	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 May, 2002
	JVT-C164.doc

	Title:
	Description of NAL

	Status:
	Output Document [NOT YET] Approved by JVT

	Purpose:
	Proposed Draft

	Author(s) or
Contact(s):
	Miska M. Hannuksela
Nokia Mobile Software
P.O. Box 68
33721 Tampere
Finland

Toby Walker, Ali Tabatabai

Sony

3300 Zanker Road

San Jose, CA, USA 95134

Stephan Wenger

Teles

Thomas Stockhammer
Technical University of Munich
	
Tel:
Email:
	
+358 40 521 2845

miska.hannuksela@nokia.com

	Source:
	Nokia, Sony, Teles, Technical University Munchen

1. Overview
As shown in Figure 1, the JVT codec design contains three layers:

· Video Coding Layer (VCL): This layer specifies the representation used to efficiently represent the video signal using tools such as motion compensation, transform coding of coefficients, and entropy coding. The VCL representation is transport independent. The highest level of representation in the VCL is a slice, which is a set of coded macroblocks for a picture in scan order.

· Network Abstraction Layer (NAL): This layer abstracts the video coding layer from the details of the systems layer used to carry the VCL data. It defines a generic and network independent representation for information above the level of the slice. The NAL supports a generic format for both bitstream and packet-oriented systems.

· Transport Encapsulation Layer (TEL): This layer encapsulates the structures defined by the NAL for carriage on a particular system layer.

[image: image1.emf]JVT Coding Standard

Video Coding Layer

Encoder

Video Coding Layer

Decoder

Network Abstraction Layer

Encoder

Network Abstraction Layer

Decoder

Transport Encapsulation Layer

VCL-NAL interface

RTP Payload

Specification

for JVT

ISO media

file format

encapsulation

for JVT

JVT

for

MPEG-2

Systems

JVT

for

H.320

blue =

non-normative

NAL encoder

interface

NAL decoder

interface

Figure 1. JVT coding layers and interfaces.

1.1 Network Abstraction Layer (NAL)
The NAL specifies the structure of JVT data above the level of the slice representation defined by the Video Coding Layer. This includes the high-level syntax, which specifies the structure of the video data above the slice level, parameter sets for representing decoding parameters, and SEI messages for representing ancillary data. The NAL abstracts from thedetails of the transport

The NAL defines a generic format for both packet-oriented systems (e.g. RTP/IP or storage systems) and bitstream-oriented systems (e.g. H.320 or MPEG-2). Both formats are based on NAL units, with the bitstream format adding a start code (the 0x00 00 01 pattern used in MPEG-2 systems. Each NAL units contains a type field indicator signaling the type of the data and the coded data itself. Both syntax and semantics of a NAL unit are specified in this standard.

Each NAL unit contains the data for one NAL element. The JVT NAL specifies different kinds of NALelements: elements for video data including slice and data partitions, parameter sets, as well as SEI messages. The coded data contained in each type of NAL unit can contain data from different kinds of NAL elements.

The syntax and semantics for both NAL units and NAL elements are normative parts of this specification. This ensures that while each TEL may encapsulate the NAL syntax, translations between different TELs is simple. It is a goal of this specification that both not only packet-oriented TELs and bitstream-oriented TELs interoperate, but also that packet-oriented TEL should interoperate with each other. For example, JVT data carried by a MPEG-2 TEL should be easily translated by a NAL gateway.

The entire sequence of NAL units, without start codes in a packet-oriented system and with them in a start-code delimited bitstream, defines the syntax of a JVT stream.

The NAL defined in this specification does not deal with any issues of control, including synchronization and timing of data delivery, interleaving and reordering of data for delivery. These are left to each TEL to specify and are not specified at the NAL level.
1.2 Transport Encapsulation Layer

Each TEL is tied to a particular systems layer and defined with knowledge of the JVT VCL and NAL layers in addition to the systems layer. Each TEL a encapsulates NAL units into the system dependent representation used to transport JVT NAL unit. In a packet-oriented transport, the packet-oriented format for NAL units (i.e. without start codes) will be encapsulated into the packet syntax of the transport layer, e.g. by specifying an RTP payload format for NAL units. On the other hand, a bitstream-oriented TEL, such as a TEL for MPEG-2 Systems, will use the bitstream-format for NAL units, which includes start codes to delimit each NAL unit. In an MPEG-2 TEL, NAL units with start codes would be encapsulated into a bitstream format suitable for transport over MPEG-2 program or transport streams.

