	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

8th Meeting: Geneva, Switzerland, 23-27 May, 2003
	Document: JVT-H037r0

Filename: JVT-H037r0.doc

	Title:
	Draft Prof. Ext Amendment

	Status:
	Non-Final Draft of Approved Output Document from JVT

	Purpose:
	Draft Text

	Author(s) or
Contact(s):
	Tom McMahon
Dolby Laboratories, Inc.
3601 W. Alameda Ave.
Burbank, CA 91505-5300

Thomas Wiegand
Heinrich Hertz Institute (FhG),
Einsteinufer 37, D-10587 Berlin,
Germany

Gary Sullivan
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA
	
Tel:
Email:

Tel:
Fax:
Email:

Tel:
Fax:
Email:
	
+1 (818) 823-2800
tom@dolby.com

+49 - 30 - 31002 617
+49 - 30 - 392 72 00
wiegand@hhi.de

+1 (425) 703-5308
+1 (425) 706-7329
garysull@microsoft.com

	Source:
	JVT

1 Introduction

This document is intended to serve as the basis for a new Professional Extensions Annex to ITU-T Rec. H.264 & ISO/IEC 14496-10. This is not a proposal to change the base text of the Recommendation | International Standard.
The Recommendation | International Standard [1] has been examined for areas where extended sample bit depth or chroma format support may require new or substitute text (documented in the form of an Annex) in order to implement an extended decoder. The goal has been to keep changes to the present standard to a minimum.
Please also reference companion output document, “Report - Prof. Ext. Issues of Investigation“ JVT-H038, that lists items and issues still under discussion.
Section 2 of this document identifies subclause modifications common to both bit depth and chroma format extensions.
Section 3 of this document identifies changes specific to increased sample bit depth extensions.
Section 4 identifies changes specific to chroma format extensions.
Section 5 is the updated Amendment schedule.
2 Changes common to both Sample Bit Depth and Chroma Format
2.1 Subclause: A.2 “Profiles”
[Ed: This section has been moved to the Discussion document JVT-H0xx.]
2.2 Subclause: 7.3.2.1 “Sequence parameter set RBSP syntax”

Conditionally based on profile_idc equal to Professional profile, add fixed length fields in the sequence parameter set for bit_depth_idc and chroma_format_idc, following level_idc.

Fixed length fields early in the sequence parameter set, prior to any variable length coded fields, allows easy detection of supported formats. bit_depth_idc and chroma_format_idc each require 3 bits minimum. However, allocating 4 bits each, thereby adding one total byte, may provide benefits.
Add “constraint_set3_flag” to Sequence Parameter Set, using a bit from reserved_zero_5bits.
constraint_set3_flag equal to 1 indicates that the bitstream obeys all constraints specified in subclause <insert new Profile definition subclause reference>. constraint_set3_flag equal to 0 indicates that the bitstream may or may not obey all constraints specified in subclause <insert new Profile definition subclause reference>.
[Ed: Need to examine the need and use of these constraint bits for PExt backward compatibility.]
	seq_parameter_set_rbsp() {
	C
	Descriptor

	
profile_idc
	0
	u(8)

	
constraint_set0_flag
	0
	u(1)

	
constraint_set1_flag
	0
	u(1)

	
constraint_set2_flag
	0
	u(1)

	 if (profile_idc != ***) {
	
	

	
 reserved_zero_5bits /* equal to 0 */
	0
	u(5)

	 } else {
	
	

	 constraint_set3_flag
	0
	u(1)

	
reserved_zero_4bits /* equal to 0 */
	0
	u(4)

	 }
	
	

	
level_idc
	0
	u(8)

	
seq_parameter_set_id
	0
	ue(v)

	 if(profile_idc == ***) {
	
	

	 chroma_format_idc
	0
	u(3)

	 bit_depth_idc
	0
	u(3)

	}
	
	

	
log2_max_frame_num_minus4
	0
	ue(v)

	
pic_order_cnt_type
	0
	ue(v)

	
if(pic_order_cnt_type = = 0)
	
	

	

log2_max_pic_order_cnt_lsb_minus4
	0
	ue(v)

	
else if(pic_order_cnt_type = = 1) {
	
	

	

delta_pic_order_always_zero_flag
	0
	u(1)

	

offset_for_non_ref_pic
	0
	se(v)

	

offset_for_top_to_bottom_field
	0
	se(v)

