	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

16th Meeting: Buzan, Corea, April, 2005
	Document: JVT-O009
Filename: JVT-O009-temporal decoding process.doc

	Title:
	Improving the temporal decoding process

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Julien Reichel
Diego Santa Cruz
Francesco Ziliani

VisioWave Switzerland,
Rte. de la Pierre 22,
CH-1032 Ecublens, Switzerland
	
Tel:
Email:
	+41 (21) 695-0041
julien.reichel@visiowave.com
+41 (21) 695-0019
diego.santacruz@visiowave.com
+41 (21) 695-0040
francesco.ziliani@visiowave.com

	Source:
	VisioWave

Introduction

In the current version of the Scalable Video Coding Working Draft (SVC-WD)[2], the description of the temporal decoding process is not complete. . In particular the timing schedule to execute the decoding operations is not fully described. Moreover, the solution proposed in the WD assumes that in order to execute the prediction/update processes, all the pictures in a GOP must be available: this introduces constraints to the low-delay requirement.
This input document proposes a set of modifications on the syntax and on the description of the temporal decoding process, which improves the above situation. It should be clear that the proposed modifications will have no impact on the coding performances, as only the order on which the operations are conducted on the decoder is modified.

Where is the problem coming from?

The decoding process of the SVC WD is complicated due to the presence of the update process, used by the Motion Compensated Temporal Filtering (MCTF) as shown in [3]. In contrary to AVC where the texture decoding and the motion compensation can be realized for each macroblock independently, the decoding of SVC is decomposed in three phases:
· Decoding of the residual texture and motion information, and storage of the complete residual picture and motion field.

· Inversion of the motion field and execution of the update process to modify the pictures stored in the decoding picture buffer (DPB)

· Execution of the motion compensation process on the residual pictures.

Those three stages are necessary because of the update process, which needs the inversion of the motion fields. In case of absence of the update process, the conventional AVC decoding process (with the addition of the scalable spatial/quality layers) can be used.

It should be noted that it is generally not possible to perform the three stages each time a picture is received, and that when such stages can be processed is one of the point left unclear in the WD.
Currently in the WD the decoding process can be summarized as follows (the paragraph numbers refer to the WD). Note that for the sake of simplicity of this description, we neglect the fact that a picture can be composed of many spatial and quality layers. However, the temporal decoding process is not influenced by this simplification as it is performed only on the last layer:

· For each input slice

· Decode the motion information according to S.8.2 and S.8.4.1

· Decode the residual picture according to S.8.3 and S.8.5
· At the end of the GOP (identified, by a slice with a gop_index different of the previous slice) do all the update and motion compensation processes, by using S.8.8.
This description has some major drawbacks:

· It needs a large number of buffers (at least the size of the GOP) and assumes infinite processing power.

· It is not compatible with low decoding delay implementation.

· It introduces a notion of MCTF-GOP which is not necessary

· Some temporal predictions are not possible because the order of the decoding operations on the picture is fixed.

It is possible to simplify the description of the decoding process in order to process the update and prediction process “on the fly”, i.e. before the end of the GOP, leading to the exact same results as the current description of the WD for bitstreams encoded with dyadic MCTF prediction using at most left and right neighbours for the update and for the prediction process.
However some basic modifications on the syntax can help to further simplify the process. Both approaches will be described in this contribution.

On the fly update process

The new description of the overall decoding process can be expressed with the following pseudo code using the current syntax of the WD.
For each input slice

· Decode the motion information according to S.8.2 and S.8.4.1

· Decode the residual picture according to S.8.3 and S.8.5.

· Set the variable UpdateLevel := decomposition_stage – TemporalLevel (note: this needs to be performed only once per picture)
When all slices of a picture p have been received (identified by the first slice of the next picture) and that the variable DependencyId of the picture p is equal to the highest value of the DependencyId of all the activated SPS.
· If TemporalLevel=0 for the current picture (the picture is a so called KeyPicture) do the motion prediction as in AVC. (note that this prediction should only be based on the so-called KeyPicture and that this corresponds to the process already partially described in the WD)
· Otherwise (TemporalLevel is not equal to zero) do
· Mark the current picture as residual
· For each picture k in the predictions lists RefPicList0 and RefPicList1 do

· If UpdateLevel(k) > UpdateLevel(p) do
· Build the update lists updPicList0 and updPicList1 using S.8.2.6 and only pictures marked as residual.
· If all elements of the list are available do

· Call the update process as described in S.8.8.1 with updPict = k and updLevel=UpdateLevel(k)
· Set UpdateLevel(k):=UpdateLevel(k)-1
· For each picture p marked as residual do

· set CanDoPredict:=1
· for each picture k in the predictions lists RefPicList0 and RefPicList1 of picture p do
· If UpdateLevel(k) > UpdateLevel set CanDoPredict:=0
· if CanDoPredict=1 do
· Call the prediction process for picture r as described in S.8.8.2 with predPic equal to r
· Clear the residual flag of picture p

Note that this description of the decoding process doesn’t describe fully the concept of KeyPicture which is used for the open GOP prediction.
It is also important to point out that this description enables the decoding of all bistreams that can be generated with the JSVM1, with exactly the same result as the current JSVM1 decoder.

