	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

9th Meeting: 2-5 September 2003, San Diego
	Document: JVT-I019r2
Filename: JVT-I019r2.doc

	Title:
	Color format upconversion for video display

	Status:
	Input Document to JVT

	Purpose:
	Information

	Author(s) or
Contact(s):
	Gary Sullivan
One Microsoft Way
Redmond, WA 98052 USA
	
Tel:
Email:
	
+1 425 703 5308
garysull@microsoft.com

	Source:
	Microsoft Corp.

Abstract

This document contains a description of a method of upsampling for chroma format conversion that the author believes to be reasonably appropriate for use where needed for display of video coded with a reduced-resolution chroma sampling grid (e.g., for the verification test effort for H.264/AVC). It is based on separable Catmull-Rom interpolation, also known as Cubic Convolution Interpolation, with properly-adjusted phase response and appropriate special treatment of edges. For interlaced video, it specifies field-based upsampling.

1.
Introduction

An upsampling method appropriate for 4:2:0 to 4:2:2, 4:2:0 to 4:4:4, and 4:2:2 to 4:4:4 color format conversion is described herein which can be summarized as follows. The basic concept applied here is Catmull-Rom [1] upsampling. This is a method with a single side-lobe to each side of the central main lobe in its impulse response, and therefore produces less visual "ringing" than methods that are considered better in the classical DSP sense. The phase of the upsampling filtering should be matched to the phase of the downsampling used to produce the material at the input of the encoder. The reader is invited to double-check the math.

The Catmull-Rom-based method is summarized as follows:

· Vertical and horizontal upsampling are defined in a separable fashion, so that vertical upsampling only can be used to convert 4:2:0 to 4:2:2, horizontal upsampling can be used to convert 4:2:2 to 4:4:4, and both vertical and horizontal upsampling (in either order) can be used to convert 4:2:0 to 4:4:4 (e.g., converting 4:2:0 to 4:2:2 and then converting 4:2:2 to 4:4:4).

· Vertical upsampling for conversion of interlaced 4:2:0 to 4:2:2 is field-based

· Output-positioning filter phase is controlled appropriately as defined by the spatial positioning used in the luma/chroma sampling grid.

· Within the body of a 1-dimensional string of samples to be upsampled (i.e., when two or more samples are available on each side of the desired output position), it uses Catmull-Rom interpolation [1] (called cubic convolution interpolation by Keys [3]; not to be confused with what is called cubic interpolation by Poynton [5] and others). Filter taps computed in this manner are derived directly from the formula

[image: image1.wmf][

]

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

1

3

3

1

1

4

5

2

0

1

0

1

0

0

2

0

*

x

x

x

1

*

2

1

3

2

where x is a positive spatial location relative to the location of the second of the set of 4 samples involved.

Further remarks on Catmull-Rom interpolation:

This is a special case of the following more general filter form equivalent to that derived by Keys [3]:

[image: image2.wmf][

]

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

-

+

-

-

a

)

a

2

(

a

2

a

a

a

2

3

a

3

a

2

0

a

0

a

0

0

1

0

*

x

x

x

1

3

2

with a=0.5. (Note: The parameter "a" as used here is negated relative to Keys' formulation, as I find a positive-valued parameter more intuitive.) This can equivalently be viewed as a filter with a continuous-time impulse response given by

[image: image3.wmf]ï

ï

î

ï

ï

í

ì

£

<

-

+

-

£

-

+

-

-

=

.

otherwise

0

;

2

x

1

for

x

a

x

a

5

x

a

8

a

4

;

1

x

for

x

)

a

2

(

x

)

a

3

(

1

)

x

(

h

3

2

3

2

Note that for a=0, this impulse response becomes zero outside of |x|<1, so only two samples contribute to each output value in that case (which can also be seen by the first and fourth columns of the above matrix becoming zero for a=0).

Any member of this family of curves based on the parameter "a" will produce an output curve that passes through the original input samples (i.e., an "interpolating" curve) and has continuous values and continuous slope. The parameter value a=0.5 will produce an exact match to any sampled input curve that is linear or parabolic. The member of this family with a=1 or a=0.75 is sometimes advocated in the literature as being more visually pleasing, although it seems less mathematically optimal (c.f. [2]). Note, however, that if the parameter "a" is not equal to 0.5, a smooth ramp input will not produce a smooth ramp as its output.