	

num_ref_frames_in_pic_order_cnt_cycle
	0
	ue(v)

	

for(i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++)
	
	

	

offset_for_ref_frame[i]
	0
	se(v)

	
}
	
	

	
num_ref_frames
	0
	ue(v)

	
gaps_in_frame_num_value_allowed_flag
	0
	u(1)

	
pic_width_in_mbs_minus1
	0
	ue(v)

	
pic_height_in_map_units_minus1
	0
	ue(v)

	
frame_mbs_only_flag
	0
	u(1)

	
if(!frame_mbs_only_flag)
	
	

	

mb_adaptive_frame_field_flag
	0
	u(1)

	
direct_8x8_inference_flag
	0
	u(1)

	
frame_cropping_flag
	0
	u(1)

	
if(frame_cropping_flag) {
	
	

	

frame_crop_left_offset
	0
	ue(v)

	

frame_crop_right_offset
	0
	ue(v)

	

frame_crop_top_offset
	0
	ue(v)

	

frame_crop_bottom_offset
	0
	ue(v)

	
}
	
	

	
vui_parameters_present_flag
	0
	u(1)

	
if(vui_parameters_present_flag)
	
	

	

vui_parameters()
	0
	

	
rbsp_trailing_bits()
	0
	

	}
	
	

2.3 Subclause: 6.2 “Source, decoded, and output picture formats”

Substitute the following for section 6.2:

6.2 Source, decoded, and output picture formats

This subclause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of either or both frames or fields (called collectively pictures) in decoding order.

The source and decoded pictures (frames or fields) are each comprised of one or more sample arrays:

· Luma only (monochrome)

· Luma and two Chroma (YCbCr) [Ed: with optional Alpha TBD]
· Red, Green and Blue [Ed: with optional Alpha TBD]
· X, Y, Z [Ed: with optional Alpha TBD]

[Ed. Specifics of RGB and XYZ handling are TBD – see JVT-H038.]

The variable of BitDepth specified in Table 6-1 is the number of bits per sample in each of the sample arrays. If not otherwise specified the value of BitDepth shall be inferred equal to 8.

Table 6‑1 – BitDepth values

	bit_depth_idc
	BitDepth

	0
	8

	1
	10

	2
	12

[Ed: No mechanism to specify different bit depths for luma and chroma (or alpha). Draft incomplete in this regard.]
The variable ChromaFormatFactor is specified in Table 6-2, depending on the chroma format sampling structure. If not otherwise specified the value of ChromaFormatFactor shall be inferred equal to 1.5, indicating 4:2:0 sampling.

Table 6‑2 – ChromaFormatFactor values

	chroma_format_idc
	Chroma
Format
	ChromaFormatFactor

	0
	monochrome
	1

	1
	4:2:0
	1.5

	2
	4:2:2
	2

	3
	4:4:4
	3

	4
	4:2:2:4
	3 [Ed: Alpha TBD]

	5
	4:4:4:4
	4 [Ed: Alpha TBD]

	6,7
	Undefined
	Undefined

In monochrome sampling there is only one sample array, which may nominally be considered a luma array.

In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.

In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array. In 4:2:2:4 YCbCrA sampling, each of the two chroma arrays has the same height and half the width of the luma array, and the A array is the same height and width as the luma array.

In 4:4:4 YCbCr sampling, each of the two chroma arrays has the same height and width as the luma array. In 4:4:4 RGB or XYZ sampling, the G or Y arrays may nominally be considered luma arrays and all three arrays have the same height and width. In 4:4:4:4 RGBA or XYZA sampling, the G or Y arrays may nominally be considered the luma array, and all four arrays have the same height and width.

The width and height of the luma, red, green, blue, alpha [Ed: Alpha TBD], X, Y or Z sample arrays are each a multiple of 16. In bitstreams using 4:2:0 chroma sampling, the width and height of chroma sample arrays are each an integer multiple of 8. In bitstreams using 4:2:2 sampling, the with of the chroma sample arrays is an integer multiple of 8 and the height is an integer multiple of 16. The height of a luma array that is coded as two separate fields or in macroblock-adaptive frame-field coding (see below) is an integer multiple of 32 samples. In bitstreams using 4:2:0 chroma sampling, the height of each chroma array that is coded as two separate fields or in macroblock-adaptive frame-field coding (see below) is an integer multiple of 16 samples. The width or height of pictures output from the decoding process need not be an integer multiple of 16 and can be specified using a cropping rectangle.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to the same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set is half that of frames coded referring to the same sequence parameter set (see below).