1.3 Implementation of the JVT Architecture (Informative)
In an implementation of the JVT design one or more of these conceptual layers may be combined into a single layer. Moreover, an implementation of the JVT codec may need knowledge about the constraints of the transport layer such as the MTU size (to appropriately select the slice size) or the error characteristics (to appropriately select the error resilience strength). The transport encapsulation layer, on the other hand, might use knowledge of the VCL representation to unevenly protect the more important bit strings or to determine the transmission timing).

2. Network Abstraction Layer Units

2.1 NAL Unit

2.1.1 Syntax

	NAL_unit (EBSP_size, BitStream_TEL) {
	Category
	Mnemonic

	
if (BitStream_TEL) {
	
	

	 NAL_START_CODE
	
	uimsbf(24)

	 }
	
	

	
EBSP_type
	
	uimsbf(7)

	
EBSP_error_flag
	
	uimsbf(1)

	
EBSP[EBSP_size]
	
	uimsbf(8)

	}
	
	

2.1.2 Semantics
A NAL unit defines a generic format for use in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and bitstream is identical except for the fact that each NAL unit can be preceded by a start code in a bitstream-oriented transport layer.
EBSP_size defines the size of EBSP in bytes. This value is not part of the NAL unit syntax but it implemented by the TEL. In a bitstream-oriented transport layer the length of a NAL unit is indicated implicitly by the start codes that delimit each NAL unit. On the other hand, a packet-oriented unit will typically include length information explicitly as part of the framing for packets.

BitStream_TEL indicates that the TEL is a bitstream and shall include a start code at the beginning of the NAL unit.

NAL_START_CODE is a 24-bit sequence consisting of 23 zeros followed by a single one (i.e. 0x000001) used as a start code for bitstream-oriented transport layers. The EBSP syntax ensure that the start code is never occurs in the NAL unit syntax..

[Are start codes this TEL dependent? Will a single TEL use both short and long start codes?]
EBSP_type indicates the type of element contained in the NAL unit according to the types specified in Table 1.

EBSP_error_flag signals whether an error exists in the unit. The handling of an error marked unit is non-normative and is not defined by this specification. Gateways, decoders may use this flag to indicate that the data contained in the unit. The error includes not only the NAL element data but may also include the ESP_type.

EBSP (Encapsulated Byte Sequence Payload) contains the NAL structure data in the format defined in section XXXX.
[Code numbers below need to be revisited and redefined]
Table 1: NAL Element Type Codes

	Code
	NAL Unit Type

	0x10
	Single Slice

	0x20
	Data Partition A

	0x30
	Data Partition B

	0x40
	Data Partition C

	0x50
	Supplemental Enhancement Information

	0x60
	Parameter Set Update

	0x80
	Instantaneous Decoder Refresh

	
	Picture Start

	\
	Picture End

	
	Sequence Start

	
	Sequence End

2.1.3 Error Handling (Informative)

The error flag allows transporting bit-error corrupted data over gateways. Assume that a base station receives a bit-error prone packet from a mobile. It could discard it, or just transmit it without indicating the error. The one bit allows signaling a problem with the packet. Decoders capable to process bit-error prone NAL structures may use these payloads.

Another example of the use the EI bit is the following: Mobile transmission channels are relatively susceptible to transmission errors and bit inversion errors in particular. While the transport protocols typically make sure that bit-erroneous packets are not passed to the application level, there is an option to configure the transport protocol stack so that erroneous packets are passed to the application level with an appropriate notification if a transport packet is corrupted. Some applications enable storing of received bit-streams for later use. For example, a user may record a part of a video call. Furthermore, the stored bit-streams may be distributed to third parties. For example, the user may want to share the recorded video call with his friends via email. While bit-erroneous data units could just be disposed when they are stored, this might result into degraded decoder output in decoders that are capable of detecting and concealing bit errors. Thus, decoders that are not capable of decoding bit-erroneous data units may simply discard NAL structures where the EI is signaled, while other decoders may try to decode the data.

