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JVT/H.26L/JVT Decoder Complexity Analysis

Michael HOROWITZ, Anthony JOCH, Faouzi KOSSENTINI, and Antti HALLAPURO

Abstract-- In this paper, we will study the complexity of the JVT/H.26L decoder, which is an important part of the overall cost effectiveness of a JVT/H.26L-based video system. We take a systematic approach to quantifying the computational complexity of a JVT/H.26L decoder. Our method is based on determining the number of basic computational operations required by a decoder to perform each of the key decoding sub-functions. The frequency of use of the required decoding sub-functions is measured using bit streams generated with two encoders with different characteristics for different content, resolutions and bit rates. Therefore, using the measured frequencies, an estimate of the decoder computational complexity for various hardware platforms can be determined. A detailed example is provided to assist readers in deriving their own computational complexity estimates. We compare the resulting estimates to actual numbers measured for a fairly optimized decoder on the Pentium 3 platform. We then use the actual numbers to evaluate the dependence of the computational complexity of the major decoder sub-functions on encoder characteristics, content, format and bit rate. Finally, we compare a JVT/H.26L-compliant decoder to a decoder that is compliant with the H.263 standard, which is currently dominant in many video applications. Our results indicate that the JVT/H.26L decoder may be 2-3:1 higher in terms of computational complexity than an H.263 baseline decoder.

Index Terms—Complexity, Decoder, JVT/H.26L/JVT, Video

I. INTRODUCTION
T
HE ITU-T/ISO draft JVT/H.26L video coding standard promises improved coding efficiency over existing video coding standards. Although its coding algorithms are based on the same block-based motion compensation and transform-based spatial coding framework of current standards, JVT/H.26L provides higher coding efficiency through added features and functionality. However, such features and functionality also entail additional complexity in encoding and decoding. The complexity of the coding algorithms directly affects the cost effectiveness of developing a JVT/H.26L-based video solution. 

In this paper, we will study the complexity of the JVT/H.26L decoder, which we describe in the next section. Unlike encoder implementations, which can vary by orders of magnitude in terms of complexity (yet similar coding efficiency can be attained), decoder implementations usually entail the same level of complexity. This is because the behavior of the decoder is fully specified by the standard that it supports and the characteristics (e.g. bit rate, resolution) of the coded content that it must process. Therefore, it will be easier and arguably more useful to study and analyze the general complexity of the JVT/H.26L decoder.  

The objective of this paper is two-fold. First, we will develop and validate a novel methodology for estimating decoder computational complexity. The methodology will allow the reader, using data presented in this paper, to derive computational complexity estimates for a variety of operating conditions and hardware platforms. Second, we will study the relationship between decoder computational complexity and encoder characteristics, source content, format and bit rate.

To estimate the overall complexity of a JVT/H.26L decoder implementation, it is important to understand that there are at least three major contributors to complexity: 1) Algorithmic complexity, 2) Storage and 3) Computational complexity. Both the algorithmic complexity and storage determine to a large part the cost of hardware implementation, mainly because they affect the size of the circuits used in the implementation. The computational complexity determines mainly the execution speed of the algorithms on the hardware system. In this work, the complexity of the JVT/H.26L decoder is studied and analyzed in the context of a software implementation on general and DSP/media processors.

In a software implementation, algorithmic complexity usually translates onto additional computational complexity. However, while storage and computational complexity can be traded for each other, a minimum amount of storage is often required for a reasonably efficient software implementation. Knowledge of such minimum storage requirements for an efficient software implementation of a JVT/H.26L decoder is important, particularly in the case of DSP/media processors. The storage requirements of a JVT/H.26L decoder are presented in Section III. In the rest of the paper, we focus on the evaluation of the computational complexity of a JVT/H.26L decoder software implementation.