In bitstreams of chroma_format_idc value equal to one, the nominal vertical and horizontal relative locations of luma and chroma samples in frames are shown in Figure 6‑1. Alternative chroma sample relative locations may be indicated in video usability information (see Annex E).

[image: image1.wmf]

...

.

.

.

.

.

.

= Location of luma sample

= Location of chroma sample

Guide:

Figure 6‑1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame
A frame consists of two fields as described below. A coded picture may represent a coded frame or an individual coded field. A coded video sequence conforming to this Recommendation | International Standard may contain arbitrary combinations of coded frames and coded fields. The decoding process is also specified in a manner that allows smaller regions of a coded frame to be coded either as a frame or field region, by use of macroblock-adaptive frame-field coding.

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time, or are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are interleaved. The first (i.e., top), third, fifth, etc. rows of a decoded frame are the top field rows. The second, fourth, sixth, etc. rows of a decoded frame are the bottom field rows. A top field consists of only the top field rows of a decoded frame. When the top field or bottom field of a decoded frame is used as a reference field (see below) only the even rows (for a top field) or the odd rows (for a bottom field) of the decoded frame are used.

In bitstreams of chroma_format_idc idc value equal to one, the nominal vertical and horizontal relative locations of luma and chroma samples in top and bottom fields are shown in Figure 6‑2. The nominal vertical sampling relative locations of the chroma samples in a top field are specified as shifted up by one-quarter luma sample height relative to the field-sampling grid. The vertical sampling locations of the chroma samples in a bottom field are specified as shifted down by one-quarter luma sample height relative to the field-sampling grid. Alternative chroma sample relative locations may be indicated in the video usability information (see Annex E).

NOTE – The shifting of the chroma samples is in order for these samples to align vertically to the usual location relative to the full-frame sampling grid as shown in Figure 6‑1.

[image: image2.wmf]

...

.

.

.

.

.

.

= Location of luma sample

= Location of chroma sample

Guide:

Top field

[image: image3.wmf]

...

.

.

.

.

.

.

= Location of luma sample

= Location of chroma sample

Guide:

Bottom field

Figure 6‑2 – Nominal vertical and horizontal sampling locations of samples top and bottom fields.
In bitstreams of chroma_format_idc value equal to 2 or 4, the luma and chroma samples are co-sited and the nominal locations in a frame and in fields are as shown in figures 6-3 and 6-4 respectively.

[image: image4.wmf]

...

.

.

.

.

.

.

= Location of luma sample

= Location of chroma sample

Guide:

Figure 6‑3 – Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame

[image: image5.wmf]

...

.

.

.

.

.

.

= Location of luma sample

= Location of chroma sample

Guide:

Top field

 EMBED Word.Picture.8 [image: image6.wmf]

...

.

.

.

.

.

.

= Location of luma sample

= Location of chroma sample

Guide:

Bottom field

Figure 6‑4 – Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields.

In bitstreams of chroma_format_idc value equal to 3 or 5, all array samples are co-sited.

[Ed: There may be an implicit assumption above that chroma_format_idc = 3&5 are progressive only. Also, Do we need to say anything about chroma_format_idc = 0?]
3 Sample Bit Depth (BD) Extensions

3.1 Subclauses: 5.7 “Mathematical functions”, Equations (8-76, 8-98, 8-187, 8-188, 8-191, 8-192, 8-193, 8-218, 8-219, 8-220, 8-245, 8-247, 8-252, 8-292, 8-299, 8-308, 8-312).

Define new clipping function:

ClipB(x) = Clip3(0, (1<<BitDepth) – 1, x)

Replace Clip1() with ClipB() in equations (8-76, 8-98, 8-187, 8-188, 8-191, 8-192, 8-193, 8-218, 8-219, 8-220, 8-245, 8-247, 8-252, 8-292, 8-299, 8-308, 8-312).

3.2 Subclause: 8.3.1 “Intra_4x4 prediction process for luma samples and 8.3.3 Intra prediction process for chroma samples, equations (8-50, 8-75, 8-85, 8-88, 8-91, and 8-95)”.

