	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

13th Meeting: Palma de Mallorca, Spain 18-22 Oct., 2004
	Document: JVT-O041r1
Filename: JVT-O041r1.doc

	Title:
	Generic Extended Spatial Scalability

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	E. Francois, J. Viéron, G. Marquant, N. Burdin, P. Lopez
THOMSON R&D France, Video Compression Lab, Corporate Research Rennes, 1, Avenue Belle Fontaine – CS17617, 35 576 Cesson Sevigne Cedex – France
	
Tel:
Email:
	+33 2 99 27 32 62

edouard.francois@thomson.net

	Source:
	Thomson

Index

21
Overview

22
Problem to solve

43
Inter-Layer Motion Prediction

43.1
Base layer prediction macroblock construction

53.2
4x4 block inheritance

63.3
8x8 inheritance

73.4
Prediction macroblock mode choice

83.5
Motion vectors scaling

94
Inter-Layer texture Prediction

104.1
Inter-Layer Intra texture Prediction

104.2
Inter-Layer Residual Prediction

115
Complexity issues

116
Changes in SVM

337
References

34(Append for Proposal Documents)

34JVT Patent Disclosure Form

1 Overview

This document describes the tool proposed by THOMSON for providing Generic Extended Spatial Scalability. This tool enables the encoding of two spatial (low and high) layers (or resolutions), linked by the following relations:

· Inter layer size ratio: the factor between pictures width and height of the two successive spatial layers can be different vertically and horizontally and does not necessarily equal 2;

· Cropping: pictures of the higher resolution level can contain parts (picture borders) that are not present in corresponding pictures of the low resolution level.

This tool is fully generic, that is, any inter-layer size ratio and any cropping window can be handled. It addresses both CE9 ('Spatial scalable coding using cropped areas') and CE10 ('Non dyadic scalability').
2 Problem to solve

We consider two successive spatial layers, a low layer (considered as base layer) and a high layer (considered as enhancement layer), linked by the following geometrical relations (cf Figure 1). Width and height of enhancement layer pictures are defined respectively as wenh and henh. Base layer pictures dimensions are defined as wbase and hbase. Base layer pictures are a subsampled version of sub-pictures of enhancement layer pictures, of dimensions wextract and hextract, positioned at coordinates (xorig , yorig) in the enhancement layer pictures coordinates system. In Figure 1, the enhancement and base layer pictures are divided in macroblocks. Upsampling factors between base layer pictures and extraction pictures in enhancement layer are respectively defined as αhoriz = wextract / wbase and αvertic = hextract / hbase for horizontal and vertical dimensions.
Parameters (xorig , yorig , wextract, hextract) completely define the geometrical relations between high and low layer pictures. In a standard dyadic scalable version, these parameters are equal to (0,0,2.wbase,2.hextract).
The problem to solve is the encoding/decoding of the macroblocks of the enhancement layer knowing the decoded base layer. A macroblock of enhancement layer may have either no base layer corresponding block (on borders of the enhancement layer picture) either one or several base layer corresponding macroblocks, as illustrated in Figure 2. Consequently a different managing of the inter layer prediction than in [JSVM1.0] is necessary.

[image: image1.emf]subsampling

Enhancement

spatial layer

Base

spatial layer

w

enh

w

base

h

enh

h

base

w

extract

h

extract

(x

orig

,y

orig

)

Figure 1: relations between enhancement layer and base layer

[image: image2.emf]upsampled

base layer

Figure 2 : macroblock overlapping between upsampled base layer picture (dashed lines) and enhancement layer picture (solid lines)

In the sequel, according to the semantic defined further, we will name:

· scaled_base_column = xorig
· scaled_base_line = yorig
· scaled_base_width = wextract

· scaled_base_height = hextract

Inter layer prediction is only possible for macroblocks fully embedded in the scaled base layer window (grey-colored area in Figure 3), that is, macroblocks whose coordinates (MBx,Mby) respect the following conditions:

MBx >= (scaled_base_column + 15) / 16
and
MBx < (scaled_base_column + scaled_base_width) / 16
And

MBy >= (scaled_base_ line + 15) / 16
and

MBy < (scaled_base_ line + scaled_base_ height) / 16

[image: image3.emf]upsampled

base layer

Figure 3: Authorized blocks for inter layer prediction
3 Inter-Layer Motion Prediction

A high layer macroblock can exploit inter-layer prediction using scaled base layer motion data, using either “BASE_LAYER_MODE” or “QPEL_REFINEMENT_MODE”, as in case of dyadic spatial scalability. In case of using one of these two modes, the high layer macroblock is reconstructed with default motion data deduced from the base layer. These modes are only authorized for high layer macroblocks having corresponding base layer blocks (i.e. grey-colored area in Figure 3 where bold line represents the upsampled base layer window).

3.1 Base layer prediction macroblock construction

As in [JSVM1.0], these macroblock modes indicate that motion/prediction information including macroblock partitioning are directly derived from the base layer. The process consists in constructing a prediction macroblock, MB_pred, inheriting motion data from base layer. When using “BASE_LAYER_MODE” mode, the macroblock partitioning as well as the reference indices and motion vectors are those of the prediction macroblock MB_pred. “QPEL_REFINEMENT_MODE” is similar, but a quarter-sample motion vector refinement is achieved.

The process to derive MB_pred works in three steps:

· for each 4x4 block of MB_pred, inheritance of motion data from the base layer motion data

· partitioning choice for each 8x8 block of MB_pred
· mode choice for MB_pred
These 3 steps are described in the following sections.

3.2 4x4 block inheritance

For each 4x4 block b of the macroblock, the inheriting process consists in considering the center point (xc, yc) of the block, computing its base layer luma location (xB, yB) (as illustrated in Figure 4), and inheriting motion data from the base layer block containing the pixel (xB, yB).

[image: image4.emf]Enhancement

spatial layer

Base

spatial layer

(x

c

,y

c

)

(x

base

,y

base

)

upsampled

base layer

Figure 4: localisation of a high layer pixel in the base layer

The detailed motion data inheritance process for b is the following:

Identification of base layer corresponding macroblock, 8x8 block and 4x4 block
· Let (x0,y0) be the luma coordinates of the upper left pixel of b. The base luma location (xB, yB) of the pixel (1,1) of b in the base layer is derives as follows :

[image: image5.wmf](

)

(

)

ï

ï

î

ï

ï

í

ì

+

-

=

+

-

=

e_height

scaled_bas

es

ghtInSampl

BasePicHei

*

1

e_line

scaled_bas

0

e_width

scaled_bas

s

thInSample

BasePicWid

*

1

e_column

scaled_bas

0

L

L

y

yB

x

xB

with
BasePicWidthInSamplesL = 16*(BasePicWidthInMbsMinus1+1)

BasePicHeightInSamplesL = 16*(BasePicHeightInMbsMinus1+1)

· the base corresponding macroblock is defined as the base layer macroblock containing pixel (xB, yB). Its coordinates (mbxB, mbyB) are given by the following equations:

[image: image6.wmf]î

í

ì

=

=

16

/

16

/

yB

mbyB

xB

mbxB

· the base corresponding 8x8 block is defined as the base layer 8x8 block, belonging to the base corresponding macroblock, and containing pixel (xB, yB). Its coordinates (b8xB, b8yB) in the base corresponding macroblock are defined by the following equations:

[image: image7.wmf]î

í

ì

-

=

-

=

8

 /

)

16

*

(

8

8

 /

)

16

*

(

8

mbyB

yB

yB

b

mbxB

xB

xB

b

· the base corresponding 4x4 block is defined as the base layer 4x4 block containing pixel (xB, yB). Its coordinates (b4xB, b4yB) in the base corresponding macroblock are defined by the following equations:

[image: image8.wmf]î

í

ì

-

=

-

=

4

 /

)

16

*

(

4

4

 /

)

16

*

(

4

mby

yB

yB

b

mbx

xB

xB

b

Motion data inheritance
· IF the base corresponding macroblock is intra, THEN 4x4 block is set as intra
· ELSE for each list listx (listx=0 or 1), the 4x4 block gets the reference index and motion vector from the base corresponding 4x4 block
3.3 8x8 inheritance

Once each 4x4 block has been treated, a merging process is applied to merge reference indices (1 per list) and motion vectors of the 8x8 block it belongs to. In the following, 4x4 blocks of a 8x8 block are identified as indicated in Figure 5.

[image: image9.emf]b

1

b

2

b

3

b

4

8x8 block B

Figure 5: 4x4 blocks of 8x8 block B
For each 8x8 block B, the following process is applied:

· IF the four 4x4 blocks have been classified as intra blocks, B is considered as intra 8x8 block.

· ELSE, reference indices and partitioning mode are chosen as follows:

Reference indices choice (for assigning same indices to each 4x4 block)
· for each list lx
· IF no 4x4 block uses this list, no reference index and motion vector of this list are set to B
· ELSE
· reference index rB(lx) for B is computed as the minimum of the existing reference indices of the 4 4x4 blocks:

[image: image10.wmf]{

}

(

)

)

(

min

)

(

4

3

2

1

,

,

,

lx

r

lx

r

b

b

b

b

b

b

B

Î

=

· IF (rb1(lx) != rB(lx))

· rb1(lx) = rB(lx)
· IF (rb2(lx)==rB(lx))
mvb1(lx) = mvb2(lx)

· ELSE IF (rb3(lx)==rB(lx))
mvb1(lx) = mvb3(lx)

· ELSE IF (rb4(lx)==rB(lx))
mvb1(lx) = mvb4(lx)

· IF (rb2(lx) != rB(lx))

· rb2(lx) = rB(lx)
· IF (rb1(lx)==rB(lx))
mvb2(lx) = mvb1(lx)

· ELSE IF (rb4(lx)==rB(lx))
mvb2(lx) = mvb4(lx)

· ELSE IF (rb3(lx)==rB(lx))
mvb2(lx) = mvb3(lx)

· IF (rb3(lx) != rB(lx))

· rb3(lx) = rB(lx)
· IF (rb4(lx)==rB(lx))
mvb3(lx) = mvb4(lx)

· ELSE IF (rb1(lx)==rB(lx))
mvb3(lx) = mvb1(lx)

· ELSE IF (rb2(lx)==rB(lx))
mvb3(lx) = mvb2(lx)

· IF (rb4(lx) != rB(lx))

· rb4(lx) = rB(lx)
· IF (rb3(lx)==rB(lx))
mvb4(lx) = mvb3(lx)

· ELSE IF (rb2(lx)==rB(lx))
mvb4(lx) = mvb2(lx)

· ELSE IF (rb1(lx)==rB(lx))
mvb4(lx) = mvb1(lx)

Choice of partitioning mode

· Two 4x4 blocks are considered as identical if their motion vectors are identical. The merging process is applied as follows:

· IF b1 is identical to b2 and b3 is identical to b4 THEN

· if b1 is identical to b3 then BLK_8x8 is chosen

· else BLK_8x4 is chosen

· ELSE IF b1 is identical to b3 and b2 is identical to b4 THEN BLK_4x8 is chosen

· ELSE BLK_4x4 is chosen
3.4 Prediction macroblock mode choice

A final process is achieved to determine the MB_pred mode. In the following, 8x8 blocks of the macroblock are identified as indicated in Figure 6.

