	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

15th Meeting: Busan, KR, 16-22 April, 2005
	Document: JVT-O048
Filename: JVT-O048.doc

	Title:
	Error resilience for SVC base and enhanced layers

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Jie Jia
Multimedia Framework Lab
Sejong University
98 Gunja-Dong, Gwangjin-Gu
Seoul, 143-747, Korea

Hae-Kwang Kim
Multimedia Framework Lab
Sejong University
98 Gunja-Dong, Gwangjin-Gu
Seoul, 143-747, Korea
	
Tel:
Email:

Tel:
Email:

	
+82 02 3408 3757
Joriejiejia@gmail.com

+82 02 3408 3757
hkkim@sejong.ac.kr

	Source:
	Sejong University

Table OF CONTENTS

1Table OF CONTENTS

2LIST OF FIGURES

3Abstract

41.
Introduction

42.
Existing Error Resilient Tools

5A.
Error Resilient Approach

5B.
Error Concealment Approach

5C.
Feedback or Retransmission Approach

63.
Arrangement Based Error Resilient Coding

6A.
Motivation

6B.
Basic Principle

7C.
Further Partition Suggestion

8D.
Arrangement Based Error Resilient Coding

11E.
Applications

124.
Experimental results and analysis

12Experiment1: Soccer

13Experiment2: City

14Experiment3: Crew

14Experiment4: Football

15Experiment5: Foreman

16Experiment6: Harbor

16Experiment7: Ice

17Experiment8: Mobile

18Experiment9: Bus

195.
Conclusion

20References

LIST OF FIGURES
7Fig. 1 Scanning order of residual blocks within a macroblock.

7Fig. 2 Examples of mapping methods for further data partition.

8Fig. 3 Distance between the corrupt pixel and the corrept pixel.

8Fig. 4 H.264/AVC encoder realization with arrangement based error resilient tools.

9Fig. 5 Arrangement algorithm.

9Fig. 6 Different error positions.

10Fig. 7 Arrangement based error resilient coding algorithm.

10Fig. 8 Arrangement based error resilient decoding algorithm.

11Fig. 9 Bit usage (foreman QCIF QP=26)

13Fig. 10 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Soccer.

13Fig. 11 Reconstructed frame comparison of ARR and AVC Codec.

13Fig. 12 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; City.

14Fig. 13 Reconstructed frame comparison of ARR and AVC Codec.

14Fig. 14 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Crew.

14Fig. 15 Reconstructed frame comparison of ARR and AVC Codec.

15Fig. 16 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Football.

15Fig. 17 Reconstructed frame comparison of ARR and AVC Codec.

15Fig. 18 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Foreman

16Fig. 19 Reconstructed frame comparison of ARR and AVC Codec.

16Fig. 20 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Harbor.

16Fig. 21 Reconstructed frame comparison of ARR and AVC Codec.

17Fig. 22 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Ice.

17Fig. 23 Reconstructed frame comparison of ARR and AVC Codec.

17Fig. 24 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Mobile.

18Fig. 25 Reconstructed frame comparison of ARR and AVC Codec.

18Fig. 26 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Bus.

18Fig. 27 Reconstructed frame comparison of ARR and AVC Codec.

Abstract
In this document, a video coding method with effective error-concealment functionality for Scalable Video Coding (SVC) is presented. The proposed method integrates error-concealment functionality into the video coding process with little computing complexity and simple modification. Experiments were performed on all the 9 test video sequences used for SVC. All the experimental results show that the presented method consistently gives 0.5-5 dB improvement over the conventional error-concealment methods applied to H.264/AVC in error-prone environments.
Error Resilience
for SVC base and enhanced layers

1. Introduction

Scalable Video Coding (SVC) as a promising way to implement effective video communication under different environments attracts significant attentions from experts all over the world. SVC addresses coding schemes for reliably delivery of video to diverse clients over heterogeneous networks using available system resources, particularly in scenarios where the downstream client capabilities, system resources, and network conditions are not known in advance. Those network environments may have varying bandwidths, different loss rates, and various best-effort or Quality of Service (QoS) capabilities.
SVC is currently being developed as an extension of the ITU-T Recommendation H.264|ISO/IEC International Standard ISO/IEC 14496-10 advanced video. Both high-compression efficiency and network adaptation have been the major goals of H.264/AVC standard. Without doubt, the video compression performance of the H.264/AVC typically provides a significant improvement over previous standards. However, the higher the coding efficiency, in theory, the weaker the codec will be in error-prone environment. That is also the exact reason that H.264/AVC took error-resilience into account in the standard [1].
In fact, H.264/AVC is the core codec algorithm for SVC, so weakness is also inherent in SVC base layer. When SVC applied, error resilience in base layer is especially important for reliable video communications, which determines the final communication quality. For the above reason, a lot of error resilient tools have been proposed, here only those methods that can be used in SVC are considered. Generally, these methods could be classified into three groups: feedback or retransmission based error-resilient methods which need the cooperation of encoder and decoder, error-resilient tools which are applied in encoder and error concealment algorithms which are implemented in decoder. All of them will be reviewed in Section II.
Commonly, error-resilient tools will be combined with error concealment algorithms to achieve better reconstruction quality. However, due to the codec algorithm, stat-of-the-art error concealment algorithms use larger unit than macroblock unit to conceal the lost video data. These conventional methods use spatio-temporally distant information for error concealment, which leads to the recovered frames can not be close enough to the original lost video data. For this reason, a video coding method for error concealment functionality comes to our minds, that is, data arrangement based video coding method.
In this document, the error-resilient method for SVC base and enhancement layers is presented, which aims at improving the reconstructed perceptual quality in error-prone environment. Experimental results show that the presented method achieves better performance compared with conventional error-concealment methods applied to H.264 in error-prone environment, while rarely increases the computation complexity.