Change the right side of the equations from

= 128

to

= 2BitDepth - 1
3.3 Subclause: 8.5.6 QP-Invariant Modifications

Replace equations (8-257), (8-258) and surrounding text with:
· If QPY is greater than or equal to 6*(10-BitDepth), the scaled result shall be derived as

[image: image7.wmf]0..3

j

i,

10),

BitDepth

6

 /

QP

(

)

)

0

0,

8))%6,

-

(BitDepth

*

6

(QP

(

LevelScale

*

f

(

dcY

Y

Y

ij

ij

=

-

+

<<

+

=

(8-257)

· Otherwise (QPY is less than 6*(10-BitDepth)), the scaled results shall be derived as

[image: image8.wmf]0..3

j

i,

),

6

 /

QP

BitDepth

10

(

)

2

)

0

0,

6,

%

8))

-

(BitDepth

*

6

(QP

(

LevelScale

*

f

(

dcY

Y

/6

QP

BitDepth

9

Y

ij

ij

Y

=

-

-

>>

+

+

=

-

-

(8-258)

3.4 Subclause: 8.5.7 QP-Invariant Modifications

Replace equations (8-260), (8-261) and surrounding text with:

· If QPC is greater than or equal to 6*(9-BitDepth), the scaling result shall be derived as

[image: image9.wmf]1

0,

j

i,

),

9

BitDepth

6

 /

QP

(

)

)

0

0,

6,

%

8))

-

(BitDepth

*

6

(QP

(

LevelScale

*

f

(

dcC

C

C

ij

ij

=

-

+

<<

+

=

(8-260)

· Otherwise (QPC is less than 6*(9-BitDepth)), the scaling results shall be derived by

[image: image10.wmf]1

0,

j

i,

),

6

 /

QP

BitDepth

9

(

)

2

)

0

0,

6,

%

8))

-

(BitDepth

*

6

(QP

(

LevelScale

*

f

(

dcC

C

/6

QP

BitDepth

8

C

ij

ij

C

=

-

-

>>

+

+

=

-

-

(8-261)

3.5 Subclause: 8.5.8 QP-Invariant Modifications

Replace equation (8-267) with:

[image: image11.wmf]0..3

j

i,

),

6

)/

8)

-

(BitDepth

*

6

(qP

(

)

)

n

m,

6,

%

8))

-

(BitDepth

*

6

(qP

(

LevelScale

*

c

(

w

ij

ij

=

+

<<

+

=

3.6 Subclause: Annex E.2.1 “video_full_range_flag”

Change text to read as follows:

video_full_range_flag indicates the black level and range of the luma and chroma signals as derived from E’Y, E’PB, and E’PR or E’R, E’G, and E’B analogue component signals and X = 2(BitDepth-8):

If video_full_range_flag is equal to 0,

Y, R, G, or B = Round(X * 219 * E’YRGB + (X * 16))

Cb = Round((X * 224 * E’PB) + (X * 128))

Cr = Round((X * 224 * E’PR) + (X * 128))

Otherwise (video_full_range_flag is equal to 1),

Y, R, G, or B = Round((2BitDepth -1) * E’YRGB)

Cb = Round((2BitDepth -1) * E’PB + 2BitDepth-1)

Cr = Round((2BitDepth -1) * E’PR + 2BitDepth-1)

When the video_full_range_flag syntax element is not present, video_full_range_flag value shall be inferred to be equal to 0.

For BitDepth greater than 10, component values are always full range. (Note potential PCM issue.)

3.7 Subclauses: 7.4.2.2, 7.4.3, 7.4.5 and 8.5.5. Extending QP Range

In subclause 7.4.2.2:

In the description of pic_init_qp_minus26 replace the sentence “The value of pic_init_qp_minus26 shall be in the range of -26 to +25, inclusive” with “The value of pic_init_qp_minus26 shall be in the range of (-26-6*(BitDepth-8)) to +25, inclusive”.

In subclause 7.4.3:

After equation (7-16) replace the phrase “QPY is in the range of 0 to 51, inclusive” with “QPY is in the range of -6*(BitDepth-8) to 51, inclusive”.

In subclause 7.4.5:

Replace equation (7-23) with

QPY = Clip3(-6*(BitDepth-8), 51, QPY,PREV + mb_qp_delta)

(7-23)
In subclause 8.5.5:

Replace the sentence “QP quantisation parameter values QPY, QPC, QSY, and QSC shall be in the range of 0 to 51, inclusive” with “QP quantisation parameter values QPY, QPC, QSY, and QSC shall be in the range of -6*(BitDepth-8) to 51, inclusive”.

