	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

4th Meeting: Klagenfurt, Austria, 22-26 July, 2002
	Document: JVT-D083
Filename: JVT-D083.doc

	Title:
	Structured VLC based on Golomb code for CAVLC

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	S.Adachi, S.Kato, K.Sugimoto, T.K.Tan, and M.Etoh
3-5, Hikari-no-oka, Yokosuka, Japan
	
Tel:
Email:
	
+81-468-40-3519
adachi@spg.yrp.nttdocomo.co.jp

	Source:
	NTT DoCoMo, Inc.

1. Introduction

Context-based adaptive variable length coding (CAVLC) [1] has been adopted in the last Fairfax meeting, and it provides considerable improvement of coding efficiency over the conventional DCT coefficient coding by UVLC. The current CAVLC is characterized as unstructured VLC, and uses extensive dedicated code tables. Lack of generality due to these code tables was argued and adaptation of structured VLC was strongly requested at the last meeting.

In this contribution, we propose to replace the dedicated unstructured VLC in the current CAVLC with structured VLC based on Golomb code. We introduce a simple “truncation” rule to provide “compactness” (i.e., no reversed order in code length, no redundant code space for finite set of symbols). We call the structured VLC “Truncated Golomb code.” Keeping the current CAVLC framework intact, the introduction of this code has following advantages.

1.
Generality of code table design (performance stability in general sequences)

If we design a VLC table specifically tuned for several test sequences, the dedicated VLC table always outperforms over a generic VLC for the test sequences. When encoding other sequences, however, optimality of the dedicated code table is not guaranteed. In general, we have been suffering from over-fitting or over-learning problem in parameter estimation. By increasing the number of model parameters, the expected parameter estimation error is increased in such design as discussed in an extensive literature. If we can model the probability density function (PDF) with fewer parameters and the performance is similar to the dedicated VLC tables (i.e., an extreme case of many-parameter models), the parametric VLC table has performance stability in general sequences.

2.
Extensibility toward future improvement

Truncated Golomb code provides structured VLC tables parameterized by three variables: one for the number of symbols and two for PDF representation. Parametric description is very important for future evolution of JVT codec, since we will be able to avoid introducing dedicated VLC tables. Conditional PDF is also easily modeled by associating PDF parameters with the context.

3.
Low implementation complexity

By definition of Golomb code, the VLC decoder can be realized by straightforward table matching. No state-transition decoders (automata) are required.
Moreover, if we need more code tables for future improvement, truncated Golomb code provides implementation commonality for each VLC decoder, while an additional dedicated VLC requires us to implement another VLC decoder.
According the abovementioned advantages, adoption of truncated Golomb code is promising if its performance is considerably similar to that of the current dedicated VLC. In the following sections, we will see code design and experimental.

2. A “compact” structured code: Truncated Golomb code

2.1 Problem to be solved

Structured VLC such as Golomb code does not need to store its table since its correspondence between symbols and codes can be mathematically defined. Change of its parameter (e.g., bit length of binary part) can provide various PDF without increase of memory for the table.

However, structured VLC is not appropriate to code small number of symbols (i.e., a small table) such as the Run tables of CAVLC. Table 1 shows an example. (a) shows a Golomb code table of p=2 and q=0. Here, p denotes that the binary part provides p variations to a unary code, and q denotes that the binary part is appended to a code after code number q (q=0 means all of the codes have the binary part). If an element to be coded has limited number of symbols, the Golomb code table is truncated. But simple truncation results in unused code space, thus it decreases coding efficiency (Table 1 (b)). To remove unused code space, codes which have unused code space can be changed. But it results in reversed order of code length (Table 1 (c)) and it decreases coding efficiency anyway.

Table 1. A Golomb code table and its truncation into a 7 symbol table

	Code number
	(a)

p=2, q=0
	(b)
	(c)

	0
	1 0
	1 0
	1 0

	1
	1 1
	1 1
	1 1

	2
	01 0
	01 0
	01 0

	3
	01 1
	01 1
	01 1

	4
	001 0
	001 0
	001 0

	5
	001 1
	001 1
	001 1

	6
	0001 0
	0001 0
	000

	7
	0001 1
	
	

	8
	00001 0
	
	

	...
	...
	