2.1.3.1 Encapsulated Byte Sequence Payload

The payload for each NAL unit shall be an encapsulated byte sequence payload (EBSP). An EBSP is defined as an ordered sequence of bytes that contains the NAL payload in the following form:

a)
If the NAL payload contains fewer than three bytes, the EBSP shall be the same as the NAL payload.

b)
Otherwise, the EBSP shall contain the NAL payload in the following form:

1)
The first byte of the EBSP shall contain the first byte of the NAL payload,

2)
The second byte of the EBSP shall contain the second byte of the NAL payload,

3)
Corresponding to each subsequent byte of the NAL payload, the EBSP shall contain one or two subsequent bytes as follows:

i)
If the last two previous bytes of the EBSP are both equal to zero (0x00) and if the next byte of the RBSP is either equal to one (0x01) or equal to 255 (0xFF), the EBSP shall contain two bytes of data that correspond to the next byte of the NALP. The first of these two bytes shall be an emulation prevention byte (EPB) equal to 255 (0xFF), and the second of these two bytes shall be equal to the next byte of the NAL payload.

ii)
Otherwise, the EBSP shall contain one next byte of data corresponding to the next byte of the NALP. This byte shall be equal to the next byte of the NALP.

The format of the EBSP prevents the three-byte start code prefix (SCP) equal to 0x00, 0x00, 0x01 from occurring within an EBSP. A decoder shall extract the NAL payload from the EBSP by removing and discarding each byte having the value 255 (0xFF) which follows two bytes having the value zero (0x00) within an EBSP. The means for determining the boundaries of an EBSP is specified by the NAL.

3. Network Abstraction Layer Elements

This section defines the different types of NAL elements. These elements are carried inside of NAL units, as specified in section 2. The structure defined by the JVT NAL include:

(1) Slices and Data Partitions Elements: Contain actual coded video data from the Video Coding Layer.
(2) High-Level Syntax Elements: Demarcate the boundaries of structural layers of the video data's structure including sequences and pictures.
(3) Parameter Set Elements: Define the parameter values controlling the interpretation of Video Coding Layer data. Parameters may apply to one or more video data elements.

(4) Supplemental Enhancement Information Elements: Contain messages pertaining to a video data element that are not required for decoding operation.

3.1 Slice Elements
3.1.1 Syntax

[Note: Byte-alignment of slice and data partition content is missing from the syntax.]

	slice_layer() {
	Category
	Mnemonic

	
slice_header()
	4
	

	
slice_video_data_content()
	
	

	}
	
	

	slice_header () {
	Category
	Mnemonic

	slice_type
	
	uimsbf(4)

	parameter_set_id()
	
	

	picture_structure
	
	ecselbf

	picture_number
	
	uimsbf

	first_mb_in_slice
	
	ecselbf

	if (tr_mode == 1) {
	
	

	tr_prediction_error
	
	ecselbf

	if (tr_prediction_error > 1)
	
	

	tr_prediction_error_sign
	
	uimsbf(1)

	}
	
	

	else if (tr_mode == 2) {
	
	

	tr_indication
	
	uimsbf(1)

	if (tr_indication == 1)
	
	

	tr
	
	uimsbf

	}
	
	

	slice_qp
	
	ecselbf

	if (slice_type >= 5 && slice_type <= 7) /* SP or SI slice */
	
	

	sp_slice_qp
	
	ecselbf

	if (entropy_coding == 1)
	
	

	num_mbs_in_slice
	
	ecselbf

	rps_layer_indicator
	
	uimsbf(1)

	if (rps_layer_indicator) {
	
	

	rps_layer()
	
	

	}
	
	

	reference_picture_buffering_type
	
	ecselbf

	if (reference_picture_buffering_type == 1) {
	
	

	memory_management_control_operation()
	
	

	}
	
	

	}
	
	

	DPA_layer() {
	Category
	Mnemonic

	
slice_header()
	4
	

	
slice_id
	
	ecselbf

	
dpA_video_data_content()
	
	

	}
	
	

