	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

4th Meeting: Klagenfurt, Austria, 22-26 July, 2002
	Document: JVT-D063
Filename: JVT-D063.doc

	Title:
	FMO 101

	Status:
	Input Document to JVT

	Purpose:
	Information

	Author(s) or
Contact(s):
	Stephan Wenger
Teles AG / TU Berlin
Franklinstr. 28-29
D-10587 Berlin

Germany

Michael Horowitz

Polycom Incorporated

5000 Plaza on the Lake

Austin, Texas 78746 USA
	
Tel:
Email:
	
+49-172-3000813
stewe@cs.tu-berlin.de

+1 512.372.7091

mhorowitz@austin.polycom.com

	Source:
	Teles AG and Polycom Inc., ITU Sector Members

This document provides an introduction to FMO, and discusses in detail decoder implementation aspects of FMO, in particular scan-order processing of macroblocks when FMO is in use.

Flexible Macroblock Ordering (FMO) 101

Michael Horowitz, mhorowitz@austin.polycom.com

Stephan Wenger, stewe@cs.tu-berlin.de

Abstract: The purpose of this memo is to describe the FMO feature recently adopted into the JVT Committee Draft (CD) [
]. FMO breaks the implicit scan order of macroblocks within a slice. Instead, macroblocks can be assigned to slices in an arbitrary order that is defined by a static data structure known as Macroblock Allocation Map (MBAmap). FMO can be used to improve error resilience, enable more efficient error concealment, but is also helpful in certain non-error prone environments e.g. to implement parallel decoding.

1 History

The development of FMO-like algorithms started in 2001
 as a proprietary coding tool for commercial videoconferencing systems to improve their error resilience. Since late 2001, an H.263 based video conferencing system has been shipping with an error concealment feature implemented using an algorithm that is nearly identical to FMO [
]. The addition of this feature has enabled users to make and sustain video calls on lossy packet switched networks that were previously impossible. A demonstration of this product was shown at the JVT meeting in Geneva in January, 2002. At the same time, we proposed the inclusion of scattered slices [
] into emerging JVT video standard, which is one of many possible applications of FMO. The friendly reaction at that meeting encouraged us to improve scattered slices to a more generalized concept now known as FMO. At the Fairfax meeting in May, FMO was accepted as a baseline coding tool in the emerging JVT video coding standard.

2 The JVT Slice Layer

The basic structure element of packetized JVT video is a slice. A slice is a collection of macroblocks. Between the macroblocks of a slice, the in-picture prediction mechanisms (such as Intra prediction, motion vector prediction, CABAC, and CA-VLC) are active. Slice boundaries break these prediction mechanisms. However, the loop filter operates across slice boundaries.

Until the adoption of FMO, macroblocks within slices were always transmitted in scan order with continuously ascending addresses. However, the JVT codec includes provisions for so-called out-of-order slices so, independent of FMO, the macroblocks in a picture may not be received in scan order. While there is little need for sending slices out-of-order, packet re-ordering happens in some packet networks, particularly IP networks. For applications requiring low delay running over those networks, out-of-order slices are essential, and hence, part of JVT design for a very long time. (See Section 6 for a short discussion).

3 FMO overview

FMO allows the transmission
of macroblocks in an order other than raster scan. One important application for the tool is the implementation of error resilience mechanisms such as Scattered Slices and slice interleaving, as documented in [
,
,
], but due to its flexibility, other applications, i.e. rectangular slices, are certainly also possible. The only new syntax element that is necessary for FMO is the Macroblock Allocation map (MBAmap). However, the principle of the encoder and decoder operation is somewhat changed, when compared to the pre-FMO JVT design.

3.1 The Macroblock Allocation Map

The FMO is enabled when the slice header references a ParameterSet that includes a non-default macroblock-to-slice group allocation map (MBAmap). Please refer to Section 5 to see how a non-default MBAmap is transmitted. The MBAmap is a means to describe the transmission order of the macroblocks in a way that is flexible enough to implement the most commonly used applications of FMO. Constraints have been placed on FMO (e.g. a maximum of 8 slice groups may be used) to reduce implementation complexity of certain applications.

The MBAmap consists of one integer per macroblock of the picture to indicate the SliceGroupID (SGid) of that macroblock. SGids are integers in a range of 0 to 7. Slices consist of macroblocks that share the same SGid. As it is true for all structure elements of the Parameter Sets, external means have to guaranty that encoder and decoder are using identical MBAmaps. How this is achieved depends highly on the network, and is beyond the scope of this document.