	

To cope with this problem that prevents introduction of structured VLC into CAVLC, we introduce a simple truncation rule.

2.2 Proposed “truncation” rule

Figure 1 illustrates a Golomb code tree explaining the basic “truncation” rule. Figure 1 (a) shows a code tree of a Golomb code table. Sub tree B corresponds to the binary part of Golomb code. Figure 1 (b) shows truncated one. Here, the tree is truncated at a node i=3 or at a node within sub tree B to limit the number of symbols. In this case, the tree may have reversed order of code length. We truncate the tree at the upper node, and attach a new sub tree C that has appropriate number of nodes to limit the number of total symbols.

[image: image11.wmf]B

B

B

B

B

B

B

B

1

1

1

1

0

0

0

0

i = 0

i = 1

i = 2

i = 3

B

B

B

B

B

B

1

1

1

0

0

0

i = 0

i = 1

i = 2

C

C

(a) A code tree of a Golomb code
(b) A truncated tree with a new sub tree

Figure 1. Illustration of the truncation rule on a code tree

Table 2 shows Golomb code tables. These tables serve as a base table to be truncated, and provide various PDF with their parameter (p, q). Table 3 shows small tables to be required as a sub table (i.e., this corresponds to the sub tree C attached to a node of a Golomb code tree in Figure 1). Here, we have tables of 2, 3, 4, 5, 6, 7, and 8 symbols, and their variation of PDF properties. Those tables do not have reversed order of code length nor redundant code space. Therefore, if the length of a shortest code from a sub table C is equal or longer than that of a longest code from a sub tree B, we can obtain a table of limited number of symbols, which do not have reversed order of code length nor redundant code space.

Table 2. Golomb tables as base tables

	Code Number
	p=2, q=0
	p=2, q=1
	p=2, q=0
	p=3, q=0
	P=4, q=0

	0
	1
	1
	1 0
	1 0
	1 00

	1
	01
	01 0
	1 1
	1 10
	1 01

	2
	001 0
	01 1
	01 0
	1 11
	1 10

	3
	001 1
	001 0
	01 1
	01 0
	1 11

	4
	0001 0
	001 1
	001 0
	01 10
	01 00

	5
	0001 1
	0001 0
	001 1
	01 11
	01 01

	6
	00001 0
	0001 1
	0001 0
	001 0
	01 10

	7
	00001 1
	00001 0
	0001 1
	001 10
	01 11

	8
	000001 0
	00001 1
	00001 0
	001 11
	001 00

	9
	000001 1
	000001 0
	00001 1
	0001 0
	001 01

	10
	0000001 0
	000001 1
	000001 0
	0001 10
	001 10

	11
	0000001 1
	0000001 0
	000001 1
	0001 11
	001 11

	12
	00000001 0
	0000001 1
	0000001 0
	00001 0
	0001 00

	13
	00000001 1
	00000001 0
	0000001 1
	00001 10
	0001 01

	14
	000000001 0
	00000001 1
	00000001 0
	00001 11
	0001 10

	...
	...
	...

	...

	...

	...

Table 3. Small tables as sub tables

	Code Number
	Table 2
	Table 3
	Table 4-1
	Table 4-2
	Table 5
	Table 6-1
	Table 6-2
	Table 7
	Table 8

	0
	1
	1
	1
	11
	11
	11
	11
	11
	111

	1
	0
	01
	01
	10
	10
	10
	10
	101
	110

	2
	
	00
	001
	01
	01
	01
	011
	100
	101

	3
	
	
	000
	00
	001
	001
	010
	011
	100

	4
	
	
	
	
	000
	0001
	001
	010
	011

	5
	
	
	
	
	
	0000
	000
	001
	010

	6
	
	
	
	
	
	
	
	000
	001

	7
	
	
	
	
	
	
	
	
	000

Each table is assigned to Golomb code parameters p and q as shown in Table 4. L in Table 4 denotes “residual number” which means the number of nodes to be attached as a sub tree C in Figure 1 (b). The total number of symbols n and Golomb code parameters p and q gives L, as described below. To provide a table with flat PDF, we use simple binary code table in addition to the Golomb code based VLC.