This document is structured as follows. A brief overview over error resilient techniques is presented in Section II. The proposed error resilient coding scheme is discussed in detail in Section III. Section IV provides experimental results for all the 9 standard test sequences based on the common test conditions, followed by concluding remarks in Section V.

2. Existing Error Resilient Tools
Various error resilient tools have been proposed to improve the communication quality when video data are transmitted in error-prone environments. As indicated below, many of those tools were present in previous video compression schemes or reference papers [2]

 REF _Ref100487094 \n \h
 * MERGEFORMAT [3] as well. Therefore, discussions on these tools needn’t to be introduced in much detail. Here only the overview over these methods is provided.

A. Error Resilient Approach

Error resilient approach here refers to those methods in which encoder plays a primary role. Those methods could be further divided into two sub-categories, namely, multi-priority video transmission and joint source and channel coding. Multi-priority video transmission is implemented by partitioning the compressed video data into different parts, after that transmitting these partitions according to their different importance. Joint source and channel coding includes quantizer and entropy coder design in the source coder and the design of error correction techniques and modulation schemes in the channel coder. Such methods that are included in H.264 are listed below:

· Picture segmentation (slices/GOBs);

· Intra placement (refreshment of Intra MBs, intra slices, and intra pictures);

· Reference picture selection (with or without feedback, picture, GOB/slice, or MB-based methods);

· Data partitioning;

· Parameter sets (calling parameter sets an error-resilience tool is not entirely appropriate [2]);

· Flexible macroblock ordering (FMO);

· Redundant slices (RS).

All tools mentioned above could be studied in detail in [2]. However, all of the error resilient tools included in H.264 are frame, slice or MB based, the minimal unit is MB. Note that these methods are not mutually exclusive, or rather they could be used in a complementary way.

B. Error Concealment Approach

Error concealment is a kind of post-process technique implemented in decoder. It makes use of the correlation between a damaged macroblock and its adjacent macroblocks in the same frame and/or the previous frames to maximally recover the corrupt blocks. These methods could be discussed in four ways:

· Frequency-Domain concealment. As the low frequency coefficients in a damaged block are likely to be close to the corresponding coefficients in spatially adjacent blocks. The DC and the lowest five AC coefficients of a damaged block could be estimated from the top and bottom neighboring blocks, while the rest of the AC coefficients are set to zeros.

· Temporal-Domain concealment. In areas where images are almost still or moving in low speed, temporal concealment is adopted to recover the damaged blocks.

· Spatial-Domain concealment. The concealment is implemented by spatial interpolation. In this case, all the pixels in the current block need to be calculated, so it is the most complex method.

· Spatial-temporal concealment. This method combined with motion estimation (ME) and motion compensation (MC) could be used to conceal the moving areas. While it doesn’t work well when corrupted blocks are surrounded by intra blocks. For commonly, the motion vectors (MVs) above and/or below the corrupt blocks are used to predict the MVs of the current blocks. For this reason, some paper purposed MV for Intra blocks should also be coded for error concealment.
All the error concealment techniques used to recover the lost information are base on some a priori knowledge, which is primarily the temporal and spatial smoothness property. That gives us a clue that the natural correlation of the original video should be used as much as possible to achieve better concealed video quality. However, in the above error concealment methods, such unit which is larger than MB is used to conceal the lost video data. A lost macroblock may be replaced with its reference macroblock in case of inter predictive coding or with a macroblock obtained from neighbor macroblocks in case of intra coding. Or when a whole frame is lost, the previous frame can be replaced. These conventional methods use spatio-temporally distant information fro error-concealment, so that the results can not be close enough to the lost original video data.
C. Feedback or Retransmission Approach

Previous error resilient tools are implemented in either encoder or decoder, with little interaction between them. While better performance can be achieved by interactive error resilient tools, if a feedback channel is available. The use of the feedback channel enables the decoder to inform the encoder about successful or unsuccessful reception by sending positive (ACK) or negative (NACK) acknowledgment [4]. Then to prevent error propagation, the encoder may use multiple frame prediction or Intra MB. However, feedback channels may introduce additional delay and complexity and they are also affected by channel errors. Moreover, they may not be available in many scenarios such as video broadcasting, multicasting, or multipoint communications.

3. Arrangement Based Error Resilient Coding
Previous error resilient tools, when implemented with error concealment methods, suffer from the fact that they use spatio-temporally distant information to reconstruct the lost data. It is clearly that the reconstruction data can not be close enough to the lost original data. So, it is necessary to propose effective error resilient tools by which much nearer information can be used to reconstruct the lost video data. These demands inspired us with the idea that the reconstruction quality would be better if the lost pixel could be concealed by its neighbor pixels. That develops our method which integrates error-concealment functionality into video coding process by rearranging the pixels in residual MB before DCT. In this way, the error resilience could be achieved with just a simple modification and little computing complexity. That meets the 8th, 10th, 15th, 16th, and 19th requirements well for SVC listed in [6] (8th : robustness to different types of transmission errors; 10th : robustness under “best-effort” networks; 15th : low complexity codecs; 16th : end-to-end delay; 19th :system interface to support quality selection). In following sections, this scheme is discussed in detail.