	DPB_layer() {
	Category
	Mnemonic

	
picture_number
	
	uimsbf

	
slice_id
	
	ecselbf

	
dpB_video_data_content()
	
	

	}
	
	

	DPC_layer() {
	Category
	Mnemonic

	
picture_number
	
	uimsbf

	
slice_id
	
	ecselbf

	
dpC_video_data_content()
	
	

	}
	
	

3.1.2 Semantics

3.1.2.1 General

A slice contains both video data and header data. The video data contains the Video Coding Layer data for a set of macroblocks. This data is a concatenation of the entropy-coded symbols of an integer number of macroblocks (MBs) in scan order. Each slice has an associated header, which contains the side information needed to decode the video data in each slice.

A slice may be sent as a single slice structure or as a data partitioned structure. A data partitioned send divides the coded data for a single slice into three separate partitions. The first partition contains the header symbols of all coded MBs, the second partition the intra Coded Block Patterns (CBPs) and coefficients, and the third partition the inter CBPs and coefficients.

An Instantaneous Decoder Refresh Payload (IDERP) indicates a random access position, from which decoding and displaying can be re-started without reception of any prior coded slices or data partitions. An IDERP shall contain a single I or SI slice. If a IDERP is used for any slice of a picture, then all slices with the same picture number shall be encapsulated in IDERPs.
3.1.2.2 Slice Header

slice_type

Code_number =0:
Inter picture with prediction from the most recent decoded picture only.

Code_number =1:
Inter picture with possibility of prediction from more than one previous decoded picture. For this mode information reference picture for prediction must be signalled for each macroblock.

Code_number =2:
Intra picture.

Code_number =3:
B picture with prediction from the most recent previous decoded and subsequent decoded pictures only.

Code_number =4:
B picture with possibility of prediction from more than one previous decoded picture and subsequent decoded picture. When using this mode, information reference frame for prediction must be signalled for each macroblock.

Code_number =5:
SP picture with prediction from the most recent decoded picture only.

Code_number =6:
SP picture with possibility of prediction from more than one previous decoded picture. For this mode information reference picture for prediction must be signalled for each macroblock.

Code_number =7:
SI picture

Code_number =8..15:
Reserved

picture_structure (PSTRUCT)

Code_number =0:
Progressive frame picture.

Code_number =1:
Top field picture.

Code_number =2:
Bottom field picture.

Code_number =3:
Interlaced frame picture, whose top field precedes its bottom field in time.

Code_number =4:
Interlaced frame picture, whose bottom field precedes its top field in time.

Note that when top field and bottom field pictures are coded for a frame, the one that is decoded first is the one that occurs first in time.

picture_number (PN)

PN shall be incremented by 1 for each coded picture in coding order, in modulo MAX_PN operation, relative to the PN of the previous stored picture in coding order. For non-stored pictures, PN shall be incremented from the value in the most temporally recent stored picture which precedes the non-stored picture in coding order.

The PN serves as a unique ID for each picture stored in the multi-picture buffer within MAX_PN coded and stored pictures. Therefore, a picture cannot be kept in the buffer after more than MAX_PN-1 subsequent coded and stored pictures unless it has been assigned a long-term picture index as specified below. The encoder shall ensure that the bitstream shall not specify retaining any short-term picture after more than MAX_PN-1 subsequent stored pictures. A decoder which encounters a picture number on a current picture having a value equal to the picture number of some other short-term stored picture in the multi-picture buffer should treat this condition as an error.

first_mb_in_slice

The number of the first macroblock contained in this slice.

tr_prediction_error (TRPE), tr_prediction_error_sign (TRPES)

When TRPE is zero, the previously calculated TR for this picture is in effect. When TRPE is greater than zero, the temporal reference is calculated as follows. TRPES is present only if TRPE is greater than one.