Moreover this description doesn’t use any of the following syntax elements : gop_id, gop_size, picture_id_inside_gop. This suggests that they are not necessary for the decoding process.
This description of the decoding process still has a number of limitations and drawbacks:

· Some update/predict combinations are not possible. Because the update process only checks if the required number of pictures is available for the updated process, but it does not verify if the pictures are those required.

· Many verifications are necessary before being sure that a picture can be updated or predicted. A solution based on some timing constraints would be more convenient.

Simplified decoding process with syntax changes
It is possible to further simplify the decoding process by introducing some changes in the syntax. The main purpose of the syntax changes are to clarify when the update and prediction process must be executed. This will remove the need to check for each input picture if the update or prediction process can be performed.

The main idea behind the syntax changes is to make explicit the fact that two types of buffers are needed during the temporal process:

· The conventional Decoding Picture Buffer (DPB) which stores pictures ready for display and used in the inter prediction process

· A Virtual Residual Picture Buffer (VRPB) which stores the pictures for which the inter prediction process has not been performed yet. This buffer is virtual because it is included into the DBP.
The update and inter prediction process is then determined either by the dumping mechanism of the VRPB or by an additional SEI messages indicating that an earlier processing is possible.
Let’s assume that a syntax element max_residual_picture describing the maximum number of elements in the VRPB has been received in the SPS.

Moreover let’s assume that two syntax elements are received:

· number_update_levels which is equal to decomposition_stage – TemporalLevel. This element replaces the syntax element decomposition_stage, currently used by the WD.
· use_residual_picture which indicate that the received slice shall be considered to be part of a residual picture.
The description of the decoding process with the introduction of the VRPB buffer becomes:

For each input slice

· Decode the motion information according to S.8.2 and S.8.4 (S.8.4.2 will be invoked only if use_residual_picture is not equal to 1)
· Decode the residual picture according to S.8.3 and S.8.5.
· Set the variable UpdateLevel := number_update_levels (note: this needs to be performed only once per picture)
When all slices of a picture p have been received (identified by the first slice of the next picture)

· If use_residual_picture is equal to 1 and the DependancyId of the picture p is equal to the highest value of DependancyId of the activated SPS do
· Let numResPic be the total number of picture stored in the VRPB
· When numResPic is equal to max_residual_picture the following process shall be called for the picture r with the smallest value of FrameNumWrap (the oldest received picture) :
· For each picture k in the predictions lists RefPicList0 and RefPicList1 of picture r do

· If UpdateLevel(k) > UpdateLevel(r) do
· Build the update lists updPicList0 and updPicList1 using S.8.2.6 and pictures from the VRPB.

· Call the update process as described in S.8.8.1 with updPict = k and updLevel=UpdateLevel(k)

· Set UpdateLevel(k):=UpdateLevel(k)-1
· Call the prediction process for picture r as described in S.8.8.2
· Remove the resulting picture from the VRPB

· Store picture p it in the VRPB
In contrary to the decoding process using the current syntax, no verifications are necessary before applying the update or the inter prediction process. When a residual picture is bumped from the VRPB, all picture needed for the update and for the prediction must be available, otherwise the bitstream is not compliant.
It should be noted that it is possible to generate the exact same bitstream as the ones currently generated by the JSVM1 (with the syntax change) using a max_residual_picture of 2.

It is also possible to prevent the usage of the update process (using UMCTF) by setting max_residual_picture equal to 0.

To apply the described decoding process, we propose to do the following syntax changes:

· Simplifications and removing of unneeded elements (like removing gop_id for instance), Note that many of these elements are already marked for removal in the WD.
· Simplification for the syntax element needed to describe the update process, by removing the need for the variable TemporalLevel during the decoding process.

· Introducing the notion of virtual residual picture buffer (VRPB). The size of the VRPB is described in the SPS.
· Introducing new syntax element to better control the key picture, by explicitly mark a slice as belonging to a
· Adding a default update pattern (for num_ref_idx_update_lX_active) in the SPS which can be overridden in the slice_header.