A. Motivation

The basic idea behind our algorithm is to make the most of natural correlation between the neighbor pixels when error concealment is performed. As strong correlations of inter-pixel information exist in video data, the value of any given pixel can be reasonably predicted from its neighbor pixels. Naturally, dwindling the distance between the corrupted pixel and its neighbor pixels is the easiest and best way to reconstruct the lost pixels.

B. Basic Principle

In block based video coding standards such as MPEG-1, 2, 4 and H.263, H.264, an input frame is divided into non-overlapped macroblocks. For reducing spatio-temporal redundancy which is intrinsic in video data, macroblocks could be coded as Intra MBs by spatial prediction or inter MBs by temporal prediction. When MBs are coded as Inter MB, a residual macroblock is obtained from the motion estimation process and the sub-blocks of the residual MB is transformed, quantized and entropy coded.
Previous standards such as MPEG-1, 2, 4 and H.263 made use of the 8×8 Discrete Cosine transform (DCT) as the basic transform. The “baseline” profile of H.264/AVC uses three transforms depending on the type of residual data that is to be coded: a transform for the 4×4 array of luma DC coefficients in intra macroblocks (predicted in 16×16 mode), a transform for the 2×2 array of chroma DC coefficients (in any macroblock) and a transform for all other 4×4 blocks in the residual data.

Transformed data within a macroblock are transmitted in the order shown in Fig. 1. Here Luma MB is illustrated as an example. Data partition is an effective way to protect important information by assigning different syntax elements to different partitions and transmitting them with different priorities [2]. When network congestion happened, packets with lower priority would be discarded in higher probability. Inspired by this idea, further partition method is proposed in this document.

[image: image1.emf]0145

2367

891213

10111415

Luma MB (1—15 represent

4*4 block number)

4*4 block

Fig. 1 Scanning order of residual blocks within a macroblock.

C. Further Partition Suggestion

With previous error resilient tools, when compressed video packets were transmitted in error-prone environment and packet-loss occurred, all of the MB data, as have been pointed out, are correct or corrupt, because all of the MB data are transmitted in one packet. Therefore, further partition method is developed here. As motion information and DCT coefficients have already been mapped to different partitions in previous data partition method, the suggested partition method is to further partition the DCT coefficients which belong to one MB to different partitions, then send them in different packets. One partition algorithm is given in Eq. 1.

[image: image2.wmf]}

,

,

0

;

15

,

,

0

,

)

%

(

|

{

)

(

,

M

m

i

n

N

i

blk

n

P

i

m

L

L

=

=

==

=

Eq. 1
Where n is the packet number,
[image: image3.wmf]i

m

blk

,

 is the
[image: image4.wmf]th

i

4×4 block in
[image: image5.wmf]th

m

MB, N is total number of such partitions that are used to carry MB DCT coefficients and M is the total number of MBs in one video frame. For
[image: image6.wmf]2

=

N

, the DCT coefficients of every MB will be mapped to two partitions. The first partition carries the DCT coefficients which belong to
[image: image7.wmf]14

,

12

,

10

,

8

,

6

,

4

,

2

,

0

,

,

=

i

blk

i

m

, and the second partition carries those DCT coefficients which belong to the remainder blocks. Fig. 2 illustrates two mapping methods, the left one corresponds to the algorithm given in Eq. 1.

[image: image8.emf]0145

2367

891213

10111415

0145

2367

891213

10111415

Partition0

Partition1

Luma MB

Fig. 2 Examples of mapping methods for further data partition.
In this way, when packet loss occurred, every MB would only suffer from partial loss, such as the gray one in Fig. 2. Images could still be reconstructed by the other blocks, for instance, the white one in Fig. 2. The maximum distance between the corrupt pixel and the correct pixel
[image: image9.wmf]cc

D

 is shrunk to 4. Eq. 2 gives the definition of
[image: image10.wmf]cc

D

. Clearly, the smaller the
[image: image11.wmf]cc

D

, the easier the error concealment and the better the reconstruction quality. Obviously, for previous data partition,
[image: image12.wmf]16

=

cc

D

.

[image: image13.wmf]}

,

max{

R

L

B

T

cc

d

d

d

d

D

+

+

=

Eq. 2
Where the meaning of
[image: image14.wmf]R

L

B

T

d

d

d

d

,

,

,

 are shown in Fig. 3(a).

[image: image15.emf]d

T

d

L

d

R

d

B

Corrupt block

Correct block

(a)(b)

Fig. 3 Distance between the corrupt pixel and the corrept pixel.

D. Arrangement Based Error Resilient Coding

As mentioned before, the principal object of our method is to maximumly exploit the natural correlation of video data, hence the arrangement based error resilient coding algorithm. The proposed method integrates error-concealment functionality in the video coding process. A typical H.264/AVC encoder with the proposed coding algorithm is shown in Fig. 4.