// TPN is a cumulative PN without wrapover

// prevPN is the PN in the previous picture

if (is_IDERP_NALP())

TPN = 0;

// Else if wrapover of PNs

else if (PN < prevPN)

TPN += MAX_PN – prevPN + PN + 1;

else

TPN += PN – prevPN;

if (TRPE == 0) {

if (PN == prevPN)

TR = prevTR;

else

; // Problem: no TR signaled for this picture yet

}

else if (TRPE == 1)

TR = TPN * expectedDeltaTR;

else if (TRPES == 1)

TR = TPN * expectedDeltaTR + TRPE - 1;

else

TR = TPN * expectedDeltaTR – TRPE - 1;

tr_indication, tr

tr_indication signals if the tr codeword is present. The first picture of an independently decodable group of pictures shall have TR zero. The value of TR is formed by incrementing its value in the temporally-previous stored picture header by one plus the number of skipped or non-stored pictures at the timestamp clock frequency since the previously transmitted one. The arithmetic is performed with only the num_bits_in_tr LSBs.

slice_qp

Information about the quantiser QUANT to be used for luminance for the picture. (See under Quantisation concerning QUANT for chrominance). The 6-bit representation is the natural binary representation of the value of QP+12, which range from 0 to 47 (QP ranges from -12 to +39). QP+12 is a pointer to the actual quantisation parameter QUANT to be used. (See below under quantisation). The range of quantisation value is still about the same as for H.263, 1-31. An approximate relation between the QUANT in H.263 and QP is: QUANTH.263(QP) (QP0(QP) = 2QP/6 . QP0() will be used later for scaling purposes when selecting prediction modes. Negative values of QP correspond to even smaller step sizes, as described below under quantisation.

sp_slice_qp

For SP and SI frames the SP slice QP is transmitted, using the same scale described above.

num_mbs_in_slice

For CABAC entropy coding the number of macroblocks contained in the slice is transmitted.

rps_layer_indicator (RPSLI)

RPSLI indicates the presence of reference picture selection layer (RPSL). RPSLI shall be one of the following two values:

–
Code number 0:
The RPS layer is not sent,

–
Code number 1:
The RPS layer is sent.

If RPSL is not sent, the default buffer indexing order presented in the next subsection shall be applied. RPS layer information sent at the slice level does not affect the decoding process of any other slice.

If RPSL is sent, the buffer indexing used to decode the current slice and to manage the contents of the picture buffer is sent using the following code words.

[Note: See WD2 for syntax and semantics of the RPS layer.]

reference_picture_buffering_type (RPBT)

[See WD2 for the semantics of RPBT and for the syntax and semantics of the memory management control operation.]

3.1.2.3 Data Partition A

Data Partition A containing the header partition is the most important one, because, without it, the coefficient symbols cannot be used. Also, the header symbols have a value of their own, e.g. they can be employed to make error concealment much more efficient by applying the motion vectors even in the absence of the corresponding texture data.

slice_id
Each slice of a picture is associated a unique slice identifier within the picture. The first coded slice of the picture shall have identifier 0 and the identifier shall be incremented by one per each coded slice. Note that the coding order of slices may not be identical to the normal scan order.

At the next byte-aligned location, the bit buffer of the partition starts, with zero padding being used. [Note that the byte alignment requirement may be temporary and is intended to facilitate software design and debugging. If we remove this requirement we could save an average of 4 bits per packet.]

3.1.2.4 Data Partition B

Data Partition B containing the Intra partition is next on a scale of importance. While the Intra partition necessarily needs the symbols of the header partition for decoding, the resychronization property of intra information is essential to combat the drift observed in predictive coding schemes that operate in error prone environments.

picture_number and slice_id identify the picture and the slice which the partition belongs to.

3.1.2.5 Data Partition C

Data Partition C containing the Inter partition contains the least important symbols.

picture_number and slice_id identify the picture and the slice which the partition belongs to.

3.2 High-Level Syntax

3.2.1 Syntax

	Sequence_Start () {
	Category
	Mnemonic

	}
	
	

	Sequence_End () {
	Category
	Mnemonic

	}
	
	

	Picture_Start () {
	Category
	Mnemonic

	}
	
	

	Picture_End () {
	Category
	Mnemonic

	}
	
	

3.2.2 Semantics

The high-level syntax elements demarcate structural boundaries in the sequence of NAL units in a JVT stream. The use of these NAL elements is optional as the video data at the slice level contains enough information to determine structural boundaries; however, including these elements in the stream can simplify decoding of the stream and make the stream more robust against errors.