Syntax in tabular form
The modifications compared to the WD are highlighted in blue.
S.7.3.2.1
Sequence parameter set RBSP syntax

	seq_parameter_set_rbsp() {
	C
	Descriptor

	
profile_idc
	0
	u(8)

	
constraint_set0_flag
	0
	u(1)

	
constraint_set1_flag
	0
	u(1)

	
constraint_set2_flag
	0
	u(1)

	
constraint_set3_flag
	0
	u(1)

	
reserved_zero_4bits /* equal to 0 */
	0
	u(4)

	
level_idc
	0
	u(8)

	
seq_parameter_set_id
	0
	ue(v)

	
if(profile_idc = = 100 | | profile_idc = = 110 | |

 profile_idc = = 122 | | profile_idc = = 144 | |

 profile_idc = = 83)) {
	
	

	

chroma_format_idc
	0
	ue(v)

	

if(chroma_format_idc = = 3)
	
	

	

residual_colour_transform_flag
	0
	u(1)

	

bit_depth_luma_minus8
	0
	ue(v)

	

bit_depth_chroma_minus8
	0
	ue(v)

	

qpprime_y_zero_transform_bypass_flag
	0
	u(1)

	

seq_scaling_matrix_present_flag
	0
	u(1)

	

if(seq_scaling_matrix_present_flag)
	
	

	

for(i = 0; i < 8; i++) {
	
	

	

seq_scaling_list_present_flag[i]
	0
	u(1)

	

if(seq_scaling_list_present_flag[i])
	
	

	

if(i < 6)
	
	

	

scaling_list(ScalingList4x4[i], 16,

 UseDefaultScalingMatrix4x4Flag[i])
	0
	

	

else
	
	

	

scaling_list(ScalingList8x8[i – 6], 64,

 UseDefaultScalingMatrix8x8Flag[i – 6])
	0
	

	

}
	
	

	
}
	
	

	
if(profile_idc = = 83)) {
	
	

	

max_residual_picture
	0
	ue(v)

	

num_ref_idx_update_l0_active_default
	0
	ue(v)

	

num_ref_idx_update_l1_active_default
	0
	ue(v)

	
}
	
	

	
log2_max_frame_num_minus4
	0
	ue(v)

	
pic_order_cnt_type
	0
	ue(v)

	
if(pic_order_cnt_type = = 0)
	
	

	

log2_max_pic_order_cnt_lsb_minus4
	0
	ue(v)

	
else if(pic_order_cnt_type = = 1) {
	
	

	

delta_pic_order_always_zero_flag
	0
	u(1)

	

offset_for_non_ref_pic
	0
	se(v)

	

offset_for_top_to_bottom_field
	0
	se(v)

	

num_ref_frames_in_pic_order_cnt_cycle
	0
	ue(v)

	

for(i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++)
	
	

	

offset_for_ref_frame[i]
	0
	se(v)

	
}
	
	

	
num_ref_frames
	0
	ue(v)

	
gaps_in_frame_num_value_allowed_flag
	0
	u(1)

	
pic_width_in_mbs_minus1
	0
	ue(v)

	
pic_height_in_map_units_minus1
	0
	ue(v)

	
frame_mbs_only_flag
	0
	u(1)

	
if(!frame_mbs_only_flag)
	
	

	

mb_adaptive_frame_field_flag
	0
	u(1)

	
direct_8x8_inference_flag
	0
	u(1)

	
frame_cropping_flag
	0
	u(1)

	
if(frame_cropping_flag) {
	
	

	

frame_crop_left_offset
	0
	ue(v)

	

frame_crop_right_offset
	0
	ue(v)

	

frame_crop_top_offset
	0
	ue(v)

	

frame_crop_bottom_offset
	0
	ue(v)

	
}
	
	

	
vui_parameters_present_flag
	0
	u(1)

	
if(vui_parameters_present_flag)
	
	

	

vui_parameters()
	0
	

	
rbsp_trailing_bits()
	0
	

	}
	
	

S.7.3.6

Slice header in scalable extension syntax

	slice_header_in_scalable_extension() {
	C
	Descriptor

	
first_mb_in_slice
	2
	ue(v)

	
slice_type
	2
	ue(v)

	
pic_parameter_set_id
	2
	ue(v)

	
frame_num
	2
	u(v)

	
if(!frame_mbs_only_flag) {
	
	

	

field_pic_flag
	2
	u(1)

	

if(field_pic_flag)
	
	

	

bottom_field_flag
	2
	u(1)

	
}
	
	

	
if(nal_unit_type = = 21)
	
	

	

idr_pic_id
	2
	ue(v)

	
if(pic_order_cnt_type = = 0) {
	
	

	

pic_order_cnt_lsb
	2
	u(v)

	

if(pic_order_present_flag && !field_pic_flag)
	
	

	

delta_pic_order_cnt_bottom
	2
	se(v)