[image: image16.emf]Trans-

formation

Inverse

Transformation/

Quantization

Quanti-

zation

Intra-

Prediction

Motion-

compensated

prediction

Motion

estimation

Deblocking

Filter

+

+

Entropy-

Coding

ARRPacketization

Video in

Transmission

Video out

ARR

-1

-

Fig. 4 H.264/AVC encoder realization with arrangement based error resilient tools.
In the above figure, the proposed algorithm is represented by the functional block —ARR— that does the rearrangement operations on pixels in residual MB, while in decoder, the inverse rearrangement is performed in
[image: image17.wmf]1

-

ARR

. In the encoding process, the original 8×8 residual data in position
[image: image18.wmf])

,

(

o

o

c

r

 are arranged to position
[image: image19.wmf])

,

(

a

a

c

r

 according to the algorithm shown in Eq. 3.

[image: image20.wmf])

2

/

(

4

)

2

mod

(

)

2

/

(

4

)

2

mod

(

o

o

a

o

o

a

c

c

c

r

r

r

+

´

=

+

´

=

Eq. 3
Where
[image: image21.wmf]a

r

 and
[image: image22.wmf]a

c

are the row number and the column number after the rearrangement, respectively. While
[image: image23.wmf]o

r

 and
[image: image24.wmf]o

c

are the original row number and the original column number in the 8×8 residual block before the arrangement was taken.

The residual pixel distributions in the original 8×8 block before arrangement and the new one after arrangement are compared in Fig. 5.

[image: image25.emf]07654321

81514131211109

1623222120191817

2431302928272625

3239383736353433

4047464544434241

4855545352515049

5663626160595857

07654321

81514131211109

1623222120191817

2431302928272625

3239383736353433

4047464544434241

4855545352515049

5663626160595857

Residual 8*8 block

Arrange

1

23

001

23

Residual 8*8 block

(a)(b)

Fig. 5 Arrangement algorithm.
As shown in Fig. 5, the original residual block is shown as (a), after arrangement, the residual data are shown in (b). With the further partition method proposed in this document, different 4×4 blocks will fall into different data partitions. If error occurred, one of the four DCT coefficients would be lost. Suppose it is the gray block shown in Fig. 5. In the original condition, the 4×4 block have to be concealed in the decoder with
[image: image26.wmf]4

=

cc

D

. While in the current case, the pixels in the lost 4×4 block don’t really belong to one 4×4 block. In fact, the arrangement disperses those corrupt pixels into different 4×4 blocks. Thus, the error concealment could be implemented with
[image: image27.wmf]1

=

cc

D

. Furthermore, as shown in Fig. 6, every corrupt pixel would be surrounded by 8 correct pixels. Obviously, the concealment uses neighboring pixels in the original block so that error-concealed pixel values can be very close to the original pixel values attributed to the spatial correlation in image. Experimental results shown in next section also prove that the proposed method significantly improved the reconstructed video quality in error-prone environments.

[image: image28.emf]Recovered 8*8 blockRecovered 8*8 block

07654321

81514131211109

1623222120191817

2431302928272625

3239383736353433

4047464544434241

4855545352515049

5663626160595857

07362514

3239353834373336

81511141013912

4047434642454144

1623192218211720

4855515450534952

2431273026292528

5663596258615760

1

23

001

23

(a)(b)

Fig. 6 Different error positions.
A pseudocode for the proposed error resilient coding algorithm is given in Fig. 7.

[image: image29.emf]·Read one frame from the original YUV file

·For each slice do:

 {

For each MB do:

{

 Motion estimation and mode decision;

 If (MB mode is Intra mode)

 {

Code MB as with conventional coder;

 }

 Else

 {

For each 8*8 block do:

{

 Motion-compensated prediction;

 Residual MB arrangement;

 Transformation, Quantization and Entropy Coding;

}

 }

 Write one MB data;

}

 }

·Deblock frame;

·Save reconstructed frame;

Fig. 7 Arrangement based error resilient coding algorithm.
Another distinct advantage of this method lies in fact that it prominently reduced the quality degradation arising from the error propagation. This exactly meets the graceful degradation requirement listed in [6]. As has been described, by previous error resilient tools, when packet lost, the whole MB will be lost, whereas in the proposed error resilient coding methods, only part of the blocks will be lost while those lost data could be better concealed. So, when these corrupt blocks were used as the prediction blocks in the following decoded frames, the proposed method naturally provides higher performance.

A pseudocode for the decoding algorithm based on the proposed error resilient scheme is given in Fig. 8.

[image: image30.emf]·Network layer packet loss detection.

·If (packet loss detected) do:

 {

 Get the position of the 4*4 block in its’ corresponding MBs;

 Set the corresponding 4*4 block residual error to “0”;

 Decode the erroneous frame;

 Error concealment;

 }

 else

 {

 decode as with conventional decoder;

 }

·Display one frame.

Fig. 8 Arrangement based error resilient decoding algorithm.
In the above algorithm, the inverse arrangement is included in the decoding process, which is the reverse arrangement of every 8×8 reconstruction residual block. The inverse arrangement algorithm is given by Eq. 4.