The use of ending elements is optional. The occurrence of a start unit of the same type shall indicate the end of the previous structural level of the same type—for example, the occurrence of a picture start element indicates the end of the previous picture

Sequence_Start signals the beginning of a sequence. All elements related to this sequence occurs before the corresponding sequence end GAL unit.
Slice_End signals the end of a slice.

GOP_End: Signals the end of a GOP. All GOP data must occur before this unit.
Picture_Start Unit signals the beginning of a picture. All data associated with this picture must occur before the end of this picture is signaled.

Picture_End signals the end of a picture. All picture data must occur before this unit.

3.3 Parameter Set Element

3.3.1 Syntax

	parameter_set_id(parameter_set_type) {
	Length
	Mnemonic

	
ec_id_length
	variable
	bslbf

	
if (ec_id_length == 0b)
	
	

	

id_length = 4
	
	

	
else if (ec_id_length == 10b)
	
	

	

id_length = 8
	
	

	
else if (ec_id_length == 110b)
	
	

	

id_length = 12
	
	

	
else if (ec_id_length == 1110b)
	
	

	

id_length = 16
	
	

	
else if (ec_id_length == 11110b)
	
	

	

id_length = 24
	
	

	
else if (ec_id_length == 111110b)
	
	

	

id_length = 32
	
	

	
else
	
	

	

reserved
	
	

	
id
	id_length
	uimsbf

	}
	
	

	independent_GOP_parameter_set() {
	Length
	Mnemonic

	
parameter_set_id(independent_GOP_parameter_set)
	
	

	
log2_max_picture_number_minus_4
	variable
	ecselbf

	
number_of_reference_picture_buffers
	variable
	ecselbf

	
required_picture_number_update_behavior
	1
	uimsbf

	
picture_width_in_MBs_minus_1
	variable
	ecselbf

	
picture_height_in_MBs_minus_1
	variable
	ecselbf

	
entropy_coding
	variable
	ecselbf

	
motion_resolution
	variable
	ecselbf

	
constrained_intra_prediction_flag
	1
	uimsbf

	
num_units_in_tick
	32
	uimsbf

	
time_scale
	32
	uimsbf

	
tr_mode
	variable
	ecselbf

	
expected_delta_tr
	16
	imsbf

	
num_bits_in_tr
	3
	uimsbf

	}
	
	

3.3.2 Semantics

The Parameter Set mechanism is designed to decouple the transmission of picture/GOP/sequence header information from the picture data that is composed of SSPs, IDERPs and/or DPAs, DPBs, DPCs. [TODO: Update the element type abbreviations.] Parameter sets package together all of the parameter values needed to correctly decode the VCL data. Each slice references the parameter set containing the proper set of values needed to decode that slice.

[Note: It is recommended to convey parameter sets out-of-band using a reliable transport mechanism. If the transmission and update of Parameter Sets is a function of such a control protocol, PSEs should not be used in such systems where adequate protocol support is available. However, in applications where the packet stream has to be self-contained PSEs may be used.]

[Note: In error-prone transmission environments, PSEs (when used) SHOULD be conveyed significantly before their content is first referenced. Moreover they should be protected better than other NAL elements.]

The independent GOP parameter set shall remain unchanged throughout an independent GOP and only one independent GOP parameter set shall be referred to from all the slices of an independent GOP.

[Note: The reason of limiting parameter set updates and parameter set referencing is that some of the parameters must not change within an independent GOP and the flexibility of changing the others was not considered to be important. For example, the number of picture “slots” in the multi-picture buffer must not be changed during an independent GOP. Otherwise, it would be unclear how the multi-picture buffering process operates.]

log2_max_picture_number_minus_4 specifies the MAX_PN constant used in picture number related arithmetic. MAX_PN = 2log2_max_picture_number_minus_4 + 4 – 1. (Note: this definition assumes a fixed-length picture number field in the slice header proposed in JVT-C079. If JVT-C079 is not adopted, the definition has to be changed appropriately.)

number_of_reference_picture_buffers defines the total number of short- and long-term picture buffers in the multi-picture buffer.