	
}
	
	

	
if(pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag) {
	
	

	

delta_pic_order_cnt[0]
	2
	se(v)

	

if(pic_order_present_flag && !field_pic_flag)
	
	

	

delta_pic_order_cnt[1]
	2
	se(v)

	
}
	
	

	
if(slice_type != Progressive_Refinement) {
	
	

	

if(redundant_pic_cnt_present_flag)
	
	

	

redundant_pic_cnt
	2
	ue(v)

	

if(slice_type = = BE)
	
	

	

direct_spatial_mv_pred_flag
	2
	u(1)

	

store_base_representation
	2
	u(1)

	

base_id_plus1
	2
	ue(v)

	

if(base_id_plus1 != 0)
	
	

	

adaptive_prediction_flag
	2
	u(1)

	

if(slice_type = = PE | | slice_type = = BE) {
	
	

	

num_ref_idx_active_override_flag
	2
	u(1)

	

if(num_ref_idx_active_override_flag) {
	
	

	

num_ref_idx_l0_active_minus1
	2
	ue(v)

	

if(slice_type = = B)
	
	

	

num_ref_idx_l1_active_minus1
	2
	ue(v)

	

}
	
	

	

}
	
	

	

ref_pic_list_reordering()
	2
	

	

if (max_residual_picture > 0) {
	
	

	

if (!store_base_representation)
	
	

	

use_residual_picture
	2
	u(1)

	

number_update_levels
	2
	ue(v)

	

num_ref_idx_update_active_override_flag
	2
	u(1)

	

if(num_ref_idx_update_active_override_flag) {
	
	

	

for(decLvl = number_update_levels; decLvl >= 0; decLvl--) {
	
	

	

num_ref_idx_update_l0_active[decLvl]
	2
	ue(v)

	

num_ref_idx_update_l1_active[decLvl]
	2
	ue(v)

	

}
	
	

	

} else {
	
	

	

for(decLvl = number_update_levels; decLvl >= 0; decLvl--) {
	
	

	

num_ref_idx_update_l0_active[decLvl] =

num_ref_idx_update_l0_active_default
	
	

	

num_ref_idx_update_l1_active[decLvl] =

num_ref_idx_update_l1_active_default
	
	

	

}
	
	

	

}
	
	

	

}
	
	

	

if(entropy_coding_mode_flag && slice_type != IE)
	
	

	

cabac_init_idc
	2
	ue(v)

	
}
	
	

	
slice_qp_delta
	2
	se(v)

	
if(deblocking_filter_control_present_flag) {
	
	

	

disable_deblocking_filter_idc
	2
	ue(v)

	

if(disable_deblocking_filter_idc != 1) {
	
	

	

slice_alpha_c0_offset_div2
	2
	se(v)

	

slice_beta_offset_div2
	2
	se(v)

	

}
	
	

	
}
	
	

	
if(slice_type != Progressive_Refinement)
	
	

	

if(num_slice_groups_minus1 > 0 &&

slice_group_map_type >= 3 && slice_group_map_type <= 5)
	
	

	

slice_group_change_cycle
	2
	u(v)

	}
	
	

Semantics

S.7.4.1

NAL unit semantics
The specification of this subclause in SVC WD shall apply with the following modifications.

decodability_dependency_information specifies the decodability dependency information for a NAL unit.

When the syntax element decodability_dependency_information is not present, it shall be inferred to be equal to 0.

The variables DependencyId, TemporalLevel, and QualityLevel are derived as follows

· DependencyId

= (decodability_dependency_information >> 5)

· TemporalLevel
= (decodability_dependency_information >> 2) & 7

· QualityLevel

= decodability_dependency_information & 3

The variable MaxDependencyId is derived as follows

-
When a new sequence parameter set is activated:

-
If MaxDependencyId is not initialized or MaxDependencyId < DependencyId then

-
MaxDependencyId = DependencyId
S.7.4.2.1
Sequence parameter set RBSP syntax
The specification of this subclause in AVC shall apply with the following modifications.

max_residual_picture specify the maximum number of residual picture that need to be stored during the decoding process. A value of 0 means that the update process will not be called for any picture. When this syntax element is not present, it shall be inferred to be equal to 0.
num_ref_idx_update_l0_active_default specifies the default maximum reference index for update picture list 0 that shall be used for all the update process when num_ref_idx_update_active_override_flag is equal to 0 for the slice. The value of num_ref_idx_update_l0_active_default shall be in the range of 0 to residual_picture_buffer_size, inclusive

num_ref_idx_update_l1_active_default has the same semantics as num_ref_idx_update_l0_active_default with l0 and list 0 replaced by l1 and list 1, respectively
S.7.3.6