[image: image31.wmf][

]

[

]

)

4

/

(

4

)

4

/

(

2

)

4

/

(

4

)

4

/

(

2

a

a

a

r

a

a

a

r

c

c

c

c

r

r

r

r

+

´

-

´

=

+

´

-

´

=

Eq. 4
Where
[image: image32.wmf]a

r

 and
[image: image33.wmf]a

c

respectively represent the row number and the column number of the decoded residual pixel data in every 8×8 block. While
[image: image34.wmf]r

r

 and
[image: image35.wmf]r

c

are the row number and the original column number of the pixels in the 8×8 residual block after the inverse arrangement was taken.

When error occurred, the damaged MBs could be efficiently concealed with any error concealment technique as described in Section II. In the following experiments two basic approaches are used: spatial and temporal. In the spatial interpolation, pixels of missing MBs are reconstructed using the neighboring spatial information whereas in the temporal interpolation, the lost pixels in the damaged MBs are reconstructed from those pixels that in the previous frame shifted by an estimated or exact motion vector (MV). In spatial interpolation, which is used for intracoded frames, the pixels of missing MBs are reconstructed as the median value of the corresponding pixels in eight surrounding blocks. For inter-coded frames, we use simple motion compensated temporal error concealment, in which the motion vectors of the damaged MBs is either correct received due to the application of data partition, or estimated by the median value of the motion vectors of the eight neighboring MBs.

E. Applications

The presented method could be applied to any block based video codec. Sure, it could be implemented to SVC base layer and enhancement layers. Due to its simplicity, low computation resources and little modification is required in the codec. In fact, when the arrangement based error resilient coding method applied, all we need to do is to insert
[image: image36.wmf]ARR

 module and
[image: image37.wmf]1

-

ARR

 module into the codec, as shown in Fig. 4.

In addition to those merits mentioned above, the proposed algorithm allows for some new specialties that are not possible with previous approaches to scalable video coding. As the residual data of every MB were arranged before transformation and data partition, one artful way for scalable video coding is only coding part of the transform coefficients in base layer (BL). Correspondingly, at the decoder, coded pixels were firstly decoded, then the left could be reconstructed by interpolation or concealment-like methods with decoded pixels. In ARR codec, if three fourths the transform coefficients were coded, every left pixel will be surrounded by 8 coded pixels with
[image: image38.wmf]1

=

cc

D

. Furthermore, if narrower bandwidth given, half coefficients could be coded, then every left pixel would be surrounded by 4 coded pixels with
[image: image39.wmf]1

=

cc

D

. This could be easily seen from Fig. 2. Fig. 9 shows the average bit usage of one frame.

[image: image40.emf]---------------------|----------------|----------------|

 Bit usage: | Intra | Inter |

---------------------|----------------|----------------|

 Header | 32.00 | 32.12 |

 Mode | 40.00 | 488.31 |

 Motion Info | ./. | 1942.97 |

 CBP Y/C | 293.00 | 316.04 |

 Coeffs. Y | 25465.00 | 4648.02 |

 Coeffs. C | 2692.00 | 530.77 |

 Delta quant | 9.00 | 5.38 |

 Stuffing Bits | 5.00 | 5.27 |

---------------------|----------------|----------------|

 average bits/frame 28536.00 7968.87 |

---------------------|----------------|----------------|

Fig. 9 Bit usage (foreman QCIF QP=26)

The above figure indicates that Luma coefficients account for nearly two thirds the total bits. Dropping part of the transform coefficients undoubtedly deduces the total bits. However, with the presented method, only limitted quality degradation will be generated.

Similarly, another application of this method is its implementation on quality selection. When ARR codec is applied in SVC, for clients with different capabilities, system resources, and network conditions, quality selection could be easily performed by selecting corresponding block data.
4. Experimental results and analysis

To assess the performance of the arrangement based error resilient coding method, a H.264/AVC based codec that implements the proposed techniques was constructed as shown in Fig. 4. For differentiation, we call it ARR codec. Experiments were performed on 9 standard test sequences with AVC codec and ARR codec. The corresponding parameters are listed below:

· Format: QCIF(352×288) YUV4:2:0

· Frame rate: 15fps

· Period of I-Frame: only first frame

· Reference frames: 5 (Number of previous frames used for inter motion search)

· Sequence type: IPPP (QP: I 26, P 26)

· Entropy coding method: CABAC

· Search range restrictions: none

· RD-optimized mode decision: used
In the following experiments, data partition is used to put symbols of different types to different bit buffers. Moreover, DCT coefficients of four 4×4 blocks in every 8×8 block were further partitioned into 2 different data partitions. When packets were transmitted on error-prone networks, part of the packets will be lost randomly (further experiments should be made according to different error patterns [8]), here simple qualitative analyses were made to get the primary results. During the experiments, half of the DCT coefficients in every 8×8 block were supposed to be lost in random frames. In decoder, the spatio-temporal error concealment is used to conceal the error pixels.