[image: image11.emf]B

1

B

2

B

3

B

4

Figure 6: 8x8 blocks of prediction MB

Two 8x8 blocks are considered as identical blocks if:

· One or both of the two 8x8 blocks are classified as intra blocks

or

· Partitioning mode of both blocks is BLK_8x8 and reference indices and motion vectors of list0 and list1 of each 8x8 block, if they exist, are identical.

The mode choice is done using the following process:
· IF all 8x8 blocks are classified as intra blocks, THEN MB_pred is classified as INTRA macroblock

· ELSE, MB_pred is an INTER macroblock
Remaining intra 8x8 blocks are enforced to be Inter 8x8 blocks
· 8x8 blocks classified as intra are enforced to INTER blocks with 8x8 partitioning. Their reference indices and motion vectors are computed as follows. Let BINTRA be such a 8x8 block.

for each list listx
· IF none of the other 8x8 block uses this list, no reference index and motion vector of this list is assigned to BINTRA
· ELSE, the following steps are applied:

· reference index r(listx) is computed as the minimum of the existing reference indices of the other 8x8 blocks:

[image: image12.wmf]{

}

(

)

)

(

min

)

(

4

3

2

1

,

,

,

listx

r

listx

r

B

B

B

B

B

B

Î

=

· mean motion vector mvmean(listx) of the 8x8 blocks having the same reference index r(listx) is computed

· r(listx) is assigned to BINTRA and each 4x4 block of BINTRA is enforced to have r(listx) and mvmean(listx) as reference index and motion vector.

Mode choice

· The choice of the partitioning mode for B is achieved. Two 8x8 blocks are considered as identical if their Partitioning mode is 8x8 and reference indices and motion vectors of list0 and list1 of each 8x8 block, if they exist, are identical. The merging process is applied as follows:

· if B1 is identical to B2 and B3 is identical to B4 then

· if B1 is identical to B3 then MODE_16x16 is chosen.

· else MODE_16x8 is chosen.

· else if B1 is identical to B3 and B2 is identical to B4 then MODE_8x16 is chosen.

· else MODE_8x8 is chosen.

3.5 Motion vectors scaling

A motion vector rescaling is finally applied to every existing motion vectors of the prediction macroblock MB_pred. Motion data mv=(dx,dy) is scaled in the mvs=(dsx,dsy) using the following equations:

[image: image13.wmf][

]

[

]

î

í

ì

=

=

vertic

y

sy

horiz

x

sx

d

d

d

d

a

a

.

.

Using the semantic described further, the actual formulas are as follows :

[image: image14.wmf][

]

[

]

ï

ï

ï

î

ï

ï

ï

í

ì

+

=

+

=

L

L

L

L

es

ghtInSampl

BasePicHei

*

2

es

ghtInSampl

BasePicHei

*

e_height

scaled_bas

*

*

2

s

thInSample

BasePicWid

*

2

s

thInSample

BasePicWid

*

e_width

scaled_bas

*

*

2

y

y

sy

x

x

sx

d

sign

d

d

d

sign

d

d

4 Inter-Layer texture Prediction

Inter layer texture prediction is based on the same principles as inter layer motion prediction. It is only possible for macroblocks fully embedded in the scaled base layer window (grey-colored area in Figure 3.

For Intra texture prediction, the interpolation filter is applied across transform blocks boundaries. For residual texture prediction, this process only works inside transform blocks (4x4 or 8x8 depending on the transform).

The process at the decoder works as follows. Let MB be a high layer texture macroblock to be interpolated. Texture samples of MB are derived as follows:

· let (xP , yP) be the position of the upper left pixel of the macroblock in the high layer coordinates reference.

· a base layer prediction array is first derived as follows:

· the corresponding quarter-pel position (x4, y4) of (xP , yP) in the base layer is computed as:

[image: image15.wmf]î

í

ì

=

=

e_height

scaled_bas

es

ghtInSampl

BasePicHei

*

*

4

4

e_width

scaled_bas

s

thInSample

BasePicWid

*

*

4

4

L

L

yP

y

xP

x

· the integer-pel position (xB , yB) is then derived as:

[image: image16.wmf]î

í

ì

>>

=

>>

=

2

4

2

4

y

yB

x

xB

· the quarter-pel phase is then derived as:

[image: image17.wmf]î

í

ì

<<

-

=

<<

-

=

2

4

4

2

4

y

x

py

xB

x

px

· the base layer prediction array corresponds to the samples contained in the area (xB-8, yB-8) and (xB+16, yB+16). The same filling process, as used in the dyadic case, is applied to fill samples areas corresponding to non existing or non available samples (for instance, in case of intra texture prediction, samples that do not belong to intra blocks).

· the base layer prediction array is then upsampled. The upsampling is applied in two steps : first, texture is upsampled using the AVC half pixel 6-tap filter; then a bilinear interpolation is achieved to build the quarter pel samples, which results in a quarter-pel interpolation array. For intra texture, this interpolation crosses block boundaries. For residual texture, interpolation does not cross transform block boundaries.

· then, prediction sample pred[x, y] at each position (x, y), x=0..N-1,y=0..N-1, of the high layer block is computed as:

pred[x, y] = interp[xI , yI]

with

[image: image18.wmf]î

í

ì

+

=

+

=

e_height)

scaled_bas

es

ghtInSampl

BasePicHei

*

*

4

(

e_width)

scaled_bas

s

thInSample

BasePicWid

*

*

4

(

L

L

y

py

yI

x

px

xI

interp[xI , yI] is the quarter-pel interpolated base layer sample at position (xI, yI)

4.1 Inter-Layer Intra texture Prediction

A given macroblock MB of current layer can exploit intra layer residual prediction only if co-located macroblocks of the base layer exist and are intra macroblocks.

For generating the intra prediction signal for high-pass macroblocks coded in I_BL mode, the corresponding 8x8 blocks of the base layer high-pass signal are directly de-blocked and interpolated, as in case of ‘standard’ dyadic spatial scalability. The same padding process is applied for deblocking.

4.2 Inter-Layer Residual Prediction

A given macroblock MB of current layer can exploit inter layer residual prediction only if co-located macroblocks of the base layer exist and are not intra macroblocks.

At the encoder, the upsampling process consists in upsampling each elementary transform block, without crossing the block boundaries. For instance, if a MB is coded into four 8x8 blocks, four upsampling processes will be applied on exactly 8x8 pixels as input.

The interpolation process is achieved in two steps : first, the base layer texture is upsampled using the AVC half pixel 6-tap filter; then a bilinear interpolation, is achieved to build the quarter pel samples. Interpolated high layer samples The nearest quarter pel position is chosen as the interpolated pixel.

The following picture shows how the 4x4 blocks are oversampled in the case of a 4/3 ratio.

[image: image19.png]< Original Grid = Oversampled Grid

The number of pixels per block in the original picture is 4x4. After the 4/3 oversampling, this number becomes 6x6, 6x5, 5x6 or 5x5 depending on the location of the block within the picture. It can be observed that this number of pixels inside an oversampled 4x4 block follows a regular periodic pattern. In the 4/3 case, the pattern is : {6, 5, 5}

The phase of the top left pixel of each, expressed as the position of this pixel relatively to original grid is given by another periodic pattern. In the 4/3 case, the pattern is : {0, 1/2, 1/4}
5 Complexity issues

For motion and texture upsampling, the following type of operation is required, at macroblock, 4x4 block or pixel levels:
for (x = 0 ; x < scaled_base_width ; x += step)

{

xB = accur * x * basePicWidthInSamplesL / scaled_base_width

process(xB , …)
}

where step is equal to 16 for macroblock level, 4 for 4x4 block level and 1 for pixel level, and accur is equal to 1 for integer-pel accuracy, 2 for half-pel accuracy and 4 for quarter-pel accuracy.
Actually these operations that involve divisions can be significantly simplified and replaced by additions and shifting using the following approach.

d = ceil ((accur*step*basePicWidthInSamplesL << N) / scaled_base_width)
for (x = 0 , xB = 0 ; x < scaled_base_width ; x += step)

{

process((xB >> N) , …)

xB += d

}
N being a predefined value, chosen such as the maximum error errmax, defined as follows:
errmax = (scaled_base_width * d / step) >> N - accur*basePicWidthInSamplesL
is strictly lower than 1. This leads to the following value:

N = 1 + log2(accur) + floor (log2(basePicWidthInSamplesL))
For instance, if basePicWidthInSamplesL=704, N=12

6 Changes in SVM

Parts to be replaced are in blue characters. Parts to be added are in red characters.

Changes in section ‘S.6.5.2 Derivation process for base macroblocks’

Following lines

The macroblock address mbAddrBase is derived as follows.

· If HalfSpatResBaseFlag is equal to 0,

mbAddrBase = mbAddr

· Otherwise (HalfSpatResBaseFlag is equal to 1),

mbAddrBase = (PicWidthInMbs / 2) * (mbAddr / (2 * PicWidthInMbs)) + (mbAddr % PicWidthInMbs) / 2

replaced by

The macroblock address mbAddrBase is derived as follows.

· If GenericSpatialScalability is equal to 0,

· If ExtendedSpatialScalability is equal to 0,

· If HalfSpatResBaseFlag is equal to 0,

mbAddrBase = mbAddr

· Otherwise (HalfSpatResBaseFlag is equal to 1),

mbAddrBase = (PicWidthInMbs / 2) * (mbAddr / (2 * PicWidthInMbs)) + (mbAddr % PicWidthInMbs) / 2

· Otherwise (ExtendedSpatialScalability is equal to 1),

· If
(mbAddr / PicWidthInMbs < (scaled_base_line+15) / 16)
or

(mbAddr / PicWidthInMbs >= (scaled_base_line + scaled_base_height) / 16)
or

(mbAddr % PicWidthInMbs < (scaled_base_column + 15) / 16)
or

(mbAddr % PicWidthInMbs >= (scaled_base_column + scaled_base_width) / 16),

there is no base layer macroblock,

mbAddrBase = -1

· Otherwise, the following applies.

· basePicWidthInMbs is defined as 1 + the syntax element pic_width_in_mbs_minus1 of the active sequence parameter set for the pictures with DependencyId equal to (base_id_plus1 – 1),

· If HalfSpatResBaseFlag is equal to 0,

mbAddrBase = basePicWidthInMbs * (mbAddr / PicWidthInMbs - scaled_base_line/16) + (mbAddr % PicWidthInMbs) - scaled_base_column/16)

· Otherwise (HalfSpatResBaseFlag is equal to 1),

mbAddrBase = (basePicWidthInMbs / 2) * ((mbAddr / PicWidthInMbs - scaled_base_line/16) / 2) + ((mbAddr % PicWidthInMbs - scaled_base_column/16) / 2)

Changes in section ‘S.6.5.3 Derivation process for base sub-macroblocks’

Following lines

The macroblock partition index mbPartIdxBase is derived as follows.

