 0..3 as shown in Figure 8‑11 with the edge lying between p0 and q0. pi and qi with i = 0..3 are specified as follows.

[...]

-
The process specified in subclause 8.7.2 is invoked with the sample values pi and qi (i = 0..3), qPp,ref (n), qPq,ref (n), chromaEdgeFlag, verticalEdgeFlag, and fieldModeFilteringFlag as input, and the output is assigned to the filtered result sample values p'i and q'i with i = 0..2.

-
The input sample values pi and qi with i = 0..2 are replaced by the corresponding filtered result sample values p'i and q'i with i = 0..2 inside the sample array s’ as follows.

S.8.7.2
Filtering process for a set of samples across a horizontal or vertical block edge
The specification of this subclause in AVC shall apply with the following modifications.
Inputs to this process are the input sample values pi and qi with i in the range of 0..3 of a single set of samples across an edge that is to be filtered, the quantisation parameter arrays qPp,ref (n), qPq,ref (n) (with n = 0..num_ref_frames – 1) of the respective 4x4 sub-blocks that cover the input samples pi and qi, chromaEdgeFlag, verticalEdgeFlag, and fieldModeFilteringFlag.

Outputs of this process are the filtered result sample values p'i and q'i with i in the range of 0..2.

[...]
The process specified in subclause 8.7.2.2 is invoked with p0, q0, p1, q1, qPp,ref (n), qPq,ref (n) with n = 0..num_ref_frames – 1, chromaEdgeFlag, and bS as input, and the output is assigned to filterSamplesFlag, indexA, (, and (.

S.8.7.2.2 Derivation process for the thresholds for each block edge
The specification of this subclause in AVC shall apply with the following modifications.

Inputs to this process are the input sample values p0, q0, p1 and q1 of a single set of samples across an edge that is to be filtered, the sets qPp,ref (n), qPq,ref (n) with n = 0..num_ref_frames – 1, chromaEdgeFlag, and bS, for the set of input samples, as specified in 8.7.2. qPp,ref (n), qPq,ref (n) represent sets of quantisation parameter values for all corresponding 4x4 reference blocks that are used in the inverse motion-compensated prediction process of the samples p0 and q0, respectively.
Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the value of indexA, and the values of the threshold variables (and (.

Let qPp and qPq be variables specifying quantisation parameter values for the macroblocks containing the samples p0 and q0, respectively. The variables qPz (with z being replaced by p or q) are derived as follows.

· If chromaEdgeFlag is equal to 0, the following applies.

-
If the macroblock containing the sample z0 is an I_PCM macroblock, qPz is set to 0.

-
Otherwise (the macroblock containing the sample z0 is not an I_PCM macroblock), qPz is set to the value of QPY of the macroblock containing the sample z0.

· Otherwise (chromaEdgeFlag is equal to 1), the following applies.

-
If the macroblock containing the sample z0 is an I_PCM macroblock, qPz is set to the value of QPC that corresponds to a value of 0 for QPY as specified in subclause 8.5.7.

-
Otherwise (the macroblock containing the sample z0 is not an I_PCM macroblock), qPz is set to the value of QPC that corresponds to the value QPY of the macroblock containing the sample z0 as specified in subclause 8.5.7.

Let qPav be a variable specifying an average quantisation parameter. It is derived as follows.

qPav = (qPp + qPq + 1) >> 1

(8-462)

NOTE - In SP and SI slices, qPav is derived in the same way as in other slice types. QSY from Equation 7-28 is not used in the deblocking filter.

Note: The following derivation of offsets values is given exemplarily and will be optimized in this CE.
·
If deblockMCPredictionFlag is equal to 1, the following applies.
·
Let qPav,ref (n) represent a set of average quantisation parameters. For all n with n = 0..num_ref_frames – 1, it is derived as follows.

qPav,ref (n) = (qPp,ref (n) + qPq,ref (n) + 1) >> 1

· Let ('av and ('av be threshold variables that are derived by accessing the (table (Table 8-16) with indexZ = qPav (with Z being replaced by A and B).
· Similarly, let ('av,ref (n) and ('av,ref (n) be sets of threshold values derived by accessing the (table with indexZ = qPav,ref (n) (with n = 0..num_ref_frames). The scalar values ('offset and ('offset are determined as follows.

('offset = (('av,ref (0) + … + ('av,ref (num_ref_frames – 1)) / num_ref_frames

('offset = (('av,ref (0) + … + ('av,ref (num_ref_frames – 1)) / num_ref_frames

· The offsets ('total and ('total are derived from the values ('av, ('av, ('offset, and ('offset as follows.

('total = Clip3 (0, ('max, ('av,ref + ('offset)

('total = Clip3 (0, ('max, ('av,ref + ('offset)
where ('max and ('max are represent the maximal values of (' and (' in Table 8-16 for indexZ set equal to 51 (with Z being replaced by A and B), respectively.