3.2 Encoder Operation

Before an adoption of FMO, an encoder coded a picture according to the following pseudo-coded algorithm:
MbAddress = 0;

do

 {

 do

 {

 CodeOneMacroblock (MbAddress++);

 }

 while (!SliceFinished (MBAddress));

 }

while (!PictureFinished (MBAddress));

Loopfilter();

With FMO, conceptually, an encoder uses as slightly modified algorithm to code a picture (for simplicity it is assumed that all macroblocks in one Slice Group shall be allocated to one slice). The macroblock addresses are no longer incremented, but rather fetched from the MBAmap:

for (SGid = 0; SGid < MaximumSGId (MBAmap[]); SGid++)

 {

 MbAddress = GetFirstMBOfSliceGroup (SGid);

 do

 {

 CodeOneMacroblock (MbAddress);

 MbAddress = GetNextMbAddress (SGid, MbAddress);

 }

 while (MBAddress != GetLastMBOfSliceGroup (SGid));

 }

Loopfilter();

The access functions to the MBAmap (GetFirstMBOfSliceGroup(), GetLastMBOfSliceGroup(), and GetNextMBAddres()) are trivial search operations in a one-dimensional array. Please see the source code, scatter.c in [
] for one example implementation.

3.3 Decoder Operation

Following the outline of the previous section, first the decoder operation of the pre-FMO JVT decoder is described. A slice-lossy environment and out-of-order slices are assumed:

MarkAllMBsAsMissing(LossMap);

do

 {

 FetchSliceHeader(&sh);

 MBAddress = sh->mb_address;

 while (!EndOfSlice())

 {

 DecodeOneMacroblock (MBAddress, LossMap);

 MarkMBAsOK(MBAddress);

 MBAddress++;

 }

 }

while (!EndOfPicture()

ErrorConceal(LossMap); // you want to have some concealed data before

// starting the loop filter

Loopfilter();

An FMO-capable decoder operates in a very similar fashion:

MarkAllMBsAsMissing(LossMap);

do

 {

 FetchSliceHeader(&sh);

 CurrentPicture = sh->picture_number;

 MBAddress = sh->mb_address;

 CurrentSGid = GetSGid (MBAddress);

 while (!EndOfSlice())

 {

 DecodeOneMacroblock (MBAddress);

 MarkMBAsOK(MBAddress, LossMap);

 MBAddress = GetNextMbAddress (MBAddress, CurrentSGid);

 }

 }

while (!EndOfPicture());

ErrorConceal(LossMap); // you want to have some concealed data before

// starting the loop filter

Loopfilter();

As in the encoder operation, the conceptual differences between a non-FMO and an FMO-capable decoder are marginal.

4 Applications and Implementation Examples

The implementation of FMO depends on the application using it. In this section, two very different applications, interactive and broadcast video, will be considered. These examples are not exhaustive and are not intended to suggest a preferred implementation. They are provided simply as informative examples. All examples will be developed using the MBAmap shown in Figure 1, which shows an example mapping of MBs to Slice Group IDs.

Figure 1: MBAmap for A 24 Macroblock Picture Showing SGid and Macroblock Number (the Macroblock number is not part of the parameter set but is included here for clarity).

4.1 Interactive Video Example

One of the distinguishing characteristics of interactive video is the desire for low latency. In this example, macroblocks are decoded as soon as possible after their arrival at the decoder. Both encoding and decoding processes follow the algorithm outlines presented in Sections 3.2 and 3.3 above.

Consider an example where a picture containing 24 macroblockss with MBAmap shown in Figure 1 is to be coded using two different slice groups (0 and 1) and four distinct slices (0, 1, 2, and 3). The encoder sends the MBAmap to the decoder in a ParameterSet and then proceeds to encode macroblocks beginning with MB:0. For small pictures, the entire slice group is usually contained in one slice, however, for this example consider that both slice group 0 and 1 are distributed into 2 slices each as shown in Figure 2.

Figure 2: Macroblock Contents of Slices 0 to 3 (NALU view).