· The base luma location (xB, yB) is derived as follows

xB = 8 * ((mbAddr % PicWidthInMbs) % 2)

yB = 8 * ((mbAddr / PicWidthInMbs) % 2)

· The macroblock partition index of the macroblock partition in the macroblock mbAddrBase in the picture basePic covering the luma location (xB, yB) shall be assigned to mbPartIdxBase.

replaced by

· If (mbAddrBase != -1),

The macroblock partition index mbPartIdxBase is derived as follows.

· The base luma location (xB, yB) is derived as follows

xB = 8 * ((mbAddr % PicWidthInMbs - scaled_base_column/16) % 2)

yB = 8 * ((mbAddr / PicWidthInMbs - scaled_base_line/16) % 2)

· The macroblock partition index of the macroblock partition in the macroblock mbAddrBase in the picture basePic covering the luma location (xB, yB) shall be assigned to mbPartIdxBase.

· Else, there is no base layer macroblock

Changes in section ‘S.6.5.4 Derivation process for base partitions’

Following lines

The macroblock partition index mbPartIdxBase and the sub-macroblock partition index subMbPartIdxBase are derived as follows.

· The inverse macroblock macroblock partition scanning process in subclause S.6.4.2.1 is invoked with mbPartIdx as the input and (x, y) as the output.

· The location of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows.

· If mb_type is equal to P_8x8, P_8x8ref0, or B_8x8, the inverse sub-macroblock partition scanning process in subclause S.6.4.2.1 is invoked with subMbPartIdx as the input and (xS, yS) as the output.

· Otherwise, (xS, yS) are set equal to (0, 0).

· The base luma location (xB, yB) is derived as follows.

· If HalfSpatResBaseFlag is equal to 0,

xB = x + xS

yB = y + yS

· Otherwise,

xB = 8 * ((mbAddr % PicWidthInMbs) % 2) + (x + xS) / 2

yB = 8 * ((mbAddr / PicWidthInMbs) % 2) + (y + yS) / 2

· The macroblock partition index of the macroblock partition in the macroblock mbAddrBase in the picture basePic covering the luma location (xB, yB) shall be assigned to mbPartIdxBase.

· The sub-macroblock partition index of the sub-macroblock partition inside the macroblock partition mbPartIdxBase of the macroblock mbAddrBase in the picture basePic covering the luma location (xB, yB) shall be assigned to subMbPartIdxBase.

replaced by

· If (mbAddrBase != -1),

The macroblock partition index mbPartIdxBase and the sub-macroblock partition index subMbPartIdxBase are derived as follows.

· The inverse macroblock partition scanning process in subclause S.6.4.2.1 is invoked with mbPartIdx as the input and (x, y) as the output.

· The location of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows.

· If mb_type is equal to P_8x8, P_8x8ref0, or B_8x8, the inverse sub-macroblock partition scanning process in subclause S.6.4.2.2 is invoked with subMbPartIdx as the input and (xS, yS) as the output.

· Otherwise, (xS, yS) are set equal to (0, 0).

· The base luma location (xB, yB) is derived as follows.

· If HalfSpatResBaseFlag is equal to 0,

xB = x + xS

yB = y + yS

· Otherwise,

xB = 8 * ((mbAddr % PicWidthInMbs - scaled_base_column/16) % 2) + (x + xS) / 2

yB = 8 * ((mbAddr / PicWidthInMbs - scaled_base_line/16) % 2) + (y + yS) / 2

· The macroblock partition index of the macroblock partition in the macroblock mbAddrBase in the picture basePic covering the luma location (xB, yB) shall be assigned to mbPartIdxBase.

· The sub-macroblock partition index of the sub-macroblock partition inside the macroblock partition mbPartIdxBase of the macroblock mbAddrBase in the picture basePic covering the luma location (xB, yB) shall be assigned to subMbPartIdxBase.

· Else, there is no base layer macroblock

Changes in section ‘S.7.2 Specification of syntax functions, categories, and descriptors’

Following lines

half_spat_res_base_pic() is specified as follows.

· If all of the following conditions are true, the return value of half_spat_res_base_pic() is equal to TRUE.

· The syntax element base_id_plus1 is greater than 0.

· (pic_width_in_mbs_minus1 + 1) is equal to 2 * (basePicWidthInMbsMinus1 + 1), with basePicWidthInMbsMinus1 being the syntax element pic_width_in_mbs_minus1 of the active sequence parameter set for the pictures with DependencyId equal to (base_id_plus1 – 1).

· (pic_height_in_map_units_minus1 + 1) is equal to 2 * (basePicHeightInMapUnitsMinus1 + 1), with basePicHeightInMapUnitsMinus1 being the syntax element pic pic_height_in_map_units_minus1 of the active sequence parameter set for the pictures with DependencyId equal to (base_ id_plus1 – 1).

· Otherwise, the return value of half_spat_res_base_pic() is equal to FALSE.

replaced by

half_spat_res_base_pic() is specified as follows.

· If all of the following conditions are true, the return value of half_spat_res_base_pic() is equal to TRUE.

· The syntax element base_id_plus1 is greater than 0.

· scaled_base_width is equal to 2 *16* basePicWidthInMbs, with basePicWidthInMbs being 1 + the syntax element pic_width_in_mbs_minus1 of the active sequence parameter set for the pictures with DependencyId equal to (base_id_plus1 – 1).

· scaled_base_height is equal to 2 *16* basePicHeightInMbs, with basePicHeightInMbs being 1 + the syntax element pic_height_in_mbs_minus1 of the active sequence parameter set for the pictures with DependencyId equal to (base_id_plus1 – 1).

· Otherwise, the return value of half_spat_res_base_pic() is equal to FALSE.

Following lines added

intra_base_mb(mbAddr) is specified as follows.

· If GenericSpatialScalability is equal to 0, the following applies.

· The derivation process for base macroblocks in subclause 0 is invoked with mbAddr as input and the output is assigned to the picture basePic and the macroblock address mbAddrBase.

· The return value of the function intra_base_mb(mbAddr) is derived as follows.

· If the macroblock with macroblock address mbAddrBase in the picture basePic is an I macroblock, the return value of intra_base_mb(mbAddr) is equal to TRUE.

· Otherwise, the return value of intra_base_mb(mbAddr) is FALSE.

· Otherwise (GenericSpatialScalability is equal to 1), the following applies.

· The derivation process for mb_type in subclause S.8.4.1.6 is invoked with mbAddr as input and the output is assigned to mb_type.

· The return value of the function intra_base_mb(mbAddr) is derived as follows.

· If mb_type is one of the INTRA mode, as specified in table 7-8, the return value of intra_base_mb(mbAddr) is equal to TRUE.

· Otherwise, the return value of intra_base_mb(mbAddr) is FALSE.

Following lines added

base_mb_part_pred_mode(mbAddr, mbPartIdx) is specified as follows.

· If GenericSpatialScalability is equal to 0, the following applies.

· The derivation process for base partitions in subclause 0 is invoked with mbAddr and mbPartIdx as inputs and the output is assigned to the picture basePic, the macroblock address mbAddrBase, the macroblock partition index mbPartIdxBase, and the sub-macroblock partition index subMbPartIdxBase.

· Let predFlagL0Base and predFlagL1Base be the values of the prediction utilization flags predFlagL0 and predFlagL1, respectively, of the macroblock or sub-macroblock partition specified by mbAddrBase\mbPartIdxBase\subMbPartIdxBase.

· The return value of the function base_mb_part_pred_mode(mbAddr, mbPartIdx) is derived as follows.

· If predFlagL0Base is equal to 1 and predFlagL1Base is equal to 1, the return value of base_mb_part_pred_mode(mbAddr, mbPartIdx) is BiPred.

· Otherwise, if predFlagL0Base is equal to 1, the return value of base_mb_part_pred_mode(mbAddr, mbPartIdx) is Pred_L0.

· Otherwise, the return value of base_mb_part_pred_mode(mbAddr, mbPartIdx) is Pred_L1.

· Otherwise (GenericSpatialScalability is equal to 1), the following applies.

· The derivation process for mb_type and sub_mb_type in subclause S.8.4.1.6 is invoked with mbAddr as input and the output is assigned to mb_type.

· The return value of the function base_mb_part_pred_mode(mbAddr, mbPartIdx) is derived as follows.

· If sub_mb_type[mbPartIdx] is equal to Y_Bi_Z with Y being replaced by either P or B, Z being replaced by either 8x8, 8x4, 4x8, 4x4, the return value of base_mb_part_pred_mode(mbAddr, mbPartIdx) is BiPred.

· Otherwise, If sub_mb_type[mbPartIdx] is equal to Y_L0_Z with Y being replaced by either P or B, Z being replaced by either 8x8, 8x4, 4x8, 4x4, the return value of base_mb_part_pred_mode(mbAddr, mbPartIdx) is Pred_L0.

· Otherwise, the return value of base_mb_part_pred_mode(mbAddr, mbPartIdx) is Pred_L1.

Following lines added

spatial_base_layer() specifies whether the current layer is the (spatial) base layer. If the current layer is the (spatial) base layer, spatial_base_layer() is equal to TRUE, else it is equla to FALSE.

generic_spatial_scalability() is specified as follows.

· If all of the following conditions are true, the return value of generic_spatial_scalability() is equal to FALSE.

· scaled_base_column % 16 == 0.

· scaled_base_line % 16 == 0.

· scaled_base_width == 2*BasePicWidthInSamplesL
or
scaled_base_height == BasePicWidthInSamplesL
· scaled_base_height == 2*BasePicHeightInSamplesL
or
scaled_base_height == BasePicHeightInSamplesL
with

BasePicWidthInSamplesL = 16 * basePicWidthInMbs

BasePicHeightInSamplesL = 16 * basePicWidthInMbs

· Otherwise, the return value of generic_spatial_scalability () is equal to TRUE.
in_crop_window(mbAddr) is specified as follows.