Slice header in scalable extension syntax
The specification of this subclause in AVC shall apply with the following modifications.

store_base_representation specify that the current slice belong to a key picture, and that the base representation (all slices with QualityLevel equal to 0) must also be stored in the Decoding Picture Buffer. The variable KeyPicture is specified as
KeyPicture = store_base_representation
use_residual_picture specify that the current slice shall be stored in the Residual Picture Buffer. It also specify the variable IsResidualPicture as

IsResidualPicture = use_residual_picture
When this syntax element is not present, it shall be inferred to be equal to 0.
number_update_levels specify the maximum number of update process that shall be applied to the current slice. It also specify a variable UpdateLevel as follows:

UpdateLevel = number_update_levels
When this syntax element is not present, it shall be inferred to be equal to 0.
num_ref_idx_update_active_override_flag equal to 0 specifies that the values of the syntax elements num_ref_idx_update_l0_active_default and num_ref_idx_update_l1_active_default specified in the referred sequence parameter set are in effect. num_ref_idx_update_active_override_flag equal to 1 specifies that the num_ref_idx_update_l0_active_default and num_ref_idx_update_l1_active_default specified in the referred sequence parameter set are overridden for the current slice (and only for the current slice) by the following values in the slice header.
num_ref_idx_update_l0_active[i] specifies the maximum reference index for update picture list 0 that shall be used for the update process that uses pictures for which UpdateLevel is equal to i. If num_ref_idx_update_active_override_flag equal to 0, the syntax element shall be equal to num_ref_idx_update_l0_active_default
num_ref_idx_update_l1_active[i] specifies has the same semantics as num_ref_idx_update_l0_active[i] with l0 and list 0 replaced by l1 and list 1, respectively
Decoding Process

S.8
Decoding process

The specification of this section in AVC shall apply with the following modifications
· The processes in subclauses S.8.3, S.8.4, S.8.5, S.8.6, S.8.7 and S.8.8 specify decoding processes using syntax elements in the macroblock layer and above.

· The intra prediction process for I and SI macroblocks, except for I_PCM macroblocks as specified in subclause 8.3, has intra prediction samples as its output. For I_PCM macroblocks subclause 8.3 directly specifies a picture construction process. The output are the constructed samples prior to the deblocking filter process.
· The inter prediction process for P and B macroblocks is specified in subclause 8.4 with inter prediction samples being the output.
· The transform coefficient decoding process and picture construction process prior to deblocking filter process are specified in subclause 8.5. That process derives samples for I and B macroblocks and for P macroblocks in P slices. The output are constructed samples prior to the deblocking filter process.

· The decoding process for P macroblocks in SP slices or SI macroblocks is specified in subclause 8.6. That process derives samples for P macroblocks in SP slices and for SI macroblocks. The output are constructed samples prior to the deblocking filter process.

· The constructed samples prior to the deblocking filter process that are next to the edges of blocks and macroblocks are processed by a deblocking filter as specified in subclause 8.7 with the output being the decoded samples.

· The Motion-Compensated Temporal Filtering (MCTF) process is specified in subclause 8.8 with the output being the decoded samples.
S.8.2.4.2.6
Initialisation process for the reference picture list for PE slices in frames
The specification of this subclause in SVC WD shall apply with the following modifications.

1) Replace the following paragraphs of this subclause in SVC WD
This initialisation process is invoked when decoding a PE slice in a coded frame.

Output of this process is the initial reference picture list RefPicList0.

For the initialisation process of the reference picture list RefPicList0 in this subclause, only reference pictures for which all of the following conditions are true are considered.

· the variable DependencyId of the picture is equal to the value of the variable DependencyId of the current picture

· the variable TemporalLevel of the picture is equal to or less than the variable TemporalLevel of the current picture

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is currently marked as "used for short-term reference" or "used for long-term reference".

with the following
This initialisation process is invoked when decoding a PE slice in a coded frame.

Output of this process is the initial reference picture list RefPicList0.

For the initialisation process of the reference picture list RefPicList0 in this subclause, only reference pictures for which all of the following conditions are true are considered.

· the variable DependencyId of the picture is equal to the value of the variable DependencyId of the current picture

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is currently marked as "used for short-term reference" or "used for long-term reference".

S.8.2.4.2.8
Initialisation process for the reference picture list for BE slices in frames
The specification of this subclause in SVC WD shall apply with the following modifications.

1) Replace the following paragraphs of this subclause in SVC WD
This initialisation process is invoked when decoding a BE slice in a coded frame.

Output of this process are the initial reference picture lists RefPicList0 and RefPicList1.

For the initialisation process of the reference picture lists RefPicList0 and RefPicList1 in this subclause, only reference pictures for which all of the following conditions are true are considered.