Table 4. Combination of the tables relative a parameter pdf

	Golomb code table
	Sub table

	
	L=2
	L=3
	L=4
	L=5
	L=6
	L=7
	L=8

	p=2, q=2
	Table 2
	Table 3
	Table 4-1
	
	
	
	

	p=2, q=1
	Table 2
	Table 3
	Table 4-1
	
	
	
	

	p=2, q=0
	Table 2
	Table 3
	Table 4-1
	
	
	
	

	p=3, q=0
	Table 2
	Table 3
	Table 4-2
	Table 5
	Table 6-1
	
	

	p=4, q=0
	Table 2
	Table 3
	Table 4-2
	Table 5
	Table 6-2
	Table 7
	Table 8

	(binary)
	

Combination of the tables is uniformly given from Golomb code parameters p, q, and a total number of symbols n. Thus encoding and decoding of a certain symbol/code can be mathematically defined.

Encoding process of an m-th index in a table (p, q, n);

1. Get h=(n-q)%p. in case of h==0, h=p.

2. Get “residual number” L=h+p. in case of L>n, L=n.

3. if L==n, a code is a code from the assigned sub table of L symbols. Output m-th code of the sub table.

4. if m<=n-L, a code is a Golomb code. Output m-th code of the assigned Golomb code table.

5. if m>n-L, a code is a truncated Golomb code. First, output “0”s (n-L+q)/p times as a preceding part of a code. Second, output a (m+L-n)-th code of the sub table of L symbols as a suffix of a code.

Decoding process of a code in a table (p, q, n);

1. Get h=(n-q)%p. in case of h==0, h=p.

2. Get “residual number” L=h+p. if L>n, L=n.

3. if L==n, a code is a code from the assigned sub table of L symbols. Output a corresponding index from the sub table.

4. Check the number of “0”s at the top of a code, t.

5. if t<(n-L+q)/p, a code is a Golomb code. Output a corresponding index from the assigned Golomb code table.

6. if t>=(n-L+q)/p, a code is a truncated Golomb code. From the bits after (n-L+q)/p “0”s, get a corresponding intermediate index x from the sub table of L symbols. Output an index x+n-L.

Using the above encoding/decoding rules, various tables with various PDF properties can be provided without additional memory to store tables. Table 5 shows variations of tables of 15 symbols derived from the above procedure.

Table 5. Variations of truncated Golomb tables of 15 symbols

(Bold bits denote bits from sub tables)

	Code Number
	p=2, q=2
	p=2, q=1
	p=2, q=0
	p=3, q=0
	P=4, q=0

	0
	1
	1
	1 0
	1 0
	1 00

	1
	01
	01 1
	1 1
	1 10
	1 01

	2
	001 0
	01 0
	01 0
	1 11
	1 10

	3
	001 1
	001 0
	01 1
	01 0
	1 11

	4
	0001 0
	001 1
	001 0
	01 10
	01 00

	5
	0001 1
	0001 0
	001 1
	01 11
	01 01

	6
	00001 0
	0001 1
	0001 0
	001 0
	01 10

	7
	00001 1
	00001 0
	0001 1
	001 10
	01 11

	8
	000001 0
	00001 1
	00001 0
	001 11
	00 11

	9
	000001 1
	000001 0
	00001 1
	000 11
	00 101

	10
	0000001 0
	000001 1
	000001 0
	000 10
	00 100

	11
	0000001 1
	000000 1
	000001 1
	000 01
	00 011

	12
	0000000 1
	000000 01
	000000 1
	000 001
	00 010

	13
	0000000 01
	000000 001
	000000 01
	000 0001
	00 001

	14
	0000000 00
	000000 000
	000000 00
	000 0000
	00 000

3. Adaptation into NumCoef/Trailing1s, TotalZeros, and Run

Replacement of the current NumCoef/Trailing1s, TotalZeros, and Run tables is described below. We do not replace Level tables of the current CAVLC since they are already Golomb based structured VLC.

3.1 NumCoef/Trailing1s
Since the original NumCoef/Trailing1s tables are 2D style VLC tables, we define a simple rule to assign a code number of the structured table to NumCoef/Trailing1s, such as the one used for the former UVLC coding of Level/Run combination.