· Let mbIdxX and mbIdxY be defined as follows.

mbIdxX = mbAddr % PicWidthInMbs

mbIdxY = mbAddr / PicWidthInMbs

· If all of the following conditions are true, the return value of in_crop_window () is equal to TRUE.

mbIdxX >= (scaled_base_column+15) / 16
and
mbIdxX < (scaled_base_column + scaled_base_width) / 16
and
mbIdxY >= (scaled_base_ line+15) / 16
and

mbIdxY < (scaled_base_ line + scaled_base_height) / 16

· Otherwise, the return value of in_crop_window () is equal to FALSE. base_mode_flag and base_mode_refinement_flag are enforced to 0.
Changes in section ‘S.7.3.2.1 Sequence parameter set RBSP syntax’

	seq_parameter_set_rbsp() {
	C
	Descriptor

	
profile_idc
	0
	u(8)

	
constraint_set0_flag
	0
	u(1)

	
constraint_set1_flag
	0
	u(1)

	
constraint_set2_flag
	0
	u(1)

	
constraint_set3_flag
	0
	u(1)

	
reserved_zero_4bits /* equal to 0 */
	0
	u(4)

	
level_idc
	0
	u(8)

	
seq_parameter_set_id
	0
	ue(v)

	
if(profile_idc = = 100 | | profile_idc = = 110 | |

 profile_idc = = 122 | | profile_idc = = 144 | |

 profile_idc = = 83)) {
	
	

	

chroma_format_idc
	0
	ue(v)

	

if(chroma_format_idc = = 3)
	
	

	

residual_colour_transform_flag
	0
	u(1)

	

bit_depth_luma_minus8
	0
	ue(v)

	

bit_depth_chroma_minus8
	0
	ue(v)

	

qpprime_y_zero_transform_bypass_flag
	0
	u(1)

	

seq_scaling_matrix_present_flag
	0
	u(1)

	

if(seq_scaling_matrix_present_flag)
	
	

	

for(i = 0; i < 8; i++) {
	
	

	

seq_scaling_list_present_flag[i]
	0
	u(1)

	

if(seq_scaling_list_present_flag[i])
	
	

	

if(i < 6)
	
	

	

scaling_list(ScalingList4x4[i], 16,

 UseDefaultScalingMatrix4x4Flag[i])
	0
	

	

else
	
	

	

scaling_list(ScalingList8x8[i – 6], 64,

 UseDefaultScalingMatrix8x8Flag[i – 6])
	0
	

	

}
	
	

	
}
	
	

	
log2_max_frame_num_minus4
	0
	ue(v)

	
pic_order_cnt_type
	0
	ue(v)

	
if(pic_order_cnt_type = = 0)
	
	

	

log2_max_pic_order_cnt_lsb_minus4
	0
	ue(v)

	
else if(pic_order_cnt_type = = 1) {
	
	

	

delta_pic_order_always_zero_flag
	0
	u(1)

	

offset_for_non_ref_pic
	0
	se(v)

	

offset_for_top_to_bottom_field
	0
	se(v)

	

num_ref_frames_in_pic_order_cnt_cycle
	0
	ue(v)

	

for(i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++)
	
	

	

offset_for_ref_frame[i]
	0
	se(v)

	
}
	
	

	
num_ref_frames
	0
	ue(v)

	
gaps_in_frame_num_value_allowed_flag
	0
	u(1)

	
pic_width_in_mbs_minus1
	0
	ue(v)

	
pic_height_in_map_units_minus1
	0
	ue(v)

	
frame_mbs_only_flag
	0
	u(1)

	
if(!frame_mbs_only_flag)
	
	

	

mb_adaptive_frame_field_flag
	0
	u(1)

	
direct_8x8_inference_flag
	0
	u(1)

	
frame_cropping_flag
	0
	u(1)

	
if(frame_cropping_flag) {
	
	

	

frame_crop_left_offset
	0
	ue(v)

	

frame_crop_right_offset
	0
	ue(v)

	

frame_crop_top_offset
	0
	ue(v)

	

frame_crop_bottom_offset
	0
	ue(v)

	
}
	
	

	 if(!spatial_base_layer()) {
	
	

	

extended_spatial_scalability
	2
	u(1)

	

if(extended_spatial_scalability ! = 0) {
	
	

	

scaled_base_column
	2
	ue(v)

	

scaled_base_line
	2
	ue(v)

	

scaled_base_width
	2
	ue(v)

	

scaled_base_height
	2
	ue(v)

	

}
	
	

	
}
	
	

	
vui_parameters_present_flag
	0
	u(1)

	
if(vui_parameters_present_flag)
	
	

	

vui_parameters()
	0
	

	
rbsp_trailing_bits()
	0
	

	}
	
	

Changes in section ‘S.7.3.7 Slice data in scalable extension syntax’

	slice_data_in_scalable_extension() {
	C
	Descriptor

	
HalfSpatResBaseFlag = half_spat_res_base_pic()
	
	

	
GenericSpatialScalability = generic_spatial_scalability()
	
	

	
while(!byte_aligned())
	
	

	

cabac_alignment_one_bit
	2
	f(1)

	
CurrMbAddr = first_mb_in_slice * (1 + MbaffFrameFlag)
	
	

	
do {
	
	

	

if(MbaffFrameFlag && (CurrMbAddr % 2 = = 0))
	
	

	

mb_field_decoding_flag
	2
	ae(v)

	

macroblock_layer_in_scalable_extension()
	2 | 3 | 4
	

	

if(MbaffFrameFlag && (CurrMbAddr % 2 = = 0))
	
	

	

moreDataFlag = 1
	
	

	

else {
	
	

	

end_of_slice_flag
	2
	ae(v)

	

moreDataFlag = ! end_of_slice_flag
	
	

	

}
	
	

	

CurrMbAddr = NextMbAddress(CurrMbAddr)
	
	

	
} while(moreDataFlag)
	
	

	}
	
	

Changes in section ‘S.7.3.8 Macroblock layer in scalable extension syntax’

	macroblock_layer_in_scalable_extension() {
	C
	Descriptor

	
if(in_crop_window(CurrMbAddr)) {
	
	

	

if(base_id_plus1 != 0 && adaptive_prediction_flag) {
	
	

	

base_mode_flag
	2
	ae(v)

	

if(! base_mode_flag &&

 (HalfSpatResBaseFlag || extended_spatial_scalability) &&

 ! intra_base_mb(CurrMbAddr))
	
	

	

base_mode_refinement_flag
	2
	ae(v)

	

}
	
	

	
}
	
	

	
if(base_id_plus1 != 0 && adaptive_prediction_flag) {
	
	

	
if(base_id_plus1 != 0 && adaptive_prediction_flag) {
	
	

	

base_mode_flag
	2
	ae(v)

	

if(! base_mode_flag &&

 (HalfSpatResBaseFlag || extended_spatial_scalability) &&

 ! intra_base_mb(CurrMbAddr))
	
	

	

base_mode_refinement_flag
	2
	ae(v)

	
}
	
	

	
}
	
	

	
if(! base_mode_flag && ! base_mode_refinement_flag) {
	
	

	

mb_type
	2
	ae(v)

	

if(mb_type = = I_NxN && base_id_plus1 != 0)
	
	

	

intra_base_flag
	2
	ae(v)

	
}
	
	

	
if(mb_type = = I_PCM) {
	
	

	

while(!byte_aligned())
	
	

	

pcm_alignment_zero_bit
	2
	f(1)

	

for(i = 0; i < 256; i++)
	
	

	

pcm_sample_luma[i]
	2
	u(v)

	

for(i = 0; i < 2 * MbWidthC * MbHeightC; i++)
	
	

	

pcm_sample_chroma[i]
	2
	u(v)

	
} else {
	
	

	

NoSubMbPartSizeLessThan8x8Flag = 1
	
	

	

if(mb_type != I_NxN &&

MbPartPredMode(mb_type, 0) != Intra_16x16 &&

NumMbPart(mb_type) = = 4) {
	
	

	

sub_mb_pred_in_scalable_extension(mb_type)
	2
	

	

for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
	
	

	

if(sub_mb_type[mbPartIdx] != B_Direct_8x8) {
	
	

	

if(NumSubMbPart(sub_mb_type [mbPartIdx]) > 1)
	
	

	

NoSubMbPartSizeLessThan8x8Flag = 0
	
	

	

} else if(!direct_8x8_inference_flag)
	
	

	

NoSubMbPartSizeLessThan8x8Flag = 0
	
	

	

} else {
	
	

	

if(transform_8x8_mode_flag && mb_type = = I_NxN)
	
	

	

transform_size_8x8_flag
	2
	ae(v)

	

mb_pred_in_scalable_extension(mb_type)
	2
	

	

}
	
	

	

if(MbPartPredMode(mb_type, 0) != Intra_16x16) {
	
	

	

coded_block_pattern
	2
	ae(v)

	

if(CodedBlockPatternLuma > 0 &&

 transform_8x8_mode_flag && mb_type != I_NxN &&

 NoSubMbPartSizeLessThan8x8Flag &&

 !(MbPartPredMode(mb_type, 0) = = B_Direct_16x16 &&

!direct_8x8_inference_flag))
	
	

	

transform_size_8x8_flag
	2
	ae(v)

	

}
	
	

	

if(CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma > 0 | |

MbPartPredMode(mb_type, 0) = = Intra_16x16) {
	
	

	

mb_qp_delta
	2
	ae(v)

	

residual_in_scalable_extension()
	3 | 4
	

	

}
	
	

	
}
	
	

	}
	
	

Changes in section ‘S.7.4.2.1 Sequence parameter set RBSP semantics’

Following lines added

extended_spatial_scalability specifies the presence of syntax elements related to geometrical parameters for the base layer upsampling in the slice header. When this syntax element is not present, it shall be inferred to be equal to 0.
scaled_base_column corresponds to the horizontal coordinate of the upper left pixel of the upsampled base layer in the current layer coordinates system. When this syntax element is not present, it shall be inferred to be equal to 0.
scaled_base_line corresponds to the vertical coordinate of the upper left pixel of the upsampled base layer in the current layer coordinates system. When this syntax element is not present, it shall be inferred to be equal to 0.
scaled_base_width corresponds to the number of pixels per line of the upsampled base layer in the current layer. When this syntax element is not present, it shall be inferred to be equal to (16 * (pic_width_in_mbs_minus1 + 1)).
scaled_base_height corresponds to the number of pixels per column of the upsampled base layer in the current layer. When this syntax element is not present, it shall be inferred to be equal to (16 * (pic_height_in_mbs_minus1 + 1)).

The following conditions must be verified:

- scaled_base_column >= 0

- scaled_base_column + scaled_base_width <= 16 * (pic_width_in_mbs_minus1 + 1)

- scaled_base_line >= 0

- scaled_base_line + scaled_base_height <= 16 * (pic_height_in_mbs_minus1 + 1)

- scaled_base_width / basePicWidthInSamplesL >= 4/3

- scaled_base_height / basePicHeightInSamplesL >= 4/3

Changes in section ‘S.7.4.8 Macroblock layer in scalable extension semantics’

base_mode_flag equal to 1 specifies that mb_type for the current macroblock and where applicable the reference indices and motion vectors shall be inferred in dependence of the corresponding base macroblock (or macroblocks if extended_spatial_scalability is equal to 1). base_mode_flag equal to 0 specifies that mb_type is not inferred unless the base_mode_refinement_flag is equal to 1.

base_mode_refinement_flag equal to 1 specifies that mb_type for the current macroblock and the reference indices shall be inferred in dependence of the corresponding base macroblock (or macroblocks if extended_spatial_scalability is equal to 1). Furthermore, base_mode_refinement_flag equal to 1 specifies that the motion vectors are specified by quarter-sample refinements that are added to motion vectors predictors which are derived using the motion vectors of the base macroblock. base_mode_refinement_flag equal to 0 specifies that mb_type is not inferred.