· the variable DependencyId of the picture is equal to the value of the variable DependencyId of the current picture

· the variable TemporalLevel of the picture is equal to or less than the variable TemporalLevel of the current picture

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is currently marked as "used for short-term reference" or "used for long-term reference".

with the following
This initialisation process is invoked when decoding a BE slice in a coded frame.

Output of this process are the initial reference picture lists RefPicList0 and RefPicList1.

For the initialisation process of the reference picture lists RefPicList0 and RefPicList1 in this subclause, only reference pictures for which all of the following conditions are true are considered.

· the variable DependencyId of the picture is equal to the value of the variable DependencyId of the current picture

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is currently marked as "used for short-term reference" or "used for long-term reference".

S.8.2.6
Derivation process for update picture lists

The specification of this subclause in SVC WD shall apply with the following modifications.

This process is invoked before the update process of the current picture.

Inputs of this process are

· a picture updPic

· a variable updLevel
Outputs of this process are the update picture lists updPicList0 and updPicList1.
For the derivation process of the updates picture lists updPicList0 and updPicList1 in this subclause, only pictures for which all of the following conditions are true are considered.

· the variable DependencyId of the picture is equal to the value of the variable DependencyId of the picture updPic
· the variable IsResidualPicture of the picture is equal to 1
The order of reference pictures in the update picture lists updPicList0 and updPicList1 depends on output order, as given by PicOrderCnt(). When pic_order_cnt_type is equal to 0, reference pictures that are marked as "non-existing" as specified in subclause S.8.2.5.2. are not included in either updPicList0 or updPicList1.

The update picture list updPicList0 is ordered as follows.

· Reference frames and complementary reference field pairs are ordered starting with the reference frame or complementary reference field pair frm0 with the largest value of PicOrderCnt(frm0) less than the value of PicOrderCnt(updPic) and proceeding through in descending order to the reference frame or complementary reference field pair frm1 that has the smallest value of PicOrderCnt(frm1), and then continuing with the reference frame or complementary reference field pair frm2 with the smallest value of PicOrderCnt(frm2) greater than the value of PicOrderCnt(updPic) and proceeding through in ascending order to the reference frame or complementary reference field pair frm3 that has the largest value of PicOrderCnt(frm3).

The update picture list updPicList1 is ordered as follows.

· Reference frames and complementary reference field pairs are ordered starting with the reference frame or complementary reference field pair frm4 with the smallest value of PicOrderCnt(frm4) greater than the value of PicOrderCnt(updPic) and proceeding through in ascending order to the reference frame or complementary reference field pair frm5 that has the largest value of PicOrderCnt(frm5), and then continuing with the reference frame or complementary reference field pair frm6 with the largest value of PicOrderCnt(frm6) less than the value of PicOrderCnt(updPic) and proceeding through in descending order to the reference frame or complementary reference field pair frm7 that has the smallest value of PicOrderCnt(frm7).

When the number of entries in updPicList0 or updPicList1 is greater than num_ref_idx_update_l0_active[updLevel] or num_ref_idx_update_l1_active[updLevel] for the picture updPic, respectively, the extra entries past position num_ref_idx_update_l0_active[updLevel] or num_ref_idx_update_l1_active[updLevel] are discarded from the update picture list.

S.8.2.7
Sliding window residual reference picture marking process
This process is invoked when use_residual_picture is equal to 1 and the variable DependencyId of the input picture is equal to the variable MaxDependencyId.
-
Let numResPic be the total number of reference frames, complementary reference field pairs and non-paired reference fields for which at least one field is marked as “used for short-term reference” or “used for long-term reference” and for which the variable IsResidualPicture is equal to 1
-
When numResPic is equal to max_residual_picture the inverse motion-compensated filtering process specified in subclause S.8.8 is invoked with the reference frame that has the smallest value of FrameNumWrap as input.

NOTE – Invoking the process S8.8 will reduce the number of picture with the variable IsResidualPicture by 1, and thus provides one space for the new input residual picture.
8.4 Inter prediction process
The specification of this subclause in AVC shall apply with the following modifications.
1) Replace the following paragraphs of this subclause in AVC
The Inter prediction process for a macroblock partition mbPartIdx and a sub-macroblock partition subMbPartIdx consists of the following ordered steps

1. Derivation process for motion vector components and reference indices as specified in subclause 8.4.1.

Inputs to this process are

· a macroblock partition mbPartIdx,

· a sub-macroblock partition subMbPartIdx.

Outputs of this process are

· luma motion vectors mvL0 and mvL1 and when chroma_format_idc is not equal to 0 (monochrome) the chroma motion vectors mvCL0 and mvCL1

· reference indices refIdxL0 and refIdxL1

· prediction list utilization flags predFlagL0 and predFlagL1

· the sub-macroblock partition motion vector count subMvCnt.