The Catmull-Rom interpolation curve (i.e., Keys' Cubic Convolution per above with a=0.5) can also be viewed as a special case of curves of another form derived by Mitchell and Netravali [4], based on constraints of continuity of value and continuity of slope, resulting in the following form:

[image: image4.wmf][

]

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

+

-

-

-

-

-

+

-

-

-

-

+

+

-

+

+

-

-

-

c

6

b

)

c

6

b

9

12

(

c

6

b

9

12

)

c

6

b

(

c

6

c

12

b

15

18

c

6

b

12

18

c

12

b

3

0

c

6

b

3

0

c

6

b

3

0

b

b

2

6

b

*

x

x

x

1

*

6

1

3

2

This can alternatively be viewed as a filter with a continuous-time impulse response given by:

[image: image5.wmf]ï

ï

ï

î

ï

ï

ï

í

ì

£

<

+

-

+

+

+

-

+

£

-

-

+

-

-

-

-

=

.

otherwise

0

;

2

x

1

for

6

x

)

c

6

b

(

x

)

c

30

b

6

(

x

)

c

48

b

12

(

)

c

24

b

8

(

;

1

x

for

6

x

)

c

6

b

9

12

(

x

)

c

6

b

12

18

(

)

b

2

6

(

)

x

(

h

3

2

3

2

Mitchell and Netravali further simplify this by stating that a good single-parameter family is formed by setting b=1–2c (with c greater than 0.2 to avoid excessive blurring). The member of that family with c=0.5 (and therefore b=0) is Catmull-Rom interpolation. Other choices of parameter "c" do not produce "interpolating" filters (i.e., the produced curve will not always pass through the points established by the input samples). (However, Mitchell and Netravali state a visual preference for the member of this family with c=1/3, which does not produce an "interpolating" filter – instead it is a somewhat blurrier/softer filter.)

· Near an edge (when only one sample or no samples are available on one side of the desired output position), it uses parabolic curve-fitting for interpolation. This results in having both value-continuity and slope-continuity with the adjacent Catmull-Rom interpolation segment. Filter taps computed in this manner are derived directly from the formula

[image: image6.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

-

1

2

1

1

0

1

0

2

0

*

x

x

1

*

2

1

2

where x is a signed spatial location relative to the location of the middle of the set of 3 samples involved.

· Off the edge of the string of samples at the left or top (when no samples are available on one side of the desired output position), it uses linear curve-fitting for extrapolation. The slope and offset of the line are designed to have both value-continuity and slope-continuity with the adjacent parabolic interpolation segment. The use of linear, rather than parabolic, extrapolation prevents shooting off to extremes as a result of the 2nd-power term. Filter taps computed in this manner are derived directly from the formula

[image: image7.wmf][

]

ú

û

ù

ê

ë

é

-

-

1

4

3

0

0

2

*

x

1

*

2

1

where x is a negative spatial location relative to the location of the left or top sample in the set of 3 samples involved.

· Off the edge of the string of samples at the right or bottom (when no samples are available on one side of the desired output position), it uses linear curve-fitting for extrapolation. The slope and offset of the line are designed to have both value-continuity and slope-continuity with the adjacent parabolic interpolation segment. The use of linear, rather than parabolic, extrapolation prevents shooting off to extremes as a result of the 2nd-power term. Filter taps computed in this manner are derived directly from the formula

[image: image8.wmf][

]

ú

û

ù

ê

ë

é

-

3

4

1

2

0

0

*

x

1

*

2

1

where x is a positive spatial location relative to the location of the right or bottom sample in the set of 3 samples involved.

In each case, a doubling resampling process is performed to take samples 0..N of input and produce samples 0..2N-1 of output. For vertical upsampling, sample 0 is considered to be at the top. For horizontal upsampling, sample 0 is considered to be at the left.

2.
Vertical upsampling for 4:2:0 to 4:2:2 conversion

The 4:2:0 to 4:2:2 vertical upsampling methods described in this section are designed under the assumption that the 4:2:2 upconverted video will not be used as a reference for 4:2:0 motion compensation (i.e., that there is no need to preserve the values of the original samples as a subset of the output samples). If the 4:2:2 upconverted video needs to be usable as a reference for 4:2:0 motion compensation, then the method described in section 3.1 below for horizontal upsampling can be applied vertically instead (producing a 4:2:2 picture in which every other output sample is the preserved value of an input sample).

2.1
Progressive-scan upsampling (QCIF, CIF, 720p, 1080p)

Output samples can be be produced at positions 0..2N-1 for input samples at positions 0..N-1, as follows:

· Samples at positions 2n for n in the range of 2.. N-2 are generated (x=3/4) as
(– 3 * y[n-2] + 29 * y[n-1] + 111 * y[n] – 9 * y[n+1] + 64) >> 7.

· Samples at positions 2n+1 for n in the range of 1..N-3 are generated (x=1/4) as
(– 9 * y[n-1] + 111 * y[n] + 29 * y[n+1] – 3 * y[n+2] + 64) >> 7.

· Samples at position 0 are generated (extrapolation, x= -1/4) as
(176 * y[0] – 64 * y[1] + 16 * y[2] + 64) >> 7.

· Samples at position 2N-1 are generated (extrapolation, x=1/4) as
(16 * y[N-3] – 64 * y[N-2] + 176 * y[N-1] + 64) >> 7.

· Samples at position 1 are generated (interpolation, x= -3/4) as
(84 * y[0] + 56 * y[1] – 12 * y[2] + 64) >> 7.

· Samples at position 2N-2 are generated (interpolation, x= 3/4) as
(– 12 * y[N-3] + 56 * y[N-2] + 84 * y[N-1] + 64) >> 7.