After line

When mb_type is not present, mb_type shall be inferred as follows.

Following lines added

· If GenericSpatial Scalability is equal to 1, mb_type is inferred using the derivation process described in subclause 8.4.1.6 with CurrMbAddr as input.

· Otherwise (GenericSpatial Scalability is equal to 0) , the following applies.
After line

When sub_mb_type[mbPartIdx] is not present and mb_type is equal to P_8x8, P_8x8ref0, or B_8x8, sub_mb_type[mbPartIdx] shall be inferred as follows.
Following lines added

· If GenericSpatial Scalability is equal to 1, sub_mb_type[mbPartIdx] is inferred using the derivation process described in subclause 8.4.1.6 with CurrMbAddr as input.

· Otherwise (GenericSpatial Scalability is equal to 0) , the following applies.

Changes in section ‘S.8.3.6 Intra_Base prediction process’

[Ed. Note(HS): This process is currently only specified for frame_mbs_only_flag equal to 1.]

This process is invoked when the macroblock prediction mode is equal to Intra_Base.

Following lines added

This process is invoked only if the current macroblock coordinates, defined as:

mbIdxX = CurrMbAddr % PicWidthInMbs

mbIdxY = CurrMbAddr / PicWidthInMbs

verifies the following conditions:

mbIdxX >= (scaled_base_column+15) / 16
and
mbIdxX < (scaled_base_column + scaled_base_width) / 16
and
mbIdxY >= (scaled_base_ line+15) / 16
and

mbIdxY < (scaled_base_ line + scaled_base_height) / 16

Input to this process are constructed samples of the base picure prior to the deblocking filter process.

Outputs of this process are

· the Intra prediction luma samples for the current macroblock predL[x, y] with x = 0..15, y = 0..15

· when chroma_format_idc is not equal to 0, the Intra prediction chroma samples for the current macroblock predCb[x, y] and predCr[x, y] with x = 0..MbWidthC – 1, y = 0..MbHeightC – 1
If GenericSpatialScalability is equal to 0, the derivation process for base macroblocks in subclause S.6.5.2 is invoked with CurrMbAddr as input and the outputs are assigned to the picture basePic and the macroblock address mbAddrBase. When the syntax element constrained_intra_pred_flag is equal to 1 for the base picture basePic, the macroblock type of the macroblock mbAddrBase in the base picture basePic shall be an I macroblock type.

NOTE – When constrained_intra_pred_flag is equal to 1, only the samples of I macroblocks of the base picture basePic need to be constructed for generating the prediction samples for macroblocks coded in Intra_Base macroblock prediction mode.
The position (xP, yP) of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock scanning process in subclause S.6.4.1 with CurrMbAddr as input and the output is assigned to (xP, yP).

When chroma_format_idc is not equal to 0, the position (xC, yC) of the upper-left chroma samples of the current macroblock are derived by

xC = xP / SubWidthC
yC = yP / SubHeightC

Following lines added

The corresponding position (xB, yB) in the base layer of position (xP, yP) is computed as:

· If GenericSpatialScalability is equal to 0, the following applies.

· If HalfSpatResBaseFlag is equal to 0, the following applies.

xB = (xP – scaled_base_column)

yB = (yP – scaled_base_line)

· Otherwise (HalfSpatResBaseFlag is equal to 1), the following applies.

xB = (xP – scaled_base_column) / 2

yB = (yP – scaled_base_line) / 2

· When chroma_format_idc is not equal to 0, the corresponding position (xCB, yCB) in the base layer of position (xC, yC) is computed as:

xCB = xB / SubWidthC

yCB = yB / SubWidthC

· Otherwise (GenericSpatialScalability is equal to 1), the following applies.

- The shifted quarter-pel position (x4, y4) in base layer is derived using subclause S.6.5.6 with (xP, yP) as input.

- the integer-pel position (xB, yB) in base layer is derived as follows.

xB = x4 >> (2+shiftInBasePosition)

yB = y4 >> (2+shiftInBasePosition)

- the shifted quarter-pel phase (px, py) in the prediction luma samples array is computed as:

px = x4 –xB << (2+shiftInBasePosition)

py = y4 –yB << (2+shiftInBasePosition)

- When chroma_format_idc is not equal to 0, position (xCB, yCB) is derived as:

xCB = xB / SubWidthC

yCB = yB / SubWidthC

- the shifted quarter-pel phase (pxC, pyC) in the prediction chroma samples array is computed as:

pxC = px / SubWidthC

pyC = py / SubWidthC

The Intra prediction luma and chroma samples for the current macroblock are derived as follows.

· If HalfSpatResBaseFlag is equal to 0, the following applies.

· Let S'Base,L[x, y] be the array of constructed luma samples of the picture basePic prior to the deblocking filter process.

· When chromat_format_idc is not equal to 0, let S'Base,Cb[x, y] and S'Base,Cr[x, y] be the arrays of constructed chroma samples of the picture basePic prior to the deblocking filter process.

· Each Intra prediction luma sample predL[x, y] with x = 0..15 and y = 0..15 is derived by

Following lines

predL[x, y] = S'Base,L[xP + x, yP+ y]

replaced by

predL[x, y] = S'Base,L[xB + x, yB + y]

· When chroma_format_idc is not equal to 0, each Intra prediction chroma sample predCb[x, y] and predCr[x, y] with x = 0..MbWidthC – 1 and y = 0..MbHeightC – 1 is derived by

Following lines

predCb[x, y] = S'Base,Cb[xC + x, yC + y]
predCr[x, y] = S'Base,Cr[xC + x, yC + y]

replaced by

predCb[x, y] = S'Base,Cb[xCB + x, yCB + y]
predCr[x, y] = S'Base,Cr[xCB + x, yCB + y]

· Otherwise (HalfSpatResBaseFlag is equal to 1), the following applies.

· The deblocking filter process in subclause S.8.3.6.1 is invoked with basePic as input and the outputs are the luma sample array S'Base,L[x, y], and, when chroma_format_idc is not equal to 0, the chroma sample arrays S'Base,Cb[x, y] and S'Base,Cr[x, y].

· Let baseL[x, y] with x = –8..15, y =–8..15 be a luma sample array and, when chroma_format_idc is not equal to 0, let baseCb[x, y] and baseCr[x, y] with x = –MbWidthC / 2..MbWidthC – 1 and
y = –MbHeightC / 2..MbHeightC – 1 be two chroma samples arrays.

· Each luma sample baseL[x, y] with x = –8..15 and y =–8..15 of the luma sample array is derived as follows.

· If any of the following conditions is true, the sample baseL[x, y] is marked as “not existing”.

Following lines

· x is less than (–xP / 2) or x is greater than ((PicWidthInSamplesL – xP) / 2 – 1)

· y is less than (–yP / 2) or y is greater than ((PicHeightInSamplesL – yP) / 2 – 1)

replaced by

· x is less than (–xB) or x is greater than ((BasePicWidthInSamplesL + xB) – 1)

· y is less than (–yB) or y is greater than ((BasePicWidthInSamplesL + yB) – 1)

Following lines

· Otherwise, if the syntax element constrained_intra_pred_flag is equal to 1 for the base picture basePic and the sample S'Base,L[(xP / 2) + x, (yP / 2) + y] does not represent a sample of an I macroblock, the sample baseL[x, y] is marked as “not available for Intra_Base prediction”.

replaced by

· Otherwise, if the syntax element constrained_intra_pred_flag is equal to 1 for the base picture basePic and the sample S'Base,L[xB + x, yB + y] does not represent a sample of an I macroblock, the sample baseL[x, y] is marked as “not available for Intra_Base prediction”.

Following lines

· Otherwise, the sample baseL[x, y] is marked as “available for Intra_Base prediction” and derived by

baseL[x, y] = S'Base,L[(xP / 2) + x, (yP / 2) + y]

replaced by

· Otherwise, the sample baseL[x, y] is marked as “available for Intra_Base prediction” and derived by

baseL[x, y] = S'Base,L[xB + x, yB + y]

· When chroma_format_idc is not equal to 0, each chroma sample baseCb[x, y] and baseCr[x, y] with
x = –MbWidthC / 2..MbWidthC – 1 and y = –MbHeightC / 2..MbHeightC – 1 of the chroma sample arrays is derived as follows.

· If any of the following conditions is true, the samples baseCb[x, y] and baseCr[x, y] are marked as “not existing”.

Following lines

· x is less than (–xC / 2) or x is greater than ((PicWidthInSamplesC – xC) / 2 – 1)

· y is less than (–yC / 2) or y is greater than ((PicHeightInSamplesC – yC) / 2 – 1)

replaced by

· x is less than (–xCB / 2) or x is greater than ((BasePicWidthInSamplesC + xCB) – 1)

· y is less than (–yCB / 2) or y is greater than ((BasePicHeightInSamplesC + yCB) – 1)

Following lines

· Otherwise, if the syntax element constrained_intra_pred_flag is equal to 1 for the base picture basePic and the samples baseCb[x, y] and baseCr[x, y] do not represent samples of an I macroblock, the samples baseCb[x, y] and baseCr[x, y] are marked as “not available for Intra_Base prediction”:

replaced by

· Otherwise, if the syntax element constrained_intra_pred_flag is equal to 1 for the base picture basePic and the samples S'Base,Cb[xCB + x, yCB + y] and S'Base,Cr[xCB + x, yCB + y] do not represent samples of an I macroblock, the samples baseCb[x, y] and baseCr[x, y] are marked as “not available for Intra_Base prediction”:

· Otherwise, the samples baseCb[x, y] and baseCr[x, y] are marked as “available for Intra_Base prediction” and derived by

Following lines

baseCb[x, y] = S'Base,Cb[(xC / 2) + x, (yC / 2) + y]
baseCr[x, y] = S'Base,Cr[(xC / 2) + x, (yC / 2) + y]

replaced by

baseCb[x, y] = S'Base,Cb[xCB + x, yCB + y]
baseCr[x, y] = S'Base,Cr[xCB + x, yCB + y]

· The construction process for not available or not existing samples in subclause S.8.3.6.2 is invoked with the sample array baseL[x, y] and, when chroma_format_idc is not equal to 0, the sample arrays baseCb[x, y] and baseCr[x, y] as inputs and the outputs are the sample array baseL[x, y] with modified sample values, and when chromat_format_idc is not equal to 0, the sample arrays baseCb[x, y] and baseCr[x, y] with modified sample values.

If GenericSpatialScalability is equal to 0, the following applies.

· The upsampling process for Intra_Base prediction in subclause S.8.3.6.3 is invoked with the sample array baseL[x, y], and when chroma_format_idc is not equal to 0, the sample arrays baseCb[x, y] and baseCr[x, y] as inputs and the outputs are predL[x, y], and when chroma_format_idc is not equal to 0, predCb[x, y] and predCr[x, y].