Experiment1: Soccer

	Error frames: 125th, 126th
	Analysis frame: 127th

	Average PSNR(ARR vs. AVC): 35.55 vs. 34.36 dB
	Bit rate (kbit/s) @ 15.00 fps:192kbit/s

	Frame-by-frame PSNR Improvement : 1－3 dB

The first experiment is performed on Soccer sequence. Frame-by-frame PSNR comparison of the proposed and conventional methods are plotted in Fig. 10. Comparing the results, it can be observed that our presented error resilient coding method results in 1－3dB improvement over H.264/AVC codec with the same error concealment method. Further, it can be seen that when error occurred, the presented method effectively restrained the quality degradation of the following frames, or error propagation. Since the use of worse recovered MBs for concealment in the conventional H.264 Codec causes errors to spread. Also the dispersion of erroneous pixels makes the error invisible to human eyes.
Fig. 11 shows the visual comparison of the 127th frame of Soccer sequence (including error propagation). In this figure and the following experimental figures, (a) is the original frame, while (b) and (c) are the frames reconstructed by AVC and ARR codec, respectively. By comparing (b) and (c), it can be seen that the proposed method significantly decreased the block effect and the erroneous block number, which are visible in (b) but invisible in (c). As Fig. 11 shown, smaller distortion around the right leg of the left athlete and the goal could be perceived in (c), which is decoded by ARR codec. Similar results could be obtained from the following experiments.
[image: image41.emf]120125130135140145150

29

30

31

32

33

34

35

36

37

ARR Vs. AVC

Frame Number

PSNR

Y

ARR

AVC

Fig. 10 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Soccer.

[image: image42]

(a)

 (b)

(c)
Fig. 11 Reconstructed frame comparison of ARR and AVC Codec.

(a) Original frame. (b) AVC. (c) ARR.
Experiment2: City

	Error frames: 9, 10
	Analysis: 30th

	Average PSNR(ARR vs. AVC):34.25 vs. 32.80 dB
	Bit rate (kbit/s) @ 15.00 fps: 96kbit/s

	Frame-by-frame PSNR Improvement: 0.5－3.5 dB

[image: image43.emf]810121416182022242628

31

32

33

34

35

36

37

ARR Vs. AVC

Frame Number

PSNR

Y

ARR

AVC

Fig. 12 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; City.

[image: image44]

(a)

 (b)

(c)
Fig. 13 Reconstructed frame comparison of ARR and AVC Codec.

(a) Original frame. (b) AVC. (c) ARR.
Experiment3: Crew

	Error frames: 97, 98
	Analysis: 113rd

	Average PSNR(ARR vs. AVC):35.93 vs. 34.80 dB
	Bit rate (kbit/s) @ 15.00 fps: 192 kbit/s

	Frame-by-frame PSNR Improvement: 0.5－2.5 dB

[image: image45.emf]95100105110115120125130

31

32

33

34

35

36

37

38

ARR Vs. AVC

Frame Number

PSNR

Y

ARR

AVC

Fig. 14 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Crew.

[image: image46]

(a)

 (b)

(c)
Fig. 15 Reconstructed frame comparison of ARR and AVC Codec.

(a) Original frame. (b) AVC. (c) ARR.
Experiment4: Football

	Error frames: 17, 18
	Analysis:19th

	Average PSNR(ARR vs. AVC):35.28 vs. 32.95 dB
	Bit rate (kbit/s) @ 15.00 fps: 384 kbit/s

	Frame-by-frame PSNR Improvement: 1－5 dB

[image: image47.emf]152025303540

26

28

30

32

34

36

38

40

ARR Vs. AVC

Frame Number

PSNR

Y

ARR

AVC

Fig. 16 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Football.

[image: image48]

(a)

 (b)

(c)
Fig. 17 Reconstructed frame comparison of ARR and AVC Codec.

(a) Original frame. (b) AVC. (c) ARR.
Experiment5: Foreman

	Error frames: 76th, 77th
	Analysis: 77th

	Average PSNR(ARR vs. AVC):35.67 vs. 33.11 dB
	Bit rate (kbit/s) @ 15.00 fps: 128kbit/s

	Frame-by-frame PSNR Improvement: 1－4 dB

[image: image49.emf]708090100110120130140150

26

28

30

32

34

36

38

40

ARR Vs. AVC

Frame Number

PSNR

Y

ARR

AVC

Fig. 18 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Foreman

[image: image50]

(a)

 (b)

(c)
Fig. 19 Reconstructed frame comparison of ARR and AVC Codec.

(a) Original frame. (b) AVC. (c) ARR.
Experiment6: Harbor

	Error frames: 59th , 60th
	Analysis: 69th

	Average PSNR(ARR vs. AVC): 33.10 vs. 32.59dB
	Bit rate (kbit/s) @ 15.00 fps: 256 kbit/s

	Frame-by-frame PSNR Improvement: 0.2－0.8 dB

[image: image51.emf]55606570758085

31

31.5

32

32.5

33

33.5

ARR Vs. AVC

Frame Number

PSNR

Y

ARR

AVC

Fig. 20 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Harbor.

[image: image52]

(a)

 (b)

(c)
Fig. 21 Reconstructed frame comparison of ARR and AVC Codec.

(a) Original frame. (b) AVC. (c) ARR.
Experiment7: Ice

	Error frames: 9, 10
	Analysis: 12nd

	Average PSNR(ARR vs. AVC):37.80 vs. 36.95dB
	Bit rate (kbit/s) @ 15.00 fps: 128 kbit/s

	Frame-by-frame PSNR Improvement: 0.5－2.6 dB

[image: image53.emf]51015202530

32

33

34

35

36

37

38

39

40

ARR Vs. AVC

Frame Number

PSNR

Y

ARR

AVC

Fig. 22 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Ice.

[image: image54]

(a)

 (b)

(c)
Fig. 23 Reconstructed frame comparison of ARR and AVC Codec.