· Samples at position 2 are generated (interpolation, x= -1/4) as
(20 * y[0] + 120 * y[1] – 12 * y[2] + 64) >> 7.

· Samples at position 2N-3 are generated (interpolation, x=1/4) as
(– 12 * y[N-3] + 120 * y[N-2] + 20 * y[N-1] + 64) >> 7.

2.2
Interlace-scan upsampling (480i/576i, 1080i)

Output samples for a top field can be produced from the input samples of a top field as follows:

· Samples at positions 2n except positions 0, 2, and 2N-2 are generated (x= -1/8) as
 (– 7 * y[n-2] + 93 * y[n-1] + 987 * y[n] – 49 * y[n+1] + 512) >> 10.

· Samples at positions 2n+1 except positions 1, 2N-3, and 2N-1 are generated (x= 3/8) as
(– 75 * y[n-1] + 745 * y[n] + 399 * y[n+1] – 45 * y[n+2] + 512) >> 10.

· Samples at position 0 are generated (extrapolation, x= -1/8) as
(1216 * y[0] – 256 * y[1] + 64 * y[2] + 512) >> 10.

· Samples at position 1 are generated (interpolation, x= -5/8) as
(520 * y[0] + 624 * y[1] – 120 * y[2] + 512) >> 10.

· Samples at position 2 are generated (interpolation, x= -1/8) as
(72 * y[0] + 1008 * y[1] – 56 * y[2] + 512) >> 10.

· Samples at position 2N-3 are generated (interpolation, x=3/8) as
(– 120 * y[N-3] + 880 * y[N-2] + 264 * y[N-1] + 512) >> 10.

· Samples at position 2N-2 are generated (interpolation, x=7/8) as
(– 56 * y[N-3] + 240 * y[N-2] + 840 * y[N-1] + 512) >> 10.

· Samples at position 2N-1 are generated (extrapolation, x= 3/8) as
(192 * y[N-3] – 768 * y[N-2] + 1600 * y[N-1] + 512) >> 10.

Output samples for a bottom field can be produced in a manner equivalent to the following sequence of operations:

1. Flip the field upside-down

2. Upsample the flipped input field vertically as described for a top field

3. Flip the resulting upsampled flipped input field upside-down

3.
Horizontal upsampling

3.1
Method for MPEG-2, MPEG-4 Visual, and H.264/AVC video

For the 4:2:0 sampling grid specified in MPEG-2, MPEG-4 Visual, and the nominal positioning in H.264/AVC, and for the 4:2:2 sampling grid specified in all video coding standards, a horizontal upsampling can be performed as follows.

Output samples can be produced at positions 0..2N-1 for input samples at positions, 0..N‑1, as follows.

· Samples at positions 2n are generated (x=0) as
y[n].

· Samples at positions 2n+1 except positions 1, 2N-3 and 2N-1 are generated (x=1/2) as
(– y[n-1] + 9 * y[n] + 9 * y[n+1] – y[n+2] + 8) >> 4.

· Samples at position 1 are generated (interpolation, x= -1/2) as
(6 * y[0] + 12 * y[1] – 2 * y[2] + 8) >> 4.

· Samples at position 2N-3 are generated (interpolation, x=1/2) as
(– 2 * y[N-3] + 12 * y[N-2] + 6 * y[N–1] + 8) >> 4.

· Samples at position 2N-1 are generated (extrapolation, x=1/2) as
(4 * y[N-3] – 16 * y[N-2] + 28 * y[N-1] + 8) >> 4.

3.2
Method for H.261, MPEG-1, and H.263 video

For the 4:2:0 sampling grid specified in H.261, MPEG-1, and H.263, a horizontal upsampling can be performed in the same manner as specified above for vertical upsampling of progressive-scan video.

References

[1] Edwin Catmull and R. Rom, "A Class of Local Interpolationg Splines,'' in Robert E. Barnhill and Richard F. Reisenfeld (Eds.), Computer Aided Geometric Design, Academic Press, New York, pp. 317-326, 1974.

[2] Randy Crane, A Simplified Approach to Image Processing, Prentice-Hall/Hewlett Packard, 1997.

[3] R.G. Keys, "Cubic Convolution Interpolation for Digital Image Processing", IEEE Trans. Acoust., Speech, Signal Proc., vol. ASSP-29(6), pp. 1153-1160, Dec. 1981.

[4] D.P. Mitchell and A.N. Netravali, "Reconstruction Filters in Computer Graphics", Computer Graphics, vol. 22, no. 4, pp. 221-228, Aug. 1988.

[5] C. Poynton, Digial Video and HDTV, Morgan Kaufmann, Amsterdam, 2003.

File: JVT-I019r2.doc
Page: 1
Date Saved: 2003-09-04

_1121524185.unknown

_1121525823.unknown

_1121526557.unknown

_1121526572.unknown

_1121526537.unknown

_1121525115.unknown

_1121524153.unknown

_1121524039.unknown