Table 6 shows an example mapping of code numbers on NumCoef/Trailing1s table. For the NumCoef/Trailing1s combination there is a simple rule. The NumCoef/Trailing1s combinations are assigned a code number according to the priority: 1) Trailing1s 2) NumCoef (ascending).
Table 6. Mapping of a code number on NumCoef/Trailing1s tables (Num-VLC0).

	Trailing1s

NumCoef
	0
	1
	2
	3

	0
	0
	
	
	

	1
	4
	1
	
	

	2
	8
	5
	2
	

	3
	12
	9
	6
	3

	4
	16
	13
	10
	7

	5
	20
	17
	14
	11

	6
	24
	21
	18
	15

	7
	28
	25
	22
	19

	8
	32
	29
	26
	23

	9
	36
	33
	30
	27

	10
	40
	37
	34
	31

	11
	44
	41
	38
	35

	12
	48
	45
	42
	39

	13
	52
	49
	46
	43

	14
	56
	53
	50
	47

	15
	59
	57
	54
	51

	16
	61
	60
	58
	55

FLC representation of NumCoef/Trailing1s, which can be chosen in addition to the VLC tables, is not modified.

Table 7 to Table 10 show the parameter and codes of those tables. For long codes, we only show its code length in the Table.

Table 7. Parameters and actual codes for NumCoef/Trailing1s_ Num-VLC0 table.

(Bold bits denote bits from sub tables)

p=2, q=2, n=62,
	Trailing1s

NumCoef
	0
	1
	2
	3

	0
	1
	
	
	

	1
	00010
	01
	
	

	2
	0000010
	00011
	0010
	

	3
	000000010
	0000011
	000010
	0011

	4
	00000000010
	000000011
	0000001
	000011

	5
	(12bits)
	00000000011
	0000000010
	00000011

	6
	(14bits)
	(12bits)
	000000000010
	000000001

	7
	(16bits)
	(14bits)
	(13bits)
	000000000011

	8
	(18bits)
	(16bits)
	(15bits)
	(13bits)

	9
	(20bits)
	(18bits)
	(17bits)
	(15bits)

	10
	(22bits)
	(20bits)
	(19bits)
	(17bits)

	11
	(24bits)
	(22bits)
	(21bits)
	(19bits)

	12
	(26bits)
	(24bits)
	(23bits)
	(21bits)

	13
	(28bits)
	(26bits)
	(25bits)
	(23bits)

	14
	(30bits)
	(28bits)
	(27bits)
	(25bits)

	15
	(31bits)
	(30bits)
	(29bits)
	(27bits)

	16
	(32bits)
	(32bits)
	(31bits)
	(29bits)

Table 8. Parameters and actual codes for NumCoef/Trailing1s_ Num-VLC1 table.

(Bold bits denote bits from sub tables)

p=4, q=0, n=62,
	Trailing1s

NumCoef
	0
	1
	2
	3

	0
	100
	
	
	

	1
	0100
	101
	
	

	2
	00100
	0101
	110
	

	3
	000100
	00101
	0110
	111

	4
	0000100
	000101
	00110
	0111

	5
	00000100
	0000101
	000110
	00111

	6
	000000100
	00000101
	0000110
	000111

	7
	0000000100
	000000101
	00000110
	0000111

	8
	00000000100
	0000000101
	000000110
	00000111

	9
	00000000010
	00000000101
	0000000110
	000000111

	10
	00000000001
	000000000101
	00000000110
	0000000111

	11
	(12bits)
	00000000001
	0000000001
	00000000111

	12
	(13bits)
	(12bits)
	00000000001
	0000000001

	13
	(14bits)
	(13bits)
	(12bits)
	00000000001

	14
	(15bits)
	(14bits)
	(13bits)
	(12bits)

	15
	(16bits)
	(15bits)
	(14bits)
	(13bits)

	16
	(17bits)
	(16bits)
	(15bits)
	(14bits)

Table 9. Parameters and actual codes for NumCoef/Trailing1s_ Num-VLC2 table.