· The offsets qP(and qP(are derived by determining the highest indexZ value in Table 8-16 whose given (' and (' values are smaller than or equal to the values of ('total and ('total, respectively.

·
Otherwise (deblockMCPredictionFlag is equal to 0), qP(and qP(are set equal to qPav.
Let indexA be a variable that is used to access the (table (Table 8‑16) as well as the tC0 table (Table 8‑17), which is used in filtering of edges with bS less than 4 as specified in subclause 8.7.2.3, and let indexB be a variable that is used to access the (table (Table 8‑16). The variables indexA and indexB are derived as follows, where the values of FilterOffsetA and FilterOffsetB are the values of those variables specified in subclause 7.4.3 for the slice that contains the macroblock containing sample q0.
indexA = Clip3(0, 51, qP(+ FilterOffsetA)

(8-463)

indexB = Clip3(0, 51, qP(+ FilterOffsetB)

(8-464)

The variables (' and (' depending on the values of indexA and indexB are specified in Table 8‑16. Depending on chromaEdgeFlag, the corresponding threshold variables (and (are derived as follows.

· If chromaEdgeFlag is equal to 0,

(= (' * (1 << (BitDepthY – 8))

(8-465)

β = β' * (1 << (BitDepthY – 8))

(8-466)

· Otherwise (chromaEdgeFlag is equal to 1),

(= (' * (1 << (BitDepthC – 8))

(8-467)

β = β' * (1 << (BitDepthC – 8))

(8-468)

The variable filterSamplesFlag is derived by

filterSamplesFlag = (bS != 0 && Abs(p0 – q0) < (&& Abs(p1 – p0) < (&& Abs(q1 – q0) < ()
(8-469)
Table 8‑16 – Derivation of offset dependent threshold variables (' and (' from indexA and indexB

	
	indexA (for (') or indexB (for (')

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25

	('
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	4
	4
	5
	6
	7
	8
	9
	10
	12
	13

	('
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	2
	2
	2
	3
	3
	3
	3
	4
	4
	4

Table 8‑16 (concluded) – Derivation of indexA and indexB from offset dependent threshold variables ('and ('

	
	indexA (for (') or indexB (for (')

	
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51

	('
	15
	17
	20
	22
	25
	28
	32
	36
	40
	45
	50
	56
	63
	71
	80
	90
	101
	113
	127
	144
	162
	182
	203
	226
	255
	255

	('
	6
	6
	7
	7
	8
	8
	9
	9
	10
	10
	11
	11
	12
	12
	13
	13
	14
	14
	15
	15
	16
	16
	17
	17
	18
	18

S.8.8.4
Motion-compensated prediction process
[…]

After modifying the luma and chroma samples arrays S'L[x, y], S'Cb[x, y], and S'Cr[x, y] of the picture predPic, the deblocking filter process specified in subclause S.8.7 is invoked for the picture predPic with the input parameter deblockMCPredictionFlag set equal to 1.

S.8.8.5
Derivation of quantisation parameter values of references used for motion-compensated prediction

Input to this process is the address of a macroblock mbAddr of the current picture predPic.
Output of this process is the 3-dimensional 4x4x(num_ref_frames) array qPOut (x, y, n) of quantisation parameter values of the corresponding reference blocks that are used for inverse motion-compensated prediction of the current macroblock MbAddr. Each entry of qPOut represents the reference qP value of a 4x4 sub-macroblock of mbAddr.
The derivation process of the quantisation parameter array qPOut (x, y, n) proceeds over all pictures of the reference picture list RefPicListLX (with X being 0 or 1) specified by the index n = 0..num_ref_frames; for each reference picture n, and for each 4x4 luma block luma4x4BlkIdx of the macroblock mbAddr in scanning order, the following applies.

· When the macroblock mbAddr of the picture predPic was not coded using an intra macroblock prediction mode, the following applies.

· Let mbPartIdx and subMbPartIdx be the macroblock and sub-macroblock partition index, respectively, that identify the macroblock or sub-macroblock partition inside the current macroblock mbAddr of the picture predPic, which covers the 4x4 luma block luma4x4BlkIdx.
· Let r be the reference index RefIdxLX[mbPartIdx][subMbPartIdx] of the macroblock mbAddr in the picture predPic.

· Let refPic be the picture that is referenced by r using the reference picture list RefPicListX that was derived for the slice, which contains the macroblock mbAddr inside the picture predPic.

· Let n represent the number of the current reference picture starting with n set equal to 0 and increasing it by 1 for each new picture of the picture list RefPicListX. The maximum of n is given by the maximum number of reference pictures num_ref_frames specified in subclause S.7.4.2.1.
· Let refMv be the motion vector MvLX[mbPartIdx][subMbPartIdx] of the macroblock mbAddr in the picture predPic.
· If the reference picture refPic and the motion vector refMv of the macroblock mbAddr in the picture predPic is available, the quantisation parameter value qPOut (x, y, n) is derived as follows.