To derive an accurate estimate of the computational complexity of a JVT/H.26L decoder, we should first address the memory bandwidth. Memory bandwidth is loosely defined as the bandwidth that is required to move data from memory to the processor and back. A viable software architecture will strike a balance between the time spent operating on data and the time spent loading/storing the same data. A typical JVT/H.26L video decoder requires large memory bandwidth and computational resources, making this balancing act all the more difficult. Consider an example implementation of an algorithm in which a simple set of operations require a total of 20 machine cycles to process a set of data on a particular hardware platform. Further, assume that loading of that data from memory requires 50 cycles.  It is clear that, in this example, the implementation is memory I/O bound. In other words, the implementation will spend more time loading data than performing the operations. In this case, an estimate of the number of operations will not provide an accurate estimate of the overall computational complexity of this implementation. Optimization techniques such as pre-loading data to a data cache, an intermediate memory location that provides very fast data access to the processor, would alleviate the memory I/O bottleneck in this example. In this work, we will assume that the software implementation of the JVT/H.26L video decoder has been designed to achieve the best possible balance between memory bandwidth and operations, and so only the number of cycles required for the operations will be used to develop the lower-bound estimates for the computational complexity.

We take a systematic approach to quantifying the computational complexity of a JVT/H.26L decoder. The basis of our method is to determine the number of basic operations required by a decoder to perform each of the key decoding sub-functions. The number of times that these sub-functions must be performed is measured using bit streams generated with two encoders with different characteristics for different content, resolutions and bit rates. By mapping these computational requirements to the processing capabilities of several hardware platforms, an estimate of the decoder’s computational complexity can be determined for each platform. Our methodology is described in Section IV. In Section V, we will compare our computational complexity estimates to empirical results generated for an optimized decoder on the Pentium 3 (P3) platform. In Section VI, we will study (using empirical results) the behavior of the JVT/H.26L decoder as a function of content, resolution and bit rate. Section VII presents results that quantify the difference in computational complexity between a decoder compliant with the next-generation JVT/H.26L standard, and a decoder compliant with the H.263 standard, which is currently dominant in video conferencing applications. Conclusions are presented in Section VIII.

II. JVT/H.26L DECODER: OVERVIEW

As with all popular video standards, the operation of a compliant JVT/H.26L decoder is fully specified by the standard. The decoding process consists of interpreting the coded symbols of a compliant bit stream and processing this data according to the standard specification in order to generate a reconstructed video sequence. JVT/H.26L defines a hybrid block-based video codec, similar to earlier standards like MPEG-2 and H.263. Such codecs combine inter-picture prediction to exploit temporal redundancy with transform-based coding of the prediction error to exploit the video spatial redundancy. Thus, the decoding process consists generally of two primary paths: the generation of the predicted video blocks and the decoding of the coded residual blocks. The pixel values of the output blocks resulting from these two paths are summed and clipped to the valid range for pixel data to form the reconstructed blocks. While it is based on the same hybrid-coding framework, JVT/H.26L features a number of significant components that distinguish this new standard from its predecessors. This section provides a description of the data flow and processes of a JVT/H.26L decoder. For a detailed description of the standard, see another paper in this special issue [BSW]. 

A generalized block diagram of a JVT/H.26L decoder is given in Figure 1. The JVT/H.26L decoder shares several common features with all other hybrid video decoders. This includes generally the buffering of the input bitstream and entropy decoding, motion compensated prediction, inverse scanning, quantization and transformation, and the addition of the prediction and the transform coded residual video blocks.

The incoming video bitstream is stored in a buffer at the input to the decoder. The first stage in the decoding process is the parsing and decoding of the entropy coded bitstream symbols that are stored in the buffer. In JVT/H.26L, two different entropy coding modes are supported at this time: a simple universal variable length coding (UVLC) method, which makes use of a single code-table for all syntax elements; and a more complex and efficient context-adaptive binary arithmetic coding (CABAC) method. The complexity of the CABAC method is derived from the need to continually update a large set of context models throughout the decoding process, and the arithmetic decoding of symbols. The UVLC method can be implemented with a relatively small number of operations, requiring parsing of each symbol and table lookups. For the analysis presented in this work, only the UVLC method will be addressed.