(Bold bits denote bits from sub tables)

binary, n=62,
	Trailing1s

NumCoef
	0
	1
	2
	3

	0
	11111
	
	
	

	1
	111001
	11110
	
	

	2
	110101
	111000
	111011
	

	3
	110001
	110100
	110111
	111010

	4
	101101
	110000
	110011
	110110

	5
	101001
	101100
	101111
	110010

	6
	100101
	101000
	101011
	101110

	7
	100001
	100100
	100111
	101010

	8
	011101
	100000
	100011
	100110

	9
	011001
	011100
	011111
	100010

	10
	010101
	011000
	011011
	011110

	11
	010001
	010100
	010111
	011010

	12
	001101
	010000
	010011
	010110

	13
	001001
	001100
	001111
	010010

	14
	000101
	001000
	001011
	001110

	15
	000010
	000100
	000111
	001010

	16
	000000
	000001
	000011
	000110

Table 10. Parameters and actual codes for NumCoef/Trailing1s_Chroma_DC table.

(Bold bits denote bits from sub tables)

p=2, q=2, n=14,
	Trailing1s

NumCoef
	0
	1
	2
	3

	0
	1
	
	
	

	1
	00010
	01
	
	

	2
	0000010
	00011
	0010
	

	3
	00000001
	0000011
	000010
	0011

	4
	000000000
	000000001
	0000001
	000011

3.2 TotalZeros

Some of the original TotalZeros tables have its shortest code in the middle of the table. Therefore we define a “center” value for each table of TotalZeros as shown in Table 11, and assign a code number starting from the “center” as shown in Table 12. Table 13 and Table 14 show the parameter and codes of those tables.

Table 11. “center” values for TotalZeros tables

	NumCoef
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	Center
	0
	0
	7
	5
	9
	5
	6
	7
	6
	5
	4
	3
	3
	2
	0

Table 12. Mapping of a code number on TotalZeros tables (TotalZeros table for NumCoef=7).

	NumCoef

TotalZeros
	7

	0
	9

	1
	8

	2
	7

	3
	5

	4
	3

	5
	1

	6
	0

	7
	2

	8
	4

	9
	6

Table 13. Parameters and actual codes for TotalZeros tables for all 4x4 blocks.

(Bold bits denote bits from sub tables)

	NumCoef

TotalZeros
	1
	2
	3
	4
	5
	6
	7
	

	
	p=3, q=0,

n=16,

center=0
	p=4, q=0,

n=15,

center=3
	p=4, q=0,

n=14,

center=6
	p=4, q=0,

n=13,

center=8
	p=4, q=0,

n=12,

center=2
	p=3, q=0,

n=11,

center=8
	p=2, q=0,

n=10,

center=7
	

	0
	10
	0101
	00010
	00000
	111
	00000
	000000
	

	1
	110
	111
	0010
	00001
	101
	00001
	000001
	

	2
	111
	101
	0111
	0001
	100
	0001
	00001
	

	3
	010
	100
	0101
	0010
	110
	0010
	0001
	

	4
	0110
	110
	111
	0111
	0111
	0011
	0011
	

	5
	0111
	0100
	101
	0101
	0110
	0111
	011
	

	6
	0010
	0110
	100
	111
	0101
	010
	11
	

	7
	00110
	0111
	110
	101
	0100
	110
	10
	

	8
	00111
	0011
	0100
	100
	0011
	10
	010
	

	9
	00010
	00101
	0110
	110
	0010
	111
	0010
	

	10
	000110
	00100
	0011
	0100
	0001
	0110
	
	

	11
	000111
	00011
	00011
	0110
	0000
	
	
	

	12
	000011
	00010
	00001
	0011
	
	
	
	

	13
	000010
	00001
	00000
	
	
	
	
	

	14
	000001
	00000
	
	
	
	
	
	

	15
	000000
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	NumCoef

TotalZeros
	8
	9
	10
	11
	12
	13
	14
	15

	
	p=2, q=0,

n=9,

center=7
	p=2, q=0,

n=8,

center=6
	p=2, q=0,

n=7,

center=6
	p=3, q=0,

n=6,

center=4
	p=2, q=1,

n=5,

center=4
	p=2, q=0,

n=4,

center=3
	p=2, q=0,

n=3,

center=2
	p=2, q=0,

n=2,

center=0

	0
	00000
	00000
	0000
	0000
	0000
	000
	00
	1

	1
	00001
	00001
	0001
	0001
	0001
	001
	01
	0

	2
	0001
	0001
	001
	001
	001
	01
	1
	

	3
	0011
	001
	011
	10
	01
	1
	
	