If the slices arrive in order, the decoder decodes the slice header for slice 0. Recall that each slice header contains the (x,y) coordinate of the first macroblock contained in the slice. In this example, the slice header 0 would contain macroblock at location (0,0), (i.e., MB:0 in the upper-left-hand corner of the picture). The macroblock is decoded and reconstructed in the appropriate place in the decoded picture. The second macroblock is then decoded. The decoder consults the MBAmap and finds that the next macroblock in slice group 0 is located immediately adjacent to MB:0 and the reconstructed MB:1 is placed accordingly. MB: 2, 3, 4, 5, are processed in exactly the same way. When the decoder consults the MBAmap for the final macroblock in slice 0 it finds that the macroblock is to be reconstructed in the MB:12 location. The macroblocks between MB:5 and MB:12 will be reconstructed when they are decoded. If those macroblocks are lost then non-normative error concealment may be applied to improve the subjective quality of the incomplete picture. The succeeding slices are processed in exactly the same way. After all macroblocks in the picture are reconstructed, error concealment is performed (if necessary) and finally the loop-filter is applied over the entire picture.

Consider instead that the slices arrive in the following order: Slice 1, Slice 0, Slice 2 and Slice 3. The decoder receives Slice 1. The decoder decodes the slice header and finds that the first macroblock to be decoded is located at location (1,2) (the location of MB:13 in Figure 1. Subsequent macroblocks in the slice are decoded as described earlier. Then Slice 0 is decoded with reconstructed macroblocks placed starting at (0,0). The decoding of Slice 0 is followed by Slices 2 and 3. Note that the slices are decoded as soon as they arrive thereby avoiding latency that might be introduced by a jitter or packet resequencing buffer. As before, non-normative error concealment and loop-filtering is applied after all macroblocks have been decoded.

4.2 Broadcast Video Example

In broadcast, video latency is not as critical as for interactive video applications, however different constraints arise from the desire to produce very low cost, hardware based decoders. One key constraint is the need to apply the loop filter immediately after a macroblock is decoded (rather than loop filtering after all macroblocks have been decoded as described in the previous example). Due to the fact that the loop filter operates across slice boundaries, and that it requires the macroblocks with lower MB-Numbers be reconstructed before a newly decoded macroblock is loop-filtered, the decoding must be performed in scan order. Hence the decoding algorithm outlined in Section 3.3 cannot be used.

In the following example implementation, we describe an FMO implementation that allows, by reconstructing macroblocks in scan order, concurrent macroblock reconstruction and loop filtering while requiring no additional memory (on top of that required for the operation of a JVT compliant decoder that supports out-of-order slices). The cost of this implementation, described below, is a one frame latency, a very minor complexity increase due to context switches in CABAC and CA-VLC, and an increase in implementation complexity. Please see Section 4.3 for a discussion on the RAM requirements.

Consider the same example as in Section 4.1 above, reproduced in this paragraph again for convenience. The picture containing 24 macroblocks with MBAmap shown in Figure 1 is to be coded using two different slice groups (0 and 1) and four distinct slices (0, 1, 2, and 3). The encoder sends the MBAmap to the decoder in a parameter set and then proceeds to encode macroblocks beginning with MB:0, following the algorithm outlined in Section 3.2. As mentioned earlier for small pictures, the entire slice group is typically contained within one slice, however, for this example consider that both slice group 0 and 1 are distributed into 2 slices each as shown in Figure 2.

At the decoder, the slices are collected into as many different bit buffer bins as there are slice groups (the number is known on the Parameter Set level). In our example with two slice groups, two bit buffer bins are required. To determine the slice group to which a slice (and all macroblocks contained therein) belongs, the (x,y) coordinate of the first macroblock contained in the slice is decoded and referenced in the MBAmap. The value in the MBAmap at location (x,y) identifies the slice group. The slices within each slice group are then ordered by the decoder (using the fact that the (x,y) coordinate of the slice’s first macroblock) so that all macroblock numbers monotonically increase as macroblocks are decoded within a slice group as shown in Figure 3.

The current JVT CD mandates a maximum of 8 slice groups so there will be a maximum of 8 bit bins and 8 associated bit buffer read pointers. At first blush, it appears as though this implementation requires memory above that of a decoder without FMO to store all bits for an encoded picture. The current thinking in JVT seems to be that this memory can, in the worst case, be as large as an entire decoded picture. However, we would like to point out that the memory for this bit buffer is required independent of FMO to ensure correct processing of slices that arrive out of order – if scan-order decoding is required by application constraints. See Section 4.3.