(a) Original frame. (b) AVC. (c) ARR.
Experiment8: Mobile

	Error frames: 99
	Analysis: 108th

	Average PSNR(ARR vs. AVC):32.11 vs. 31.03 dB
	Bit rate (kbit/s) @ 15.00 fps: 320 kbit/s

	Frame-by-frame PSNR Improvement: 0.5－3 dB

[image: image55.emf]90100110120130140150

29

30

31

32

33

34

35

ARR Vs. AVC

Frame Number

PSNR

Y

ARR

AVC

Fig. 24 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Mobile.

[image: image56]

(a)

 (b)

(c)
Fig. 25 Reconstructed frame comparison of ARR and AVC Codec.

(a) Original frame. (b) AVC. (c) ARR.
Experiment9: Bus

	Error Position(Frame Number): 9, 10
	Analysis: 12th

	Average PSNR(ARR vs. AVC):32.13 vs. 31.46 dB
	Bit rate (kbit/s) @ 15.00 fps: 256 kbit/s

	Frame-by-frame PSNR Improvement: 0.5－1.5 dB

[image: image57.emf]8101214161820222426

30

31

32

33

34

35

36

ARR Vs. AVC

Frame Number

PSNR

Y

ARR

AVC

Fig. 26 Frame-by-frame performance comparison of ARR and AVC Codec with error concealment for corrupt blocks; Bus.

[image: image58]

(a)

 (b)

(c)
Fig. 27 Reconstructed frame comparison of ARR and AVC Codec.

(a) Original frame. (b) AVC. (c) ARR.
From these experiment results, it is apparent that the presented method consistently gives distinct improvement over the conventional H.264/AVC codec in both subjective and objective quality. This can be attributed to the fact that the arrangement in our method disperses the erroneous pixels, make them nearly invisible to our human eyes. On the other side, the proposed method maximally exploits the natural correlation of the original image, which makes the corrupt blocks be better concealed. Furthermore, it should be noted that besides evidently restricting the error propagation, our method only needs to add
[image: image59.wmf]ARR

 and
[image: image60.wmf]1

-

ARR

 function blocks to the video codec. Thus it achieves significant improvement under error-prone environments without any obvious increasing in computation complexity.
5. Conclusion

In this document, a video coding method with effective error-concealment functionality is presented. Conventional error concealment methods use larger unit than a macroblock unit to conceal a lost video data. A lost macroblock may be replaced with its reference macroblock in case of inter predictive coding or with a macroblock obtained from neighbor macroblocks in case of intra coding. Or when a whole frame is lost, the previous frame can be replaced. However, these conventional methods use spatio-temporally distant information for error-concealment, so that the results can not be close enough to the lost original video data.

The proposed method in this paper integrates error-concealment functionality in the video coding process. The method is applied to H.264 video coding with just a simple modification with little computing complexity. In the encoding process, the pixels in a residual macroblock from the motion estimation process are rearranged before the DCT transform process of sub-blocks. The rearrange process takes a residual macroblock as input. The macroblock is divided into 8x8 blocks. In a 8x8 block, the position (ro, co) of a pixel is changed to (ra, ca) as the following formula:

ra = (ro mod 2) x 4 + (ro /2) ; ca = (co mod 2) x 4 + (co /2).

In decoding, the inverse rearrangement process is applied after DCT transform. With the presented method, for a 8x8 block when some 4x4 sub-blocks lost, it can be error-concealed from other normal 4x4 sub-blocks. The concealment uses neighboring pixels in the original block so that error-concealed pixel values can be very close to the original pixel values attributed to the spatial correlation in image.

The experiment was done on all the 9 test video sequences used for H.264 standardization with various QP values. Some random packet loss is induced to the coded packet streams. The experimental results show that the presented method achieves better PSNR at the same bit rate for every test sequence compared with conventional error-concealment methods applied to H.264.

References

[1]. Thomas Stockhammer, Miska M. Hannuksela, and Thomas Wiegand, “H.264/AVC in Wireless Environments,” IEEE Trans. Circuits Syst. Video Technol., Vol.13, No.7, July 2003.

[2]. Stephan Wenger, “H.264/AVC Over IP,” IEEE Trans. Circuits Syst. Video Technol., Vol.13, No.7, July 2003.

[3]. Yao Wang, Qinfan Zhu, “Error Control and Concealment for Video Communication: A Review,” Proceedings of The IEEE, Vol.86, No.5, May 1998.

[4]. Ekram Khan, Stefan Lehmann, Hiroshi Gunji, and Mohammed Ghanbari, “Iterative Error Detection and Correction of H.263 Coded Video for Wireless Networks,” IEEE Trans. Circuits Syst. Video Technol., Vol.14, No.12, December 2004.

[5]. “H.264/MPEG-4 Part 10 White Paper: Transform and Quantization,” http://www.vcodex.com.

[6]. “Applications and Requirements for Scalable Video Coding,” ISO/IEC JTC1/SC29/WG11 N6880, January 2005, Hongkong.