If required_picture_number_update_behavior is 1, a specific decoder behavior in case of missing picture numbers is mandated (see section 9.1.1.2 of JVT WD2).

picture_width_in_MBs_minus_1 and picture_height_in_MBs_minus_1 define the size of the picture.

entropy_coding equal to zero stands for the non-arithmetic VLC coding of WD2, whereas value one stands for the arithmetic coding VLC coding of WD2.

motion_resolution equal to zero stands for ¼-sample motion resolution, and equal to one stands for 1/8-sample motion resolution.

constrained_intra_prediction_flag equal to zero stands for normal intra prediction, whereas one stands for the constrained intra prediction. In the constrained intra prediction mode, no intra prediction is done from inter macroblocks.

time_scale is the number of time units which pass in one second. For example, a time coordinate system that measures time in sixtieths of a second has a time scale of 60.

num_units_in_tick is the number of time units in a (1/time_scale)-Hz clock that correspond to one clock tick. A clock tick is the minimum interval of time that can be represented in the coded data. For example, if the clock frequency of a video signal is (30 000) / 1001 Hz, time_scale should be 30 000 and num_units_in_tick should be 1001.

The temporal reference mode (tr_mode) signals how temporal references (TRs) are conveyed in slice headers. tr_mode 0 indicates that no TRs are carried in slice headers. tr_mode 1 indicates that TRs are coded relative to picture numbers. tr_mode 2 indicates that a TR is coded relative to the previous TR.

expected_delta_tr is valid only if tr_mode is 1. It signals the expected increment or decrement of TRs per each picture number.

num_bits_in_tr is valid only if tr_mode is 2. It signals the number of bits used in the TR field of the slice header.

3.4 Supplemental Enhancement Information Element

3.4.1 Syntax

	sei_element() {
	Length
	Mnemonic

	sei_message()
	
	

	while (nextbits()) {
	
	

	sei_message()
	
	

	}
	
	

	}
	
	

	sei_message() {
	Length
	Mnemonic

	payload_type = 0
	
	

	while (nextbits(8) == 0xFF) {
	
	

	byte1
	8
	uimsbf

	payload_type += byte1
	
	

	}
	
	

	byte2
	8
	uimsbf

	payload_type += byte2
	
	

	payload_size = 0
	
	

	while (nextbits(8) == 0xFF) {
	
	

	byte3
	8
	uimsbf

	payload_size += byte3
	
	

	}
	
	

	byte4
	8
	uimsbf

	payload_size += byte4
	
	

	sei_payload(payload_type, payload_size)
	
	

	}
	
	

3.4.2 Semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary correctly decode VCL data, but are helpful for decoding or presentation purposes.

An SEI element contains one or more SEI messages. Each SEI message consists of a SEI header and SEI payload. The type and size of the SEI payload are coded using an extensible syntax. The SEI payload size is indicated in bytes. Valid SEI payload types are listed in Annex XXX.

The SEI payload may have a SEI payload header. For example, a payload header may indicate to which picture the particular data belongs. The payload header shall be defined for each payload type separately. Definitions of SEI payloads are specified in Annex XXX.

[Note: Transmission of SEI payloads is synchronous relative to other NAL payloads. An SEI message may concern a slice, a part of a picture, a picture, any group of pictures, or a sequence in the past, currently decoded, or in the future. An SEI message may also concern one or more NAL payloads previous or next in transmission order.]

4. NAL Decoder Operation

[Note: Start code emulation byte removal process of EBSP is described here.]

[Note: Parameter Sets come into effect at the beginning of the next received independent GOP. Recommendation: encoders should not reuse parameter set IDs.]

[Note: Buffering of coded slices and data partitions (in HRD) is done after the start code emulation byte removal process. See document JVT-Cxxx for further information.]

5. Transport Encapsulation Layer

Each TEL defines how to encapsulate NAL units for a particular transport or delivery systems. For example, a TEL may be defined for a packet-oriented transport like RTP, a bitstream oriented format like MPEG-2, or for storage in a file format like MP4.