Bit Buffer Bin 0:

 …

…

Bit Buffer Bin 1:

 …

…

Figure 3: Two Bit Buffer Bins, One for Each Slice Group. Depending on implementation details, the slice headers do not need to remain in the bit buffer, but are included here for clarity.

As a worst case, consider this admittedly absurd example in which the first slice of a picture contains MB:0 only. Further, that slice arrives at the decoder after all other slices associated with that picture have arrived. To decode this case correctly, a decoder, independent of FMO, will need additional memory, enough to handle all the bits for the largest possible coded frame. Further, the decoder will have to perform some relatively simple bit buffer management to ensure that the constraints on loop-filter decoding concurrency and additional memory are not violated.

Once the bits for the entire picture have been received, separated into two bins (one for each slice group) and ordered, the decoder will decode the picture using the two bit buffer read pointers in such a way, described momentarily, that the macroblocks are decoded in raster scan order, thereby satisfying the constraint mentioned earlier. To decode a frame, the decoder starts decoding bits from the read pointer associated with the slice group containing MB:0 as shown in Figure 1. In this example, MB:0 belongs to slice group 0. MB:0 is decoded and reconstructed in its appropriate location. The decoder then examines the MBAmap to find the slice group associated with MB:1. In this example, MB:1 immediately follows MB:0 in slice group 0 so the same bit read pointer is used to decode MB:1. The decoding continues using the same read pointer until the reconstruction of MB:5 is complete. To continue decoding in raster scan order (i.e. decode MB:6 next), the decoder determines from the MBAmap that the first macroblock in slice group 1 (also the first macroblock in slice 2) must be decoded next. To facilitate the decoding of MB:6, the bit buffer read pointer associated with slice group 1 is made active and decoding resumes from that point. The same read pointer is used until MB:11 is reconstructed. The decoder then determines, using the MBAmap, that MB:12 resides in slice group 0. The bit buffer read pointer associated with slice group 0 still points to MB:12 (where it was before the previous read pointer switch) and is made active. Decoding continues to MB:13 using the same read pointer until MB:17 is reconstructed. Finally, the read pointer associated with slice group 1 is made active and the rest of the macroblocks in the picture are decoded. Finally, note that the read pointer management operations are performed at most once per macroblock suggesting a relatively modest increase in complexity.

The use of CABAC (and recently for baseline operation as well due to the inclusion of CA-VLCs) require some processing beyond the discussion above. In particular, both CABAC and CA-VLC require context information. The context information is reset at slice boundaries, but crosses macroblock boundaries. Whenever changing the bit buffer bins, it is, hence, required to also change the context of CABAC or CA-VLC to the one of the slice in which the next macroblock resides. Storing and changing contexts potentially on a per macroblock basis sounds scary at the first glance. However, please keep in mind, the both the CABAC and the CA-VLC contexts are relatively small data structures (a couple of dozen bytes). Even when the CABAC/CA-VLC engine runs in a register-based model, the necessary storage and retrieval mechanisms are hopefully simple enough to implement. In a model where the CABAC/CA-VLC is implemented in something roughly equivalent to a general purpose processor (residing on the media processor or externally), the context switch will be a simple pointer arithmetic operation. In our experience with today’s media processors, the latter is commonly used and the prudent way to implement entropy decoding.

Since the number of Slice Groups is limited to 8, the number of storage locations is limited to 8 as well. Due to the small size of the context information, the additional RAM requirements are marginal. Similarly, the required bus bandwidth for eventual storage/retrieval operations for a register-based hardware implementation are minor.

The discussed algorithm can be pseudo-coded in the following form:

InitializeBinPointersToZero();

do

 {

 FetchSliceHeader(&sh);

 CurrentPicture = sh->picture_number;

 MBAddress = sh->mb_address;

 CurrentSGid = GetSGid (MBAddress);

 memcpy (binptr[CurrentSGid], slicecontent, SizeOfSlice);

 binptr[CurrentSGid] += SizeOfSlice;

 }

while (CurrentPicture == sh->picture_number);

for (SGid=0; SGid<8; SGid++)

 OrderSlicesInBitBin(SGid);

// At this time we have collected all slices in the bins, and the slices

// in the bins are ordered in raster scan order. All this is (with the

// exception of the necessary interpretation of the slice headers)

// byte-oriented processing.