Otherwise (GenericSpatialScalability is equal to 1) , the following applies.

· The upsampling process for Intra_Base prediction in subclause 0 is invoked with the sample array baseL[x, y] and the shifted quartel-pel phase (px, py) , and when chroma_format_idc is not equal to 0, the sample arrays baseCb[x, y] and baseCr[x, y] as inputs and the outputs are predL[x, y], and when chroma_format_idc is not equal to 0, predCb[x, y] and predCr[x, y], the shifted quartel-pel phase (pxC , pyC)

Addition of a sub-section S.8.3.6.4 Generic Upsampling process for Intra_Base prediction

Inputs to this process are

· a luma sample array baseL[x, y] with x = –8..15 and y =–8..15

· quartel-pel luma interpolation phase (px, py)

· when chroma_format_idc is not equal to 0,

· two chroma sample arrays baseCb[x, y] and baseCr[x, y] with
x = –MbWidthC / 2..MbWidthC – 1 and y = –MbHeightC / 2..MbHeightC – 1

· quartel-pel luma interpolation phase (pxC , pyC)

Outputs of this process are

· a luma sample array predL[x, y] with x = 0..15 and y = 0..15

· when chroma_format_idc is not equal to 0, two chroma sample arrays predCb[x, y] and predCr[x, y] with x = 0..MbWidthC – 1 and y = 0..MbHeightC – 1

The luma samples predL[x, y] with x = 0..15 and y = 0..15 are derived as follows.

· Let tmp1L[x, y] with x = –4..12 and y =0..23 be a temporary luma sample array.

· Each sample tmp1L[x, y] with x = –4..12 and y =0..23 is derived as follows.

· If (y % 2) is equal to 0,

tmp1L[x, y] = 32 * baseL[x, y >> 1]

· Otherwise,

tmp1L[x, y] = (20 * (baseL[x, (y >> 1)] + baseL[x, (y >> 1) + 1]) –
 5 * (baseL[x, (y >> 1) – 1] + baseL[x, (y >> 1) + 2]) +
 (baseL[x, (y >> 1) – 2] + baseL[x, (y >> 1) + 3]))

· Let tmp2L[x, y] with x =0..23 and y =0..23 be a temporary luma sample array.

· Each sample tmp2L [x, y] with x =0..23 and y =0..23 is derived as follows.

· If (x % 2) is equal to 0,

tmp2L [x, y] = Clip1Y((32 * tmp1L[x >> 1, y] + 512) / 1024)

· Otherwise,

tmp2L [x, y] = Clip1Y((20 * (tmp1L[(x >> 1), y] + tmp1L[(x >> 1) + 1, y]) –
 5 * (tmp1L[(x >> 1) – 1, y] + tmp1L[(x >> 1) + 2, y]) +
 (tmp1L[(x >> 1) – 2, y] + tmp1L[(x >> 1) + 3, y]) + 512) / 1024)

· Let tmp3L[x, y] with x = 0..47 and y =0..23 be a temporary luma sample array.

· Each sample tmp3L [x, y] with x = 0..47 and y = 0..23 is derived as follows.

· If (x % 2) is equal to 0,

tmp3L [x, y] = tmp2L[x >> 1, y]

· Otherwise,

tmp3L [x, y] = (tmp2L[x >> 1, y] + tmp2L[(x >> 1)+1, y] + 1) >> 1

· Let tmp4L[x, y] with x = 0..47 and y =0..47 be a temporary luma sample array.

· Each sample tmp4L [x, y] with x = 0..47 and y =0..47 is derived as follows.

· If (y % 2) is equal to 0,

tmp4L [x, y] = tmp3L[x , y >> 1]

· Otherwise,

tmp4L [x, y] = (tmp3L[x , y >> 1] + tmp3L[x , (y >> 1) + 1] + 1) >> 1

· Each sample predL [x, y] with x = 0..15 and y = 0..15 is derived from tmp4L as follows.

· the quarter-pel position (x4, y4) is derived as:

x4 = (px + x* stepInBaseQPelHoriz) >> shiftInBasePosition

y4 = (py + y* stepInBaseQPelVertic) >> shiftInBasePosition

· predL[x, y] = tmp4L[x4, y4]

When chroma_format_idc is not equal to 0, the chroma samples predC[x, y] (with C being Cb or Cr) with x = 0..MbWidthC – 1, y = 0..MbHeightC – 1 are derived as follows.

· Let tmp1C[x, y] with x = –MbWidthC / 2..MbWidthC – 1 and y = 0…MbWidthC+MbWidthC/2-1 be a temporary chroma sample array.

· Each sample tmp1C[x, y] with x = –MbWidthC / 2..MbWidthC – 1 and y = 0…MbWidthC+MbWidthC/2-1 is derived as follows.

· If (y % 2) is equal to 0,

tmp1C[x, y] = 32 * baseL[x, y >> 1]

· Otherwise,

tmp1C[x, y] = (20 * (baseC[x, (y >> 1)] + baseC[x, (y >> 1) + 1]) –
 5 * (baseC[x, (y >> 1) – 1] + baseC[x, (y >> 1) + 2]) +
 (baseC[x, (y >> 1) – 2] + baseC[x, (y >> 1) + 3]))

· Let tmp2C[x, y] with x = 0…MbWidthC+MbWidthC/2-1 and y = 0…MbWidthC+MbWidthC/2-1 be a temporary chroma sample array.

· Each sample tmp2C[x, y] with x = 0…MbWidthC+MbWidthC/2-1 and y = 0…MbWidthC+MbWidthC/2-1 is derived as follows.

· If (x % 2) is equal to 0,

tmp2C[x, y] = Clip1Y((32 * tmp1C[x >> 1, y] + 512) / 1024)

· Otherwise,

tmp2C[x, y] = Clip1Y((20 * (tmp1C[(x >> 1), y] + tmp1C[(x >> 1) + 1, y]) –
 5 * (tmp1C[(x >> 1) – 1, y] + tmp1C[(x >> 1) + 2, y]) +
 (tmp1C[(x >> 1) – 2, y] + tmp1C[(x >> 1) + 3, y]) + 512) / 1024)

· Let tmp3C [x, y] with x = 0.. 3*MbWidthC-1 and y = 0.. MbWidthC+MbWidthC/2-1be a temporary chroma sample array.

· Each sample tmp3C [x, y] with x = 0…3*MbWidthC-1 and y = 0… MbWidthC+MbWidthC/2-1is derived as follows.

· If (x % 2) is equal to 0,

tmp3C [x, y] = tmp2C[x >> 1, y]

· Otherwise,

tmp3C [x, y] = (tmp2 C [x >> 1, y] + tmp2 C [(x >> 1)+1, y] + 1) >> 1

· Let tmp4 C [x, y] with x = 0.. 3*MbWidthC-1 and y = 0.. 3*MbWidthC-1 be a temporary chroma sample array.

· Each sample tmp4 C [x, y] with x = 0…3*MbWidthC-1 and y = 0…3*MbWidthC-1 is derived as follows.

· If (y % 2) is equal to 0,

tmp4 C [x, y] = tmp3 C [x , y >> 1]

· Otherwise,

tmp4 C [x, y] = (tmp3 C [x , y >> 1] + tmp3 C [x , (y >> 1) + 1] + 1) >> 1

· Each sample predC [x, y] with x = 0.. MbWidthC-1 and y = 0.. MbWidthC-1 is derived from tmp4C as follows.

· the quarter-pel position (x4c, y4c) is derived as

x4c = (pxC + x* stepInBaseQPelHoriz) >> shiftInBasePosition

y4c = (pyC + y* stepInBaseQPelVertic) >> shiftInBasePosition

· predC[x, y] = tmp4C[x4c, y4c]

Changes in section S.8.4.1.5.1 Derivation process for base reference indices

The reference index refIdxLX is derived as follows.

· If GenericSpatialScalability is equal to 0, the following applies.

· The derivation process for base partitions in subclause 0 is invoked with CurrMbAddr and mbPartIdx as inputs and the outputs are assigned to the picture basePic, the macroblock address mbAddrBase, and the macroblock partition index mbPartIdxBase.

· The derivation process for base partitions in subclause 0 is invoked with CurrMbAddr and mbPartIdx as inputs and the outputs are assigned to the picture basePic, the macroblock address mbAddrBase, and the macroblock partition index mbPartIdxBase.

· Let refPicBase be the picture that is references by the syntax element ref_idx_lX[mbPartIdxBase] of the base macroblock with macroblock address mbAddrBase inside the base picture basePic.

· Let refPic be the picture, for which all of the following conditions are true.

· The variable DependencyId for the picture refPic is equal to the variable DependencyId of the current picture CurrPic.

· The value of PicOrderCnt(refPic) is equal to the value of PicOrderCnt(refPicBase).

· refIdxLX is set equal to the lowest valued reference index in the current reference index list RefPicListX that references refPic. RefPicListX shall contain a variable PicNum or LongTermPicNum that references refPic.

NOTE – The returned reference index refIdxLX is identical for all sub-macroblock partitions of a sub-macroblock.

· Otherwise (GenericSpatialScalability is equal to 1), the following applies.

· If mb_type==Y_Z_16x16, with Y being either P or B, Z being either Bi, L0 or L1, the following applies.

refIdxLX = baseRef4LX[0,0]

· Otherwise If mb_type== Y_Za_Zb_16x8, with Y being either P or B, Za and Zb being either Bi, L0 or L1, the following applies.

refIdxLX = baseRef4LX[0,2*mbPartIdx]

· Otherwise If mb_type== Y_Za_Zb_8x16, with Y being either P or B, Za and Zb being either Bi, L0 or L1, the following applies.

refIdxLX = baseRef4LX[2*mbPartIdx,0]

· Otherwise, the following applies.

refIdxLX = baseRef4LX[2*(mbPartIdx%2),2*(mbPartIdx/2)]

Changes in section S.8.4.1.5.2 Derivation process for base luma motion vector predictions

Output of this process is the prediction mvpLX of the luma motion vector mvLX.

· If GenericSpatialScalability is equal to 0, the following applies.

A base motion vector mvBaseLX is derived as follows.

· The derivation process for base partitions in subclause 0 is invoked with CurrMbAddr, mbPartIdx, and subMbPartIdx as inputs and the outputs are assigned to the picture basePic, the macroblock address mbAddrBase, the macroblock partition index mbPartIdxBase, and the sub-macroblock partition index subMbPartIdxBase.

· Let mvBaseLX be the motion vector of the macroblock or sub-macroblock partition mbAddrBase\mbPartIdxBase\subMbPartIdxBase of the base picture basePic.

The luma motion vector prediction is mvpLX is derived as follows.