2. The variable MvCnt is incremented by subMvCnt.

3. Decoding process for Inter prediction samples as specified in subclause 8.4.2.

Inputs to this process are

· a macroblock partition mbPartIdx,

· a sub-macroblock partition subMbPartIdx.

· variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight, partWidthC (if available), and partHeightC (if available)

· luma motion vectors mvL0 and mvL1 and when chroma_format_idc is not equal to 0 (monochrome) the chroma motion vectors mvCL0 and mvCL1

· reference indices refIdxL0 and refIdxL1

· prediction list utilization flags predFlagL0 and predFlagL1

Outputs of this process are

· inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPartL of prediction luma samples and when chroma_format_idc is not equal to 0 (monochrome) two (partWidthC)x(partHeightC) arrays predPartCr, and predPartCb of prediction chroma samples, one for each of the chroma components Cb and Cr.

with the following
Let isResidualPicture by equal to the variable IsResidualPicture of the current picture.
The Inter prediction process for a macroblock partition mbPartIdx and a sub-macroblock partition subMbPartIdx consists of the following ordered steps

1. The Derivation process for motion vector components and reference indices as specified in subclause 8.4.1 is invoked
Inputs to this process are

· a macroblock partition mbPartIdx,

· a sub-macroblock partition subMbPartIdx.

Outputs of this process are

· luma motion vectors mvL0 and mvL1 and when chroma_format_idc is not equal to 0 (monochrome) the chroma motion vectors mvCL0 and mvCL1

· reference indices refIdxL0 and refIdxL1

· prediction list utilization flags predFlagL0 and predFlagL1

· the sub-macroblock partition motion vector count subMvCnt.

2. The variable MvCnt is incremented by subMvCnt.

3. If isResidualPicture is equal to 0 the Decoding process for Inter prediction samples as specified in subclause 8.4.2 is invoked.

Inputs to this process are

· a macroblock partition mbPartIdx,

· a sub-macroblock partition subMbPartIdx.

· variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight, partWidthC (if available), and partHeightC (if available)

· luma motion vectors mvL0 and mvL1 and when chroma_format_idc is not equal to 0 (monochrome) the chroma motion vectors mvCL0 and mvCL1

· reference indices refIdxL0 and refIdxL1

· prediction list utilization flags predFlagL0 and predFlagL1

Outputs of this process are

· inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPartL of prediction luma samples and when chroma_format_idc is not equal to 0 (monochrome) two (partWidthC)x(partHeightC) arrays predPartCr, and predPartCb of prediction chroma samples, one for each of the chroma components Cb and Cr.

2) Replace the following paragraphs of this subclause in AVC
The macroblock prediction is formed by placing the partition or sub-macroblock partition prediction samples in their correct relative positions in the macroblock, as follows.

The variable predL[xP + xS + x, yP + yS + y] with x = 0 .. partWidth – 1, y = 0 .. partHeight – 1 is derived by

predL[xP + xS + x, yP + yS + y] = predPartL[x, y]

(8-162)

When chroma_format_idc is not equal to 0 (monochrome) the variable predC with x = 0..partWidthC – 1, y = 0..partHeightC – 1, and C in predC and predPartC being replaced by Cb or Cr is derived by

predC[xP / SubWidthC + xS / SubWidthC + x, yP / SubHeightC + yS / SubHeightC + y] = predPartC[x, y]

(8-163)

with the following
The macroblock prediction is formed by placing the partition or sub-macroblock partition prediction samples in their correct relative positions in the macroblock, as follows.

The variable predL[xP + xS + x, yP + yS + y] with x = 0 .. partWidth – 1, y = 0 .. partHeight – 1 is derived by

If isResidualPicture is equal to 0

predL[xP + xS + x, yP + yS + y] = predPartL[x, y]
(8-162)
otherwise (isResidualPicture is not equal to 0)

predL[xP + xS + x, yP + yS + y] = Not Available
(8-162)
When chroma_format_idc is not equal to 0 (monochrome) the variable predC with x = 0..partWidthC – 1, y = 0..partHeightC – 1, and C in predC and predPartC being replaced by Cb or Cr is derived by

If isResidualPicture is equal to 0

predC[xP / SubWidthC + xS / SubWidthC + x, yP / SubHeightC + yS / SubHeightC + y] = predPartC[x, y]

(8-163)

otherwise (isResidualPicture is not equal to 0)

predC[xP / SubWidthC + xS / SubWidthC + x, yP / SubHeightC + yS / SubHeightC + y] = Not Available

(8-163)