	4
	0010
	011
	010
	11
	1
	
	
	

	5
	011
	010
	11
	01
	
	
	
	

	6
	11
	10
	10
	
	
	
	
	

	7
	10
	11
	
	
	
	
	
	

	8
	010
	
	
	
	
	
	
	

	9
	
	
	
	
	
	
	
	

	10
	
	
	
	
	
	
	
	

	11
	
	
	
	
	
	
	
	

	12
	
	
	
	
	
	
	
	

	13
	
	
	
	
	
	
	
	

	14
	
	
	
	
	
	
	
	

	15
	
	
	
	
	
	
	
	

Table 14. Parameters and actual codes for TotalZeros tables for chroma DC 2x2 blocks.

(Bold bits denote bits from sub tables)

	NumCoef

TotalZeros
	1
	2
	3

	
	p=2, q=0,

n=4
	p=2, q=0,

n=3
	p=2, q=0,

n=2

	0
	1
	1
	1

	1
	01
	01
	0

	2
	001
	00
	

	3
	000
	
	

3.3 Run

The proposed tables can immediately replace the original Run tables. We simply define p, q, and n to each table. Table 15 shows those parameters and actual codes.

Table 15. Parameters and actual codes for Run tables.

(Bold bits denote bits from sub tables)
	Run left

Run before
	1
	2
	3
	4
	5
	6
	>6

	
	p=2, q=0,

n=2
	p=2, q=0,

n=3
	p=2, q=0,

n=4
	p=2, q=0,

n=5
	p=3, q=0,

n=6
	p=2, q=0,

n=7
	p=3, q=0,

n=15

	0
	1
	1
	11
	11
	11
	11
	10

	1
	0
	01
	10
	10
	10
	101
	110

	2
	
	00
	01
	01
	01
	100
	111

	3
	
	
	00
	001
	001
	011
	010

	4
	
	
	
	000
	0001
	010
	0110

	5
	
	
	
	
	0000
	001
	0111

	6
	
	
	
	
	
	000
	0010

	7
	
	
	
	
	
	
	00110

	8
	
	
	
	
	
	
	00111

	9
	
	
	
	
	
	
	00011

	10
	
	
	
	
	
	
	00010

	11
	
	
	
	
	
	
	00001

	12
	
	
	
	
	
	
	000001

	13
	
	
	
	
	
	
	0000001

	14
	
	
	
	
	
	
	0000000

4. Comparison of memory requirement

The original NumCoef/Trailing1s, TotalZeros, and Run tables of CAVLC have 29 distinct tables (4 NumCoeff/ Trailing1s tables, 18 TotalZeros tables, and 7 Run tables) and more than 400 entries of codes.

On the other hand, using the above-mentioned truncated Golomb code, each table can be specified with parameters p, q, and n (and “center” for some tables). The sub tables must be stored, but they have only 45 entries of codes. Therefore, truncated Golomb code tables require significantly less memory to store them.

Moreover, It should be noted that parametric representation of the tables provides adaptability for future evolution (e.g., optional coding tools) by simply assigning new value of three parameters. No additional code tables are required for this purpose.

5. Simulation results

The truncated Golomb code was implemented in the CAVLC [1] implementation based on JM1.1 provided by Real Networks. We compare coding efficiency of the original unstructured VLC and the truncated Golomb code. BDbitrates values of low QP rage (0, 4, 8, 12, in JM1.1) and high QP (16, 20, 24, 28, in JM1.1) are reported.

5.1 Simulation conditions

Table 16 shows the simulation conditions. They are consistent with the conditions [2].

Table 16. Simulation conditions

	Conditions
	Configuration

	QP First Frame
	the same as P frames

	QP Remaining Frame
	0, 4, 8, 12, 16, 20, 24, or 28 (P-frames, JM1.1)

	MV Resolution
	1/4-pel

	Search Range
	32 pixel

	Number Reference Frames
	5

	Number B Frames
	0 (P-frames, IPPP...)

	QP B Picture
	the same as P frames

	Restrict Search Range
	no restrictions

	RD Optimization
	on

5.2 Parameter setting for whole conditions

Table 17 shows BDbitrates of truncated Golomb code relative to the unstructured VLC of the current CAVLC. Positive value of BDbitrate denotes increase of bitrates and negative values denotes decrease of bitrates from the unstructured VLC.