· Let (xL, yL) be a luma location that is derived as follows.

· The inverse macroblock scanning process in subclause S.6.4.1 is invoked with mbAddr as input and the output is a luma location (xO, yO).
· The inverse 4x4 luma block scanning process in subclause S.6.4.3 is invoked with luma4x4BlkIdx as input and the output is a luma location (xP, yP).
· The luma location (xL, yL) is derived by

xL = xO + xP + ((refMv[0] + 2) >> 2)
yL = yO + yP + ((refMv[1] + 2) >> 2)
· When xL is greater or equal to 0, yL is greater or equal to 0, xL is less than (4 * PicWidthInMbs), and yL is less than (4 * PicHeightInMbs), the following applies.

· Let refMb be the reference macroblock within the reference picture refPic which covers the luma location (xL, yL).
· Let refQp be the quantisation parameter value of the reference macroblock refMb.
· The quantisation parameter value qPOut (x, y, n) for the current 4x4 luma block (x, y) and the current reference picture n is derived as follows.

qPOut (x, y, n) = refQp

· Otherwise, qPOut (x, y, n) is set equal to 0.
· Otherwise, qPOut (x, y, n) is set equal to 0.

· Otherwise (the macroblock mbAddr of the picture predPic is coded using an intra macroblock prediction mode), all entries of qPOut (x, y, n) are set equal to 0.

Proposal -2

At the Busan meeting, contribution JVT-O008 proposed a change to the loop filter during filter strength decision for a block in I_BL mode. The change will be applied to spatial scalable coding, i.e., when SpatialScalabilityType is not equal to 0. The purpose is to reduce the computational complexity and avoid blurring the prediction from the base layer, which has been filtered (following the process defined in S.8.6.3.1 of JSVM2-Annex-S). In a sense, the I_BL mode could be considered as an Inter mode so the filtering decision should also be consistent with the existing AVC design. In this part of the CE, we will compare the performance using the proposed method and the existing method in the JSVM-2.

Proposed modification for the WD-2 De-blocking Filter Process

The following description in S.8.7.2.1 of WD-2

· If the samples p0 and q0 are both in macroblocks coded using the I_BL macroblock prediction mode, a value of bS equal to 1 shall be the output.

shall be replaced by

· If SpatialScalabilityType is not equal to 0 and either luma sample p0 or q0 is in macroblocks coded using the I_BL macroblock prediction mode, the variable bS is derived as follows.

· If either luma samples p0 or q0 is in a macroblock coded using an intra prediction mode other than the I_BL mode, a value of bS equal to 4 shall be the output.

· Otherwise, if one of the following conditions is true, a value of bS equal to 2 shall be the output.

· the luma block containing sample p0 or the luma block containing sample q0 contains non-zero transform coefficient levels.

· the syntax element nal_unit_type is equal to 20 and residual_prediction_flag is equal to 1 for the luma block containing sample p0 or the luma block containing sample q0 and the prediction array resPredX as derived in subclause S.8.5.14 contains non-zero samples, with X indicating the applicable component L, Cb, or Cr.

· Otherwise, if one of the following conditions is true, a value of bS equal to 1 shall be the output.

· either luma samples p0 or q0 is in a macroblock coded using an inter prediction mode.

· the luma samples p0 and q0 are in two separate slices with different base_id_plus1.

· Otherwise, a value of bS equal to 0 shall be the output.

· Otherwise, if the samples p0 and q0 are both in macroblocks coded using the I_BL macroblock prediction mode, a value of bS equal to 1 shall be the output.

Tests condition

The common SVC testing conditions shall be applied (Munich Points and FGS set to be provided by the Testing Conditions AhG after the Busan Meeting). For the Munich Points, the simulation results of each proposal shall be evaluated by subjective viewing and presented during the next meeting.
Timeline

	WD-release + 2 weeks
	Finalization of CE description (on the reflector)

	Poznan – 4 weeks
	Deadline for incorporating CE. List of participant will be fixed at that time.

	Poznan – 1 week
	Upload of contribution

References

[1]
ITU-T and ISO/IEC JTC1, “Scalable Video Coding - Working Draft 1”, JVT-N020, Jan 2005.

[2]
"Improved deblocking filter for open-loop MCTF in the JSVM", K. Hanke, S. Kamp, T. Rusert, M. Wien, JVT-O067, Apr. 2005.

[3]
“Extended Spatial Scalability with Picture-Level Adaptation,” S.Sun, JVT-O008, Apr. 2005.

� EMBED Visio.Drawing.11 ���

File: JVT-O302_r3_kh10_mw.doc
Page: 1
Date Saved: 2005-06-16

[image: image3.emf]Vertical Edges

H

o

r

i

z

o

n

t

a

l

E

d

g

e

s

_1179861985.vsd
Vertical Edges

Horizontal Edges