3.8 Subclauses: 8.7.2.2 and 8.7.2.3, Loop filter parameters must be scaled to BitDepth
Multiply the values of α and β from Table 8-14 and the value of tC0 from Table 8-15 by 2(BitDepth-8).
3.9 Different Bit depths for Luma & Chroma (e.g. 10 bits luma, 8 bits chroma)

[Ed: approved for initial design but syntax specification is incomplete.]
4 Chroma Format (CF) Extensions
4.1 Subclause: 7.3.2.2 “Picture Parameter Set RBSP Syntax”, other places TBD.

Define three new pic_init_qp_minus26 parameters in addition to the current Luma or Luma equivalent. Define pic_init_qpc0_minus26 (for second component in the Chroma Format list), pic_init_qpc1_minus26 (for third component), pic_init_qpc2_minus26 (for fourth component).
[Ed: We agreed to change this from pic_inits for each of the additional components to QP offsets for the chroma (or XZ, BR) and optional alpha values.]
Add these optional component QP fields to the Picture Parameter Set:

	if (profile_idc == ??? && chroma_format_idc>2) {
	
	

	
pic_init_qpc0_minus26 /* relative to 26 */
	1
	se(v)

	pic_init_qpc1_minus26 /* relative to 26 */
	1
	se(v)

	pic_init_qpc2_minus26 /* relative to 26 */
	1
	se(v)

	 }
	
	

	if(profile_idc == ??? && chroma_format_idc>2) {
	
	

	pic_init_qpc1_minus26 /* relative to 26 */
	1
	se(v)

	}
	
	

4.2 Prediction and Transform modifications for 4:2:2 and 4:4:4 formats
4.2.1 Intra Prediction

Proper action must be taken to produce DC and plane mode.

Proposal #1 –

For 4:4:4 the calculations will be the same as for the appropriate modes for luma 16x16 intra.

For 4:2:2 DC:
(2(sum of sample values above) + (sum of sample values to the left))//32. Plane:
Take 8x16 block size into account

Proposal #2 –

Both Intra_4x4 prediction and Intra_16x16 prediction can be applied equally on all color components. Both shall not be used at the same time for each component, and each component shall not use different intra prediction mode. For example, when Intra_4x4 prediction is used, all color components shall use only one mode of Intra_4x4 prediction.

4.2.2 Inter Prediction

4:4:4
Same motion vectors are used directly for all components.

Use 6 tap filters for all N components (Alpha also if present).

4:2:2
Vertical motion vectors are used directly. Horizontal vectors are scaled

by 2 as for 4:2:0. Use bilinear interpolation based on 1/8 pel horizontal

and ¼ pel vertical motion resolution.

4.2.3 Transformation of chroma data for 4:2:2

Transformation of an 8x8 block in 4:2:0 is done in two steps:
· 4x4 transforms of the subblocks

· 2x2 transform of the DC values. [This was not shown to have significant value in earlier studies; this may be omitted if for some consistency reasons.]

For 4:2:2 similar approach is used:

· 4x4 transform of the subblocks
· 2x4 transform (Hadamard) of the DC values.

Basis vectors:

¼ ¼ ¼ -¼

¼ ¼ ¼ -¼

¼ ¼ ¼ -¼

¼ ¼ ¼ -¼ etc.
Division with 4 is chosen instead of 2(2. The reason is the low frequency characteristics of chroma. Dividing by 4 will result in bit rate balance between luma and chroma more consistent with those used in 4:2:0

4.2.4 Transformation of chroma data for 4:4:4

A similar approach is used:

· 4x4 transforsform of the subblocks shown above

· 4x4 transform (Hadamard)of the DC values.

Basis vectors:
1/8 1/8 1/8 1/8 1/8 1/8 -1/8 -1/8

1/8 1/8 1/8 1/8 1/8 1/8 -1/8 -1/8

1/8 1/8 1/8 1/8 1/8 1/8 -1/8 -1/8

1/8 1/8 1/8 1/8 1/8 1/8 -1/8 -1/8 etc

Division with 8 is chosen instead of 4 is used for the same reason as mentioned above.

4.3 VLC entropy coding modifications for chroma extensions.

The only changes needed are for coding of chroma DC coefficients. In addition the number of AC blocks will be different, but coding of each AC 4x4 block is unchanged.