Truncated Golomb code provides similar coding efficiency (on average 1% in BD bitrate) in both Low QP range and High QP range.

Table 17. BDbitrates of truncated Golomb code relative to the unstructured VLC
	Sequence
	BD bitrate [%]

	
	Intra
	Inter

	
	Low QP
	High QP
	Low QP
	High QP

	Container
	0.28
	1.50
	1.52
	0.71

	Foreman
	0.24
	1.30
	1.23
	1.58

	News
	-0.60
	0.80
	0.80
	0.88

	Silent
	-0.75
	0.12
	1.52
	1.83

	Mobile
	-0.49
	0.73
	0.89
	1.26

	Paris
	-0.58
	0.66
	0.76
	1.66

	Tempete
	-0.67
	0.27
	1.00
	1.07

	Average
	-0.34
	0.76
	1.10
	1.28

5.3 Parameter setting for Intra/Inter pictures and QPs

Since the truncated Golomb code provides various tables without increase of VLC tables, additional table selection can be introduced to achieve more accurate modeling of the PDF. Table 18 shows BDbitrates of truncated Golomb code, with distinct parameters (p, q) for each picture mode (Intra/Inter) and QP.

The results show that additional table and its selection can increase coding efficiency of CAVLC, and the parametric description of the truncated Golomb code can easily achieve it.

Table 18. BDbitrates of truncated Golomb code relative to the unstructured VLC
	Sequence
	BD bitrate [%]

	
	Intra
	Inter

	
	Low QP
	High QP
	Low QP
	High QP

	Container
	0.28
	1.17
	0.94
	0.46

	Foreman
	0.26
	0.82
	1.12
	0.55

	News
	-0.60
	0.69
	1.40
	0.46

	Silent
	-0.72
	-0.07
	1.86
	1.35

	Mobile
	-0.58
	0.32
	0.45
	0.47

	Paris
	-0.63
	0.63
	0.64
	0.54

	Tempete
	-0.64
	-0.20
	0.63
	0.08

	Average
	-0.38
	0.48
	1.00
	0.56

6. Conclusions
We proposed Truncated Golomb code to replace the unstructured VLC in the current CAVLC. The compact structured VLC offers generality, extensibility, and low complexity into CAVLC, and simulation results shows its similar coding efficiency in comparison with the dedicated unstructured VLC.

The replacement is applied only to unstructured VLC, keeping the current CAVLC framework intact. Therefore the change on CD and its software is minor.

References

[1] Gisle Bjøntegaard and Karl Lillevold , “Context-adaptive VLC (CVLC) coding of coefficients”, document JVT-C028, JVT of ISO/IEC MPEG & ITU-T VCEG, 3rd Meeting, Fairfax, Virginia, USA, 6-10 May, 2002
[2] Gary Sullivan and Gisle Bjontegaard, “Recommended Simulation Common Conditions for H.26L Coding Efficiency Experiments on Low-Resolution Progressive-Scan source Material,” document VCEG-N81, ITU- T Video Coding Experts Group (VCEG) Meeting, Santa Barbara, CA, USA, 24-27 September 2001.
(Append for Proposal Documents)

JVT Patent Disclosure Form

	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image1.wmf]
	[image: image2.png]1S0
NS

	[image: image3.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	NTT DoCoMo, Inc.
	

	Mailing address
	3-5, Hikari-no-oka, Yokosuka, Kanagawa
	

	Country
	Japan
	

	Contact person
	Minoru Etoh
	

	Telephone
	+81 468 40 3515
	

	Fax
	+81 468 40 3788
	

	Email
	etoh@mml.yrp.nttdocomo.co.jp
	

	Place and date of submission
	Klagenfurt, Austria, 22-26 July, 2002
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	
	

	Contribution number
	JVT-C
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image4.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image5.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image6.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	
[image: image7.wmf]

X

	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image8.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	
	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	
[image: image9.wmf]

X

	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image10.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

File:JVT-D083_draft3.doc
Page: 12
Date Saved: 2002-07-17

_1087916746.doc

X

_1087916783.doc

X