//

// Now start the decoding in scan order.

LastSGid = -1;

for (MBAddress = 0; MBAddress < PictureSizeInMBs; MBAddress++)

 {

 CurrentSGid = GetSGid (MBAddress);

 if (SliceHeader (binptr[CurrentSGId])

// found a slice header?

 InterruptPredictionChains();

 if (LastSGid != CurrentSGid) // CABAC/CA-VLC support

 ChangeContexts (CurrentSGId);

 DecodeOneMacroblock (MBAddress, binptr[CurrentSGId]);

 LoopFilterOneMacroblock (MBAddress);

 MarkMBAsOK(MBAddress, LossMap);

 LastSGid = CurrentSGid;

 }

ErrorConceal(LossMap);

4.3 RAM / Performance Tradeoffs of FMO

Some discussion took place on the reflector regarding the need of additional memory and/or bus bandwidth for the implementation of FMO in a decoder. In the end, two different cases were identified: normal operation, and the use of FMO in an environment with disposable pictures. Both are discussed in the following.

4.3.1 “Normal” Pictures

When using the algorithms discussed in Section 4.1 intended for low-delay applications, there is no need for additional memory. In that case the loop-filter is applied after the reconstruction of all received data (and the concealment of missing data) and loop-filtering can be implemented in-place. The necessary bus bandwidth, however, is roughly doubled (when decoding a P picture), because the newly reconstructed picture has to be stored first, and later swapped in for loop-filtering. On sequential architectures, the numbers of cycles remains identical. Only when the loop-filter is truly working in parallel with the reconstruction engine, do both have to be implemented twice as fast (worst case) because parallel operation can no longer be performed (and the loop-filtered picture must be available before starting the reconstruction of the next picture, disallowing picture-by-picture pipelining). For the conversational industry this is not a big problem, as none of the current media processors allow loop filtering the way it is performed in H.26L.

In such sequential architectures, the two-stage design is actually neutral or even beneficial from a performance point-of-view, because the filter operations can be performed on a scan line (instead of a macroblock) basis, which allows for fewer data cache misses in case of small data caches.

When using the FMO decoding algorithm discussed in section 4.2 (for broadcast), there is a need to store one coded frame in the “bit bins”. The current ideology in JVT is such that the maximum size of a coded frame should not exceed the size of an uncoded frame

As described earlier, this memory is required independently of FMO due to the fact that the decoder must be designed to handle out-of-order slices, when macroblock oriented processing is required. One cannot implement scan-order processing of out-of-order slices without storing the information not needed immediately. Out-of-order slices are part of the JVT design for reasons discussed in Section 6.

4.3.2 Disposable Pictures

Some people indicated they want to send reconstructed macroblocks of a picture that is marked as “disposable” directly to the rendering engine without storing it. In the MPEG-2 world, such an approach makes sense, when looking at the bus bandwidth: P pictures have only one reference picture but need to be stored, whereas B pictures require two reference pictures (and the associated read operation) but need not be stored.

In JVT video, the feature of disposability is completely decoupled from the feature of bi-prediction – again for very good reasons. B-pictures, in general, need to be stored (unless the disposable flag is set). Hence, the bus/RAM bandwidth argument doesn’t hold.

Obviously, when rendering reconstructed macroblocks directly without storage, the two-stage decoding process described for interactive applications cannot be used. Instead the broadcast algorithm must be used. Even when reconstructed macroblocks are rendered directly, the memory requirements are the same as discussed in Section 4.3.1.

5 MBAmap Transmission

FMO requires an MBAmap to be present at both the encoder and the decoder. The MBAmap consists of the information to which slice group a given macroblock belongs. Since a maximum of 8 SliceGroups can be used, three bits are required per macroblock. For a picture for CIF dimensions (384x288 pixels, corresponding to 22x18 or 396 macroblocks), 1188 bits or roughly 150 bytes are necessary. Obviously, the transmission of such big structures should be avoided when possible.

For the most common usage scenarios of FMO, shortcut codepoints were included into the Parameter Set syntax. They allow the transmission of commonly used MBAmaps with only a few bits information. Supported are in particular:

· No FMO: an MBAmap in which all MBs share the same Slice Group yields scan order slice processing.