S.8.5.1
Specification of transform decoding process for 4x4 luma residual blocks

The specification of this subclause in AVC shall apply with the following modifications
1) Replace the following paragraphs of this subclause in AVC
5
The 4x4 array u with elements uij for i, j = 0..3 is derived as

uij = Clip1Y(predL[xO + j, yO + i] + rij)

(8-295)
with the following
5
The 4x4 array u with elements uij for i, j = 0..3 is derived as

if ((predL[xO + j, yO + i] is marked as Not Available)

uij = rij

(8-295)
else

uij = Clip1Y(predL[xO + j, yO + i] + rij)

(8-295)

S.8.5.3
Specification of transform decoding process for 8x8 luma residual blocks

The specification of this subclause in AVC shall apply with the following modifications
1) Replace the following paragraphs of this subclause in AVC
5
The 8x8 array u with elements uij for i, j = 0..7 is derived as

uij = Clip1Y(predL[xO + j, yO + i] + rij)

(8-295)
with the following
5
The 8x8 array u with elements uij for i, j = 0..7 is derived as

if ((predL[xO + j, yO + i] is marked as Not Available)

uij = rij

(8-295)
else

uij = Clip1Y(predL[xO + j, yO + i] + rij)

(8-295)

S.8.7
Deblocking filter process
The specification of this subclause in AVC shall apply with the following modifications
The Deblocking filter process shall not be applied when the variable IsResidualPicture for the current picture is equal to 1.
S.8.8
Inverse motion-compensated filtering process
Inputs to this process is a residual picture resPic (with IsResidualPicture equal to 1)

Output of this process is a modified picture prior to the deblocking filter process.

The inverse motion compensated filtering process proceeds in the following ordered steps
1. Zero or more motion-compensated update processes are performed as follows
· Let updList be the list of pictures corresponding to all the pictures in RefPicList0 and RefPicList1 (when available) of resPic.
· For each entry updPic of the list updList, the following applies
-
If the variable UpdateLevel of the picture updPic is greater than the variable UpdateLevel of the picture resPic the the subclause S.8.8.1. is invoked with updPic and the variable UpdateLevel of the picture updPic as input and the output is a modified picture updPic, which replaces the input version in the decoded picture buffer
-
The variable UpdateLevel of the picture updPic is set to be equal to the variable UpdateLevel of the picture resPic.

2. The motion-compensated prediction process is performed as follows:

· The variable IsResidualPicture for the picture resPic is set to 0
· The motion compensated prediction process in subclause S.8.8.2 is invoked with predPic as input and the output is a modified picture predPic, which replaces the input version in the decoded picture buffer
SEI message

SEI payload syntax

	update_timing(payloadSize) {
	C
	Descriptor

	
vrpb_removal_delay_length_minus1
	5
	ue(v)

	
vrpb_removal_delay
	5
	u(v)

	}
	
	

SEI payload semantics

vrbb_removal_delay_length_minus1 specifies the length in bits of the vrpb_removal_delay syntax element.

vrpb_removal_delay is used to compute the VRPB output time of the picture. It specifies how many clock ticks to wait after removal of an access unit from the CPB before the residual picture can be output from the VRPB.
The output order of the update process established by the values of this syntax element shall be the same order as established by the bumping process of S.8.2.7.
The size of the syntax element vrpb_removal_delay is given in bits by vrpb_removal_delay_length_minus1 + 1
References

[1] ITU-T and ISO/IEC JTC1, “JSVM 1 Software”, JVT-N24, Jan 2005.
[2] ITU-T and ISO/IEC JTC1, “Scalable Video Coding - Working Draft 1”, JVT-N020, Jan 2005
[3] ITU-T and ISO/IEC JTC1, “Joint Scalable Video Model (JSVM) 1.0 Reference Encoding Algorithm Description”, JVT-N023, Jan 2005
(Append for Proposal Documents)

JVT Patent Disclosure Form
	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image1.wmf]
	[image: image2.png]1S0
NS

	[image: image3.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	Visiowave
	

	Mailing address
	Rt de la Pierre 22
CH-1024 Ecublens

	

	Country
	Switzerland
	

	Contact person
	Julien Reichel
	

	Telephone
	+41 21 695 00 00
	

	Fax
	+41 21 695 00 01
	

	Email
	julien.reichel@visiowave.com
	

	Place and date of submission
	Busan, KR, 16-22 April, 2005
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	Improving the temporal decoding process
	

	Contribution number
	JVT-O009
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	X
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image4.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image5.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	[image: image6.wmf]
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image7.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	
	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	[image: image8.wmf]
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image9.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

File: JVT-O009-temporal decoding process_fz.doc
Page: 15
Date Saved: 2005-04-12