[7]. Qian Zhang, Guijin Wang, Zixiang Xiong, Jianping Zhou, and Wenwu Zhu, “Error Robust Scalable Audio Streaming Over Wireless IP Networks,” IEEE Transactions on Multimedia, Vol.6, No.6, December 2004.
[8]. Stephan Wenger, “Error Patterns for Internet Experiments,” [Online]. Available ftp://ftp.imtc-files.org/.
(Append for Proposal Documents)

JVT Patent Disclosure Form
	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image61.wmf]
	[image: image62.png]1S0
NS

	[image: image63.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	Sejong Univ.
	

	Mailing address
	98 Gunja-Dong, Gwangjin-Gu
Seoul, 143-747

KOREA
	

	Country
	KOREA
	

	Contact person
	Hae-Kwang Kim, Jie JIA
	

	Telephone
	+82 02 3408 3757
	

	Fax
	
	

	Email
	hkkim@sejong.ac.kr ; Joriejiejia@gmail.com
	

	Place and date of submission
	Busan, Korea, 16 April, 2005
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	Error resilience for SVC base and enhanced layers
	

	Contribution number
	JVT-O048
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image64.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image65.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image66.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	X
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image67.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	Korea 10-2005-0030868/Applied
	

	Inventor(s)/Assignee(s)
	Hae-Kwang Kim; Jie JIA
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	X
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image68.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

File: JVT-O048.doc
Page: 21
Date Saved: 2005-04-13

[image: image69.png]

[image: image70.png]

[image: image71.png]

[image: image72.png]

[image: image73.png]

[image: image74.png]

[image: image75.png]Rt pt 0 pt

[image: image76.png]

[image: image77.png]

_1174341690.unknown

_1174346163.unknown

_1174356602.vsd
Network layer packet loss detection.
If (packet loss detected) do:
 {
 Get the position of the 4*4 block in its’ corresponding 	MBs;
 Set the corresponding 4*4 block residual error to “0”;
 Decode the erroneous frame;
 Error concealment;
 }
 else
 {
 decode as with conventional decoder;
 }
Display one frame.

_1174416045.unknown

_1174871610.unknown

_1174871728.unknown

_1174871783.unknown

_1174419824.vsd
 ---------------------|----------------|----------------|
 Bit usage: | Intra | Inter |
 ---------------------|----------------|----------------|
 Header | 32.00 | 32.12 |
 Mode | 40.00 | 488.31 |
 Motion Info | ./. | 1942.97 |
 CBP Y/C | 293.00 | 316.04 |
 Coeffs. Y | 25465.00 | 4648.02 |
 Coeffs. C | 2692.00 | 530.77 |
 Delta quant | 9.00 | 5.38 |
Stuffing Bits	5.00	5.27
 average bits/frame 28536.00 7968.87 |
 ---------------------|----------------|----------------|

_1174437975.unknown

_1174437987.unknown

_1174421953.unknown

_1174416060.unknown

_1174412348.unknown

_1174412354.unknown

_1174411063.unknown

_1174350307.unknown

_1174351381.vsd
0

7

6

5

4

3

2

1

8

15

14

13

12

11

10

9

16

23

22

21

20

19

18

17

24

31

30

29

28

27

26

25

32

39

38

37

36

35

34

33

40

47

46

45

44

43

42

41

48

55

54

53

52

51

50

49

56

63

62

61

60

59

58

57

0

7

3

6

2

5

1

4

32

39

35

38

34

37

33

36

8

15

11

14

10

13

9

12

40

47

43

46

42

45

41

44

16

23

19

22

18

21

17

20

48

55

51

54

50

53

49

52

24

31

27

30

26

29

25

28

56

63

59

62

58

61

57

60

(a)

Recovered 8*8 block

1

2

3

0

0

1

2

3

Recovered 8*8 block

(b)

_1174352342.vsd
Read one frame from the original YUV file
For each slice do:
 {
	For each MB do:
	{
	 Motion estimation and mode decision;
	 If (MB mode is Intra mode)
 {
		Code MB as with conventional coder;
 }
 Else
 {
		For each 8*8 block do:
		{
		 Motion-compensated prediction;
		 Residual MB arrangement;
		 Transformation, Quantization and Entropy Coding;
		}
	 }
	 Write one MB data;
	}
 }
Deblock frame;
Save reconstructed frame;

_1174350834.unknown

_1174346183.unknown

_1174348962.vsd
(a)

(b)

_1174344297.vsd
dT

dL

dR

dB

Corrupt block

Correct block

(a)

(b)

_1174345703.unknown

_1174345726.unknown

_1174345536.unknown

_1174344362.unknown

_1174343520.unknown

_1174344030.unknown

_1174343498.unknown

_1174343349.unknown

_1174331783.unknown

_1174335771.unknown

_1174336645.vsd
0

1

4

5

2

3

6

7

8

9

12

13

10

11

14

15

0

1

4

5

2

3

6

7

8

9

12

13

10

11

14

15

Partition0

Partition1

Luma MB

_1174331816.unknown

_1174329353.vsd
0

1

4

5

2

3

6

7

8

9

12

13

10

11

14

15

Luma MB (1—15 represent 4*4 block number)

4*4 block

_1174331579.unknown

_1174327751.unknown

_1173961709.vsd
Trans-formation

Inverse Transformation/Quantization

Quanti-zation

Intra-Prediction

Motion-compensated
prediction

Motion estimation

Deblocking Filter

+

+

Entropy-Coding

ARR

Packetization

Video in

Transmission

Video out

ARR-1

-