· Scattered Slices. The example used above resembles scattered slices with two slice groups. However, scattered slices also make sense with more slice groups. When using the algorithm for the MBAmap construction defined in [2], the use of six slice group yields an environment where no macroblock has an immediate neighbor in the same slice group – hence all eight neighboring macroblocks can be used for error concealment in case of a single lost slice.

· Slice Interleaving: a technique in which the interleaving process takes place only vertically. All MBs of one macroblock “line” (with the same vertical MB address) always belong to the same slice group. Slice interleaving has been shown to be a very efficient tool in an H.263 environment [], and is also effective using FMO in JVT video. See [] for the simulation results.

· Fully flexible: The syntax finally contains also a mechanism to transmit a fullt flexible MBAmap, in which the SliceGroupID of all MBs can be set individually. This mode seems currently to be important to implement special “trick modes”.

All the shortcut modes require the transmission of a maximum of two variable-length coded integers – typically less than 10 bits.

6 Why Out-of-Order Slices are Important

There seems to be considerable confusion about the necessity for what is called "out-of-order slice decoding". In codecs such as H.263 and JVT, this tool is one of the true essentials for conversational IP based video. This section tries to shed some light into the out-of-order slice decoding concept. This is not a proposal in any form, but rather a description of the rationale that made VCEG assume the availability of out-of-order slices for a very long time. It also does not discuss the implementation details in JVT, but see Section 4 – the implementation of an out-of-order slice decoder and an FMO decoder is roughly the same (and certainly has the same memory/performance implications).

In IP networks, and using UDP and RTP as the protocol infrastructure (which is the case for H.323 and SIP based videoconferencing and in most streaming environments), packets may get lost, but they may also be received out-of-order. This is the result of a feature of packet networks known as network jitter – different transmission times for packets. The network jitter depends on may factors an endpoint has no influence over, and network jitter of some ten milliseconds is quite normal and by no means an erroneous condition of the network. Please see [
] for some discussion and results obtained on the real-world Internet (in 1998, but little has changed in this regard).

Network jitter is not going away, and it is not even necessarily getting smaller. The introduction of novel load-balancing and re-routing mechanisms on high-end IP routers actually introduce some network jitter. The reason lies in how TCP handles its congestion control and forces itself to reduce the sending bit rate to a fair amount – a discussion of this topic is outside the scope of this paper).

RTP provides with its sequence numbering a means to bring out-of-order packets back into their original order. However, RTP does not mandate such a re-ordering at its service interface – implementations may or may not do this, depending on their need. The RTP sequence number is also used to identify lost packets – packets are considered lost if, after an implementation-dependent timeout duration, there is a gap in the sequence numbering.

Armed with this knowledge about the environment, the need for out-of-order slices can be most easily illustrated by an example.

Consider a picture that is coded in 5 scan order slices, numbered 1 to 5. Assume, for simplicity, that all those slices are coded with a similar number of bits, and that our access link is bandwidth limited to the video bit rate (the following examples also hold for high speed access links, but are less easy to describe. Our frame rate shall be 30 fps, resulting in a sending packet rate of 150 packets per second in intervals of roughly 6.67 milliseconds.

If no network jitter occurs, or if the network jitter is less than 6.67 milliseconds, a decoder can process the slices in their natural order. However, assume that there is a 25 millisecond delay for slice 1 only. Hence, the slices 2, 3, 4, and 5 arrive before slice 1 arrives. With out-of-order slices, the reconstruction of slice 1 has to be delayed until it arrives, but the other slices can be reconstructed immediately. Hence the overall delay is small, 1/5th of a picture, or less. Without out-of-order slices, a decoder has two choices:

1. Delay the reconstruction of slices 2, 3, 4, 5 until slice 1 is received. A decoder with unlimited complexity (which can reconstruct a picture in zero time) could operate without delay. However, a "normal" decoder (that is just as fast as necessary for the regular media reconstruction) would incur an additional delay of 25 milliseconds (in this example), which is not acceptable for conversational applications.

2. Consider slice 1 as lost, and conceal it. The result would be a significant loss in picture quality, which is also not acceptable if the network jitter is prevalent (especially since the loss of video information is completely avoidable in this case).

Readers with little experience in IP networks may argue that jitter of this duration must be "unusual", and video coding standards should not reflect broken networks. However, as already mentioned, this is not the case. The numbers in above example are quite realistic, and in practice the situation occurs quite frequently, often on the order of once every few pictures.