· If HalfSpatResBaseFlag is equal to 0, the base motion vector mvBaseLX is assigned to the luma motion vector prediction mvpLX

mvpLX = mvBaseLX[0]

· Otherwise (HalfSpatResBaseFlag is equal to 1), both components of the base motion vector mvBaseLX are scaled by a factor of 2 and assigned to the corresponding components of the luma motion vector prediction mvpLX

mvpLX[0] = (mvBaseLX[0] << 1)
mvpLX[1] = (mvBaseLX[1] << 1)

· Otherwise (GenericSpatialScalability is equal to 1), the following applies.

· If mb_type==Y_Z_16x16, with Y being either P or B, Z being either Bi, L0 or L1, the following applies.

mvpLX = baseMv4LX[0,0]

· Otherwise If mb_type== Y_Za_Zb_16x8, with Y being either P or B, Za and Zb being either Bi, L0 or L1, the following applies.

mvpLX = baseMv4LX [0,2*mbPartIdx]

· Otherwise If mb_type== Y_Za_Zb_8x16, with Y being either P or B, Za and Zb being either Bi, L0 or L1, the following applies.

mvpLX = baseMv4LX [2*mbPartIdx,0]

· Otherwise, the following applies.

· If sub_mb_type[mbPartIdxBase] == Y_Z_8x8, Z being either Bi, L0 or L1, the following applies.

mvpLX = baseMv4LX [2*(mbPartIdx%2),2*(mbPartIdx/2)]

· Otherwise If sub_mb_type[mbPartIdxBase] == Y_Z_8x4, Z being either Bi, L0 or L1, the following applies.

mvpLX = baseMv4LX [2*(mbPartIdx%2),2*(mbPartIdx/2)+subMbPartIdx]

· Otherwise If sub_mb_type[mbPartIdxBase] == Y_Z_4x8, Z being either Bi, L0 or L1, the following applies.

mvpLX = baseMv4LX [2*(mbPartIdx%2) +subMbPartIdx,2*(mbPartIdx/2)]

· Otherwise, the following applies.

mvpLX = baseMv4LX [2*(mbPartIdx%2) +(subMbPartIdx%2),2*(mbPartIdx/2) +(subMbPartIdx/2)]

· Rescaling is achieved as follows.

mvpLX[0] = (mvpLX [0] * stepInBaseQPelHoriz) >> (2+shiftInBasePosition)

mvpLX[1] = (mvpLX [1] * stepInBaseQPelVertic) >> (2+shiftInBasePosition)

Addition of the following sections

Section S.8.4.1.6
Derivation process for Extended Spatial Scalability

Section S.8.4.1.6.1
Derivation process for base pixel position
This process can only be invoked when GenericSpatialScalability is equal to 1.

Input to this process is
- a luma position (x, y) in the current picture.

Output to this process is
- a shifted quartel-pel accuracy luma position (xb , yb) in the base layer picture.
- the number of bits shiftInBasePosition applied to the quartel-pel accuracy luma position in the base layer picture.
 (xb , yb) is derived as follows.
xb = (x – scaled_base_column) * stepInBaseQPelHoriz
yb = (x – scaled_base_line) * stepInBaseQPelVertic

with
stepInBaseQPelHoriz = ceil ((4 * basePicWidthInSamplesL << shiftInBasePosition) / scaled_base_width)
stepInBaseQPelVertic = ceil ((4 * basePicHeightInSamplesL << shiftInBasePosition) / scaled_base_ height)

and
shiftInBasePosition = 3 + max (floor (log2(basePicWidthInSamplesL)) , floor (log2(basePicHeightInSamplesL)))

Section S.8.4.1.6.2
Derivation process for base luma mb_type, macroblock partition, motion vectors and reference indices

This process is invoked when the following conditions are true.

· GenericSpatialScalability == 1

· base_mode_flag == 1 or base_mode_refinement_flag == 1.

· mbIdxX >= (scaled_base_column+15) / 16

· mbIdxX < (scaled_base_column + scaled_base_width) / 16

· mbIdxY >= (scaled_base_ line+15) / 16

· mbIdxY < (scaled_base_ line + scaled_base_height) / 16

with

mbIdxX = CurrMbAddr % PicWidthInMbs

mbIdxY = CurrMbAddr / PicWidthInMbs

Inputs to this process are

· a macroblock address CurrMbAddress

Outputs to this process are

· mb_type inherited from base layer

The motion data (mb_type, macroblock partition, motion vectors and reference indices) for the macroblock of address CurrMbAddress are inherited using the following process.

· Let stepInBaseX[k] and stepInBaseY[k] with k=0..3 be 2 arrays of integers, defined as follows.

stepInBaseX[k] = k * 4 * stepInBaseQPelHoriz

stepInBaseY[k] = k * 4 * stepInBaseQPelVertic

· The position (xP, yP) of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock scanning process in subclause S.6.4.1 with CurrMbAddr as input and the output is assigned to (xP, yP).
· Let (xB0, yB0) be derived as specified in subclause S.8.4.1.6.1 with (xP+1, yP+1) as input and (xB0, yB0) and shiftInBasePosition as outputs.

· Let aMbAddrBase[k], with k=0…3, be the array of addresses of the 4 base macroblocks from which the current macroblock may inherit, defined as follows.

- Let (mbBaseIdx, mbBaseIdy) be defined as follows.

mbBaseIdx = xB0 >> (4+shiftInBasePosition)
mbBaseIdy = yB0 >> (4+shiftInBasePosition)

- aMbAddrBase [0] = basePicWidthInMbs* mbBaseIdy + mbBaseIdx
- if ((xB0+ stepInBaseX[3]) >> (4+shiftInBasePosition)) > mbBaseIdx, the following applies.

- aMbAddrBase [1] = aMbAddrBase [0] +1

- if ((yB0+ stepInBaseY[3]) >> (4+shiftInBasePosition)) > mbBaseIdy, the following applies

- aMbAddrBase [2] = aMbAddrBase [0] + basePicWidthInMbs
- aMbAddrBase [3] = aMbAddrBase [1] + basePicWidthInMbs
- Otherwise, the following applies

- aMbAddrBase [2] = -1

- aMbAddrBase [3] = -1

- Otherwise, the following applies.

- aMbAddrBase [1] = -1
- aMbAddrBase [3] = -1
- if ((yB0+ stepInBaseY[3]) >> (4+shiftInBasePosition)) > mbBaseIdy, the following applies

- aMbAddrBase [2] = aMbAddrBase [0] + basePicWidthInMbs
- Otherwise, the following applies

- aMbAddrBase [2] = -1

· If, for k=0..3, aMbAddrBase[k] is equal to -1 or the macroblock aMbAddrBase[k] is an I macroblock, the following applies.

mb_type = I_NxN

· Otherwise, the following applies.

· For X being replaced by either 0 or 1, the inheriting process for each 4x4 block of the current macroblock is achieved as follows.

· Let baseMv4LX[x,y] with x=0..3 and y=0..3 be an array of motion vectors, and baseRef4LX[x,y] with x=0..3 and y=0..3 be an array of reference indices, inherited from base layer.

· baseMv4LX[x,y] and baseRef4LX[x,y] with x=0..3 and y=0..3 are derived as specified in subclause S.8.4.1.6.2 with (xB0, yB0), stepInBaseX[], stepInBaseY[] and shiftInBasePosition as input.

· For mbPartIdx=0..3, the following process is applied, and for X being replaced by either 0 or 1, the following applies.

· The process of subclause S.8.4.1.6.4 is invoked with mbPartIdx as input, for choosing the inherited 8x8 block reference index.

· The process of subclause S.8.4.1.6.5 is invoked with mbPartIdx as input, for choosing the inherited 8x8 block partitioning.

· mb_type is derived as specified in subclause 8.4.1.6.6.

Section S.8.4.1.6.3
Derivation process for generic base 4x4 blocks inheritance

Inputs to this process are

· initial quartel-pel position in base layer (xB0, yB0)

· 2 arrays of integers stepInBaseX[k] and stepInBaseY[k] with k=0..3

· a shift number shiftInBasePosition

The process derives reference indices and motion vectors inherited from base layer by each 4x4 block of the current macroblock.

For x=0..3 and y=0..3, the following applies.

· (xB, yB), the integer-pel position of the 4x4 block in the base layer, is derived as follows.

xB = (xB0 + stepInBaseX[x]) >> (2+shiftInBasePosition)
yB = (yB0 + stepInBaseY[y]) >> (2+shiftInBasePosition)

· mbAddrBase is derived as follows.

mbBaseIdx = xB >> 4

mbBaseIdy = yB >> 4
mbAddrBase = basePicWidthInMbs*mbBaseIdy + mbBaseIdx

· mbPartIdxBase is derived as follows.

b8BaseIdx = (xB – mbBaseIdx<<4) >> 3
b8BaseIdy = (yB – mbBaseIdy<<4) >> 3

mbPartIdxBase = 2 * b8BaseIdy + b8BaseIdx
· (b4BaseIdx, b4BaseIdy) is derived as follows.

b4BaseIdx = (xB – mbBaseIdx<<4) >> 2
b4BaseIdy = (yB – mbBaseIdy<<4) >> 2

subMbPartIdx = 2 * b4BaseIdy + b4BaseIdx

· If the mb_type of the macroblock mbAddrBase is one of the INTRA mode, as specified in table 7-8, the following applies.

- baseRef4LX[x,y] = -1

- baseMv4LX[x,y] components are set to 0
· Otherwise, the following applies.

- baseRef4LX[x,y] is equal to the reference index of the macroblock or sub-macroblock partition mbAddrBase\mbPartIdxBase of the base picture basePic.

- baseMv4LX[x,y] is equal to the motion vector of the macroblock or sub-macroblock partition mbAddrBase\mbPartIdxBase\subMbPartIdxBase of the base picture basePic.
Section S.8.4.1.6.3
Derivation process for generic base 8x8 blocks inheritance

Inputs to this process are

· 8x8 block index mbPartIdx

The following applies.

· Let (x, y) being derived as follows.

x=2*(mbPartIdx%2)

y=2*(mbPartIdx/2)

· If baseRef4LX[x,y] is not equal to -1 or baseRef4LX[x+1,y] is not to -1 or baseRef4LX[x,y+1] is not equal to -1 or baseRef4LX[x+1,y+1] is not equal to -1, the following applies.

· The minimum reference index refIdxLX of the 8x8 block is computed as follows.

- refIdxLX = 100

- If baseRef4LX[x,y] > 0,
refIdxLX = baseRef4LX[x,y]

- If baseRef4LX[2*x+1,2*y] > 0,
refIdxLX = min (refIdxLX, baseRef4LX[x+1,y])

- If baseRef4LX[2*x,2*y+1] > 0,
refIdxLX = min (refIdxLX, baseRef4LX[x,y+1])

- If baseRef4LX[2*x+1,2*y+1] > 0,
refIdxLX = min (refIdxLX, baseRef4LX[x+1,y+1])

· Then the following process applies.