4.3.1 Modification for 4:2:2

The table total_ceff()/trailing_ones():Num-VLC_Chroma_DC must be changed reflecting that there may be 0 to 8 coefficients. New code table:

Trailing_ones
0
1
2
3

Total_coeff

0
1
-
-
-

1
0001111
01
-
-

2
0001110
0001101
001
-

3
000000111
0001100
0001011
00001

4
000000110
000000101
0001010
000001

5
0000000111
0000000110
000000100
0001001

6
00000000111
00000000110
0000000101
0001000

7
000000000111
000000000110
00000000101
0000000100

8
0000000000111
000000000101
000000000100
00000000100

A scanning order for the 2x4 transform must be defined as for instance:
0
2

1
5

3
6

4
7
The table for total_zeroes_chroma_DC must be changed reflecting that there may be 0 to 7 zeroes. New code table:

NumCoeff
1
2
3
4
5
6
7

Total zeroes

0

1
000
000
110
00
00
0

1

010
01
001
00
01
01
1

2

011
001
01
01
10
1

3

0010
100
10
10
11

4

0011
101
110
111

5

0001
110
111

6

00001
111

7

00000

4.3.2 VLC Modification for 4:4:4

Similar action is taken here. However, suitable tables already exist for 4x4 blocks.

Use total_ceff()/trailing_ones():Num-VLC0

Use normal Zig-zag scanning

Use the same table for total_zeroes as for luma

4.3.3 CABAC Support for 4:2:2 or 4:4:4

Two CABAC related aspects need to be considered when designing an extension of 4:2:0 within H.264/AVC:

4.3.3.1 If additional bits would be added to the CBP (as suggested in H019), the corresponding binarization and modeling part in CABAC would require a revision. Probably we would not need to specify additional models, but at least a revised context assignment scheme may be required in that case. The latter may even be true, if the CBP would be just re-interpreted. However, in case the interpretation of CodedBlockPatternChroma would be kept the same but with a different (larger) scope, the CABAC coding of CBP could remain unchanged. Of course, in terms of simplicity the last option is the most appealing one.

4.3.3.2 Since the chroma DC blocks will change in dimension from 2x2 to 2x4 or 4x4, coding of the chroma DC transform coefficients has to be adapted. The flags significant_coeff_flag and last_siginificant_coeff_flag are encoded using a model related to their position in the scanning path. If we want to keep that modeling scheme, 2x4 or 2x8 additional models would be required for each flag. Furthermore, for the coding of the absolute values of chroma DC levels one additional model would be necessary, since the number of decoded levels with abs. value greater than 1 can be larger than 3 in chroma DC blocks with dimension 2x4 or 4x4.
4.4 Chroma-related Deblocking modifications

[Ed: Refine below.]

Deblocking filter process

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock, vertical edges are filtered first, from left to right, and then horizontal edges are filtered from top to bottom. The luma deblocking filter process is performed on four 16-sample edges, and the deblocking filter process for each chroma components is performed on two 8-sample edges when chroma_format is 1 (4:2:0 format), and on four 16-sample edges when chroma_format is 3 (4:4:4 format), for the horizontal direction as shown on the left side of Figure 8‑9 and for the vertical direction as shown on the right side of Figure 8‑9 [Ed. Note: The Figure 8‑9 should be modified accordingly].

Subclause: 8.7.1 Filtering process for block edges

…

The variable nE is derived as follows.

If chromaEdgeFlag is equal to 0, nE is 16;

If chromaEdgeFlag is equal to 1 and chroma_format is 3, nE is 16;

Otherwise (chromaEdgeFlag is equal to 1 and chroma_format is 1), nE is 8.

REFERENCES

[1] “Final Draft International Standard Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC)” ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6 Document JVT-G050(r1), March/May 2003

File:JVT-H037 Rev 0
Page: 14
Date Saved: 2003-06-05

_1115508837.doc

Top field

Guide:

= Location of chroma sample

= Location of luma sample

.

.

.

.

.

.

...

_1115509365.doc

Bottom field

Guide:

= Location of chroma sample

= Location of luma sample

.

.

.

.

.

.

...

_1115508112.doc
[image: image1.emf]

Guide:

= Location of chroma sample

= Location of luma sample

.

.

.

.

.

.

...