A TEL may use one or more “channels” (i.e. bands) to carry JVT content. In the simplest case the TEL carries all NAL units in a single channel; that is, NAL units are all delivered in-band. This includes not only the video data but also extra information like parameter sets and SEI messages. On the other hand, a TEL may also carry NAL units in multiple channels. For example, an RTP TEL might carry video elements and high-level structure elements in a RTP stream and send parameter sets out-of-band in an SDP announcement over the RTSP protocol.

A TEL is required to:

(1) Carry all video data elements (slices and data partitions). A TEL must support the carriage of both complete slices and data partitions.

(2) Carry all high-level structure elements.

(3) Carry SEI messages.

A TEL may choose to:

(1) Not support the carriage of parameter sets elements. This may happen, for example, if the decoder and encoder support only a fixed number of parameter sets.

[This specification does not constrain the operation of TEL. For example, a TEL may reorder units for carriage, duplicate units for error robustness, and so on.]

[Needs to be clarified.

(2) SEI Message: A TEL may carry SEI message into a transport-specific manner. For example, SEI messages related to timing may be mapped into system layer elements representing timing information.]

5.1 Ordering of NAL Units

In the NAL, NAL units are ordered into a sequence. This order is only a logical ordering of information based on dependencies among the information in the various NAL units, and does not imply any particular delivery schedule for a TEL. Formally, the ordering constraints impose a partial ordering over the NAL units but not a total ordering. A TEL must deliver NAL units such that resulting logical information is reconstructed so that it satisfies the partially ordering of the NAL unit sequence. For example, this implies that a NAL must ensure that parameter sets are available before any slice that references them but allows a NAL to send parameter sets more than once.

The ordering of GAL must satisfy the following constraints:

(1) Parameter Set Messages must occur before they are referenced.

(2) Supplemental Enhancement Messages must occur prior to the beginning of the item to which they pertain.
(3) Video Messages are carried in coding order.

(4) Slices within a single picture may be sent in any order – i.e. slice are not required to be sent in "scan order".

(5) The data partitions in a single slice may in any order.
These constraints have the following implications:

· SEI messages and parameter set elements can anywhere interleaved in the sequence of NAL units. For example, a SEI message could occur between two data partitions elements of the same slice.

A TEL may impose more restrictive constraints than these; however, doing so may affect interoperability with other TELs that do not impose such constraints

5.2 Interoperability Considerations

[TBD. Should only be general issues. Things like use of SEI messages for MPEG-2 TEL, Specific issues on interoperability for each TEL should be defined with that TEL.]

5.2.1 Parameter Set Updates

[Stuff about including parameter set updates often and not too far ahead]

6. Relation to HRD [mISKA/eRIC vISCITO]

TODO

HRD resides in NAL

Every NAL payload is inserted into the HRD.

The conformance of a coded data stream is verified by inserting each NAL payload to HRD at its assumed reception time.

7. ANNEX XX: Supplemental Enhancement Information Messages
[Contains syntax for each SEI message]

8. AnnEX XX: An EXAMPLe of the mapping from NAL to TEL (Informative)
[image: image2.wmf]Sequence

Start

GOP

Start

Picture

Start

Slice

Slice

Picture

End

GOP

End

SEI

Parameter

Generic NAL

Sequence

Start Code

GOP

Start Code

Picture

Start Code

SEI

Message

Slice

Slice

…

Sequence

End

MPEG

-

2

Transport/Program

Stream

Parameter

Sets

Program

Elementary

Stream 1

Program

Elementary

Stream 2

Program

Elementary

Stream 3

	

	

	[image: image3.wmf]Sequence

Start

GOP

Start

Picture

Start

Slice

Slice

Picture

End

GOP

End

SEI

Parameter

Generic

NAL

Slice

Slice

Metadata

Media Data

Sample

Table

Param

Table

User Data Table

MP4

File

Figure 1: Mapping of NAL to MPEG-2 Systems TEL
[image: image4.wmf]Sequence

Start

GOP

Start

Picture

Start

Slice

Slice

Picture

End

GOP

End

SEI

Sequence

Header

GOP

Header

Parameter

Picture

Header

User

Data

Slice

Slice

…

Sequence

End

Generic

NAL

MPEG

-

2

Video Stream

(Transport or Program)

File:JVT-C164
Page: 16
Date Saved: 2002-05-05