- If baseRef4LX[x,y] != refIdxLX, the following applies
- baseRef4LX[x,y] = refIdxLX

- If baseRef4LX[x+1,y] == refIdxLX,
baseMv4LX[x,y] = baseMv4LX[x+1,y]

- Otherwise if baseRef4LX[x,y+1] == refIdxLX,
baseMv4LX[x,y] = baseMv4LX[x,y+1]

- Otherwise if baseRef4LX[x+1,y+1] == refIdxLX,
baseMv4LX[x,y] = baseMv4LX[x+1,y+1]

- If baseRef4LX[x+1,y] != refIdxLX, the following applies
- baseRef4LX[x+1,y] = refIdxLX

- If baseRef4LX[x,y] == refIdxLX,
baseMv4LX[x+1,y] = baseMv4LX[x,y]

- Otherwise if baseRef4LX[x+1,y+1] == refIdxLX,
baseMv4LX[x+1,y] = baseMv4LX[x+1,y+1]

- Otherwise if baseRef4LX[x,y+1] == refIdxLX,
baseMv4LX[x+1,y] = baseMv4LX[x,y+1]

- If baseRef4LX[x,y+1] != refIdxLX, the following applies
- baseRef4LX[x,y+1] = minRefIdxLX

- If baseRef4LX[x,y] == refIdxLX,
baseMv4LX[x,y+1] = baseMv4LX[x,y]

- Otherwise if baseRef4LX[x+1,y+1] == refIdxLX,
baseMv4LX[x,y+1] = baseMv4LX[x+1,y+1]

- Otherwise if baseRef4LX[x+1,y] == refIdxLX,
baseMv4LX[x,y+1] = baseMv4LX[x+1,y]

- If baseRef4LX[x+1,y+1] != refIdxLX,

- baseRef4LX[x+1,y+1] = refIdxLX

- If baseRef4LX[x+1,y] == refIdxLX,
baseMv4LX[x+1,y+1] = baseMv4LX[x+1,y]

- Otherwise if baseRef4LX[x,y+1] == refIdxLX,
baseMv4LX[x,y+1] = baseMv4LX[x,y+1]

- Otherwise if baseRef4LX[x,y] == refIdxLX,
baseMv4LX[x+1,y+1] = baseMv4LX[x,y]
Section S.8.4.1.6.3
Derivation process for generic base 8x8 blocks partitioning
Inputs to this process are

· 8x8 block index mbPartIdx

· Let (x, y) being derived as follows.

x=2*(mbPartIdx%2)

y=2*(mbPartIdx/2)

Partitioning sub_mb_type[mbPartIdx] of 8x8 block is derived as follows.
· Let Y being replaced by either P or B, depending on slice_type.

· Let Z being replaced by Bi if (refIdxL0 == -1 and refIdxL1 == -1), or L0 if (refIdxL0 is not equal to -1 and refIdxL1 == -1), or L1 if (refIdxL0 == -1 and refIdxL1 is not equal to -1).

· If for X being replaced by 0 and 1, baseMv4LX[x,y] == baseMv4LX[x+1,y] and baseMv4LX[x,y+1] == baseMv4LX[x+1,y+1], the following applies.

· If for X being replaced by 0 and 1, baseMv4LX[x,y] == baseMv4LX[x,y+1], the following applies.

sub_mb_type [mbPartIdx] = Y_Z_8x8
· Otherwise, the following applies.

sub_mb_type [mbPartIdx] = Y_Z_8x4
· Otherwise If for X being replaced by 0 and 1, baseMv4LX[x,y] == baseMv4LX[x,y+1] and baseMv4LX[x+1,y] == baseMv4LX[x+1,y+1], the following applies.

sub_mb_type [mbPartIdx] = Y_Z_8x4
· Otherwise, the following applies.

sub_mb_type [mbPartIdx] = Y_Z_4x4
Section S.8.4.1.6.3
Derivation process for generic base mb_type
Ouputs to this process are
· mb_type of the current macroblock

mb_type of the current macroblock is derived as follows.

· If, for one or several (x,y) in (0,0), (0,2), (2,0) and (2,2), baseRef4L0[x,y] == -1 and baseRef4L1[x,y] == -1, the following applies.
· For X being replaced by either 0 or 1, the following applies.

· The minimum reference index refIdxLX among the 8x8 blocks is computed as follows.

- refIdxLX = 100

- If baseRef4LX[0,0] > 0,
refIdxLX = baseRef4LX[0,0]

- If baseRef4LX[0,2] > 0,
refIdxLX = min (refIdxLX, baseRef4LX[0,2])

- If baseRef4LX[2,0] > 0,
refIdxLX = min (refIdxLX, baseRef4LX[2,0])

- If baseRef4LX[2,2] > 0,
refIdxLX = min (refIdxLX, baseRef4LX[2,2])

· Let meanMvX be a motion vector, with components set to 0, and let nMv be an integer set 0.

· For x=0,2 and y=0,2, the following applies.

· If baseRef4LX [x,y] == refIdxLX, the following applies.

nMv ++

meanMvX = meanMvX + baseMv4LX [x,y]
· If nMv>0, the following applies.

meanMvX = round (meanMvX / nMv)

· For (x,y) in (0,0), (0,2), (2,0) and (2,2), the following applies.

· If baseRef4L0[x,y] == -1 and baseRef4L1[x,y] == -1, For X being replaced by either 0 or 1, the following applies.

baseRef4LX[x,y] = refIdxLX

baseMv4LX[x,y] = meanMvX

· Let Y being replaced by either P or B, depending on slice_type.
· Motion data of 2 8x8 blocks mbPartIdx1 and mbPartIdx2 are identical if, for X being replaced by 0 and 1, the following consitions are true.

-
baseRef4LX [x1,y1] == refIdxLX[x2,y2]

-
sub_mb_type [mbPartIdx1] and sub_mb_type [mbPartIdx2] are equal to Y_Z_8x8,

with Z being replaced derived as follows.

- If (ref4L0[x1,y1] != -1 and ref4L1[x1,y1] != -1),
Z=Bi

- If (ref4L0[x1,y1] != -1 and ref4L1[x1,y1] == -1),
Z=L0

- If (ref4L0[x1,y1] == -1 and ref4L1[x1,y1] != -1),
Z=L1

-
baseMv4LX[x1,y1] == baseMv4LX [x2,y2]

with

-
x1=2*(mbPartIdx1%2)
-
let y1=2*(mbPartIdx1/2)
-
let x2=2*(mbPartIdx2%2)
-
let y2=2*(mbPartIdx2/2)
· If one of the four sub_mb_type [mbPartIdx] with mbPartIdx=0..3 is not equal to Y_Z_8x8, Z being either Bi, L0 or L1, the following applies.
mb_type = Y_8x8
· Otherwise If motion data of block 0 are identical to motion data of block 1 and motion data of block 2 are identical to motion data of block 3, the following applies.

· If motion data of block 0 are identical to motion data of block 2, the following applies.

mb_type = Y_Z_16x16

with Z being replaced derived as follows.

- If (ref4L0 [0,0] != -1 and ref4L1 [0,0] != -1),
Z=Bi

- If (ref4L0 [0,0] != -1 and ref4L1 [0,0] == -1),
Z=L0

- If (ref4L0 [0,0] == -1 and ref4L1 [0,0] != -1),
Z=L1

· Otherwise, the following applies.

mb_type = Y_Za_Zb_16x8

with Za being replaced derived as follows.

- If (ref4L0 [0,0] != -1 and ref4L1 [0,0] != -1),
Z=Bi

- If (ref4L0 [0,0] != -1 and ref4L1 [0,0] == -1),
Z=L0

- If (ref4L0 [0,0] == -1 and ref4L1 [0,0] != -1),
Z=L1

with Zb being replaced derived as follows.

- If (ref4L0 [0,2] != -1 and ref4L1 [0,2] != -1),
Zb=Bi

- If (ref4L0 [0,2] != -1 and ref4L1 [0,2] == -1),
Zb=L0

- If (ref4L0 [0,2] == -1 and ref4L1 [0,2] != -1),
Zb=L1

· Otherwise If motion data of block 0 are identical to motion data of block 2 and motion data of block 1 are identical to motion data of block 3, the following applies.
mb_type = Y_Za_Zb_8x16

with Za being replaced derived as follows.

- If (ref4L0 [0,0] != -1 and ref4L1 [0,0] != -1),
Z=Bi

- If (ref4L0 [0,0] != -1 and ref4L1 [0,0] == -1),
Z=L0

- If (ref4L0 [0,0] == -1 and ref4L1 [0,0] != -1),
Z=L1

with Zb being replaced derived as follows.

- If (ref4L0 [2,0] != -1 and ref4L1 [2,0] != -1),
Zb=Bi

- If (ref4L0 [2,0] != -1 and ref4L1 [2,0] == -1),
Zb=L0

- If (ref4L0 [2,0] == -1 and ref4L1 [2,0] != -1),
Zb=L1

· Otherwise If motion data of block 0 are identical to motion data of block 2 and motion data of block 1 are identical to motion data of block 3, the following applies.
mb_type = Y_8x8
7 References

[JSVM1.0]
Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG JVT-N021, “Joint Scalable Video Model JSVM 1”, J.Reichel, H.Schwarz, M.Wien

(Append for Proposal Documents)

JVT Patent Disclosure Form
	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image20.wmf]
	[image: image21.png]1S0
NS

	[image: image22.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	THOMSON
	

	Mailing address
	1 avenue de belle fontaine
35511 CESSON SEVIGNE CEDEX

FRANCE
	

	Country
	FRANCE
	

	Contact person
	Edouard Francois
	

	Telephone
	+33 2 99 27 32 62
	

	Fax
	
	

	Email
	edouard.francois@thomson.net
	

	Place and date of submission
	Busan, Korea, 16 april 05
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	THOMSON response 1 to Core experiments 9 and 10 : Generic Extended Spatial Scalability
	

	Contribution number
	JVT-O041
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image23.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image24.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image25.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	[image: image26.wmf]
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image27.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	Provisional filing (Thomson)

	

	Inventor(s)/Assignee(s)
	Marquant,Francois,Vieron (Thomson)

	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	[image: image28.wmf]
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image29.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

File: JVT-O041r1.doc
Page: 1
Date Saved: 2005-04-13

_1173105406.unknown

_1173884290.unknown

_1174718091.unknown

_1174742492.unknown

_1173884459.unknown

_1173773528.vsd
(xbase,ybase)

Enhancement
spatial layer

Base
spatial layer

(xc,yc)

upsampled
base layer

_1173869384.unknown

_1173883334.unknown

_1173159125.unknown

_1173771179.unknown

_1173105431.unknown

_1167043412.vsd
upsampled
base layer

_1167055552.vsd
upsampled
base layer

_1169985247.unknown

_1166884921.vsd
B1

B2

B3

B4

_1167042977.vsd
subsampling

Enhancement
spatial layer

Base
spatial layer

wenh

wbase

henh

hbase

wextract

hextract

(xorig,yorig)

_1166965279.unknown

_1166884905.vsd
b1

b2

b3

b4

8x8 block B