SGid:0

MB:0

SGid:0

MB:1

SGid:0

MB:2

SGid:0

MB:3

SGid:0

MB:5

SGid:0

MB:4

SGid:1

MB:6

SGid:1

MB:7

SGid:1

MB:8

SGid:1

MB:9

SGid:1

MB:11

SGid:1

MB:10

SGid:0

MB:12

SGid:0

MB:13

SGid:0

MB:14

SGid:0

MB:15

SGid:0

MB:17

SGid:0

MB:16

SGid:1

MB:18

SGid:1

MB:19

SGid:1

MB:20

SGid:1

MB:21

SGid:1

MB:23

SGid:1

MB:22

Slice 0

Slice Header

SGid:0

MB:0

SGid:0

MB:12

SGid:0

MB:5

SGid:0

MB:4

SGid:0

MB:3

SGid:0

MB:2

SGid:0

MB:1

Slice 1

Slice Header

SGid:0

MB:13

SGid:0

MB:17

SGid:0

MB:16

SGid:0

MB:15

SGid:0

MB:14

Slice 2

Slice Header

SGid:1

MB:6

SGid:1

MB:18

SGid:1

MB:11

SGid:1

MB:10

SGid:1

MB:9

SGid:1

MB:8

SGid:1

MB:7

Slice 3

Slice Header

SGid:1

MB:19

SGid:1

MB:23

SGid:1

MB:22

SGid:1

MB:21

SGid:1

MB:20

SGid:0

MB:12

Slice 0

Slice Header

SGid:0

MB:0

SGid:0

MB:5

SGid:0

MB:4

SGid:0

MB:3

SGid:0

MB:2

SGid:0

MB:1

Slice 1

Slice Header

SGid:0

MB:13

SGid:0

MB:17

SGid:0

MB:16

SGid:0

MB:15

SGid:0

MB:14

Slice 2

Slice Header

SGid:1

MB:6

SGid:1

MB:18

SGid:1

MB:11

SGid:1

MB:10

SGid:1

MB:9

SGid:1

MB:8

SGid:1

MB:7

Slice 3

Slice Header

SGid:1

MB:19

SGid:1

MB:23

SGid:1

MB:22

SGid:1

MB:21

SGid:1

MB:20

�PAGE \# "'Page: '#'�'" �� ? insert correct year

�PAGE \# "'Page: '#'�'" �� this was "coding and decoding". Ic hanegd it to transmission. It doesn't make sense to say en/decoding, and later say that you can decode in rester order if you do some tricks.

References

[�]	JVT Committee Draft, available from ftp://ftp.imtc-files.org/jvt-experts/2002_05_Fairfax/JVT-C167.doc

[�] 	Polycom Video Error Concealment (PVEC) available on the Polycom ViewStation FX software version 4.0 and later. See � HYPERLINK http://www.polycom.com ��www.polycom.com�.

[�]	S. Wenger, M. Horowitz, “Scattered Slices Error Concealment”, JVT-B027, January 2002, available from http://standard.pictel.com/ftp/video-site/0201_Gen/JVT-B027.doc

[�]	S. Wenger, M. Horowitz, “Flexible Macroblock ordering (FMO)”, JVT-C089, May 2002, available from ftp://ftp.imtc-files.org/jvt-experts/2002_05_Fairfax/JVT-C089.doc

[�]	S. Wenger, M. Horowitz, “Scattered Slices: Simulation Results”, JVT-C090, May 2002, available from ftp://ftp.imtc-files.org/jvt-experts/2002_05_Fairfax/JVT-C090.doc

[�]	S. Wenger, M. Horowitz, “Slice Interleaving: Simulation Results”, JVT-C091, May 2002, available from ftp://ftp.imtc-files.org/jvt-experts/2002_05_Fairfax/JVT-C091.doc

[�]	S. Wenger, M. Horowitz, “JM1.7 w/ FMO”, JVT-C092, May 2002, available from ftp://ftp.imtc-files.org/jvt-experts/2002_05_Fairfax/JVT-C092.zip

[�]	S. Wenger, “Proposed error patterns for Internet experiments”, q15-I-16r1, October 1999, available from http://standard.pictel.com/video-site/9910_Red/q15i16r1.zip

File:JVT-D063.doc
Page: 10
Date Saved: 2002-07-14