The various syntax elements in the bitstream are de-multiplexed for use in different processes within the decoder. High-level syntax elements include temporal information for each frame, frame coding types and frame dimensions. JVT/H.26L coding, as with earlier standards, is based primarily on macroblocks consisting of 16x16 luminance-pixel blocks and 2 8x8 chrominance pixel blocks. On the macroblock level, syntax elements include the coding mode of the macroblock, information required for forming the prediction, such as motion vectors and spatial prediction modes, and the coded information of the residual (difference) blocks, such as the coded block pattern (CBP) for each macroblock and quantized transform coefficients for each of the underlying blocks.

Depending on the coding mode of each macroblock, the predicted macroblock can be generated either temporally (inter coding) or spatially (intra coding). The prediction for an inter coded macroblock is determined by the motion vectors that are associated with that macroblock. The motion vectors indicate the position within the set of previously decoded frames from which each block of pixels will be predicted. Each inter coded macroblock can be partitioned in one of seven ways, with luminance block sizes ranging from 16x16 pixels to 4x4 pixels. Also, a special SKIP mode exists in which no motion vectors (or coded residual blocks) are transmitted and the prediction is taken from the spatially corresponding macroblock in the previous picture. Thus, 0 to 16 motion vectors can be transmitted for each inter coded macroblock. Finally, note that additional predictive modes are supported when B-pictures are employed, however, only I- and P-pictures are considered in this work.

Motion vectors are coded using either median or directional prediction, depending on the partition that is used for the luminance component of the macroblock. For each motion vector, a predicted block must be computed by the decoder and then arranged with other blocks to form the predicted macroblock. Motion vectors in JVT/H.26L are specified generally with quarter-pixel accuracy (an optional mode allows for the use of eighth-pixel accurate motion vectors, but this mode is not addressed in this work). Interpolation of the reference video frames is necessary to determine the predicted macroblock using sub-pixel accurate motion vectors. The complexity of the required interpolation filter varies as follows. To generate a predicted macroblock using half-pixel accurate motion vectors, an interpolation filter that is based on a 6-tap windowed sinc function is employed. In the case of prediction using quarter-pixel accurate motion vectors, filtering consists simply of averaging two integer- or half-pixel values (i.e., two pixels from the interpolated reference frame that is used to generate the half-pixel accurate motion vectors), although one of every 12 quarter-pixel values (a.k.a. the “funny position”) is replaced by the average the four surrounding integer-pixel values, providing more low-pass filtering than the remaining positions. A bilinear filter is used to interpolate the chrominance frames when sub-pixel motion vectors are used to predict the underlying chrominance blocks. 

JVT/H.26L also supports the use of multiple (previous for P-pictures) reference frames for prediction. Selection of a particular reference frame is made on a macroblock basis. This feature can improve both coding efficiency and error resilience. However, this feature also requires that the decoder buffer store several previously decoded and reconstructed frames, rather than just the most recent reconstructed frame, increasing substantially the decoder’s memory requirements.

Two different modes are supported in intra coding of macroblocks. In the 4x4 Intra mode, each 4x4 block within a macroblock can use a different prediction mode. There are 9 possible modes, one DC and 8 directional prediction modes. The complexity of the prediction mode varies, with the DC, vertical and horizontal modes being the least complex, and the diagonal modes being the most complex. In the 16x16 Intra mode, which is generally used in smooth areas, there are 4 modes available: DC, vertical, horizontal and planar, with the latter being the most complex.  The prediction of intra-coded blocks is always based on neighboring pixel values that have already been decoded and reconstructed.

The decoding of a residual (difference) macroblock requires that a number of inverse transforms be performed, along with associated inverse scanning and quantization operations. The encoding of a difference macroblock is based primarily on the transformation of 4x4 blocks of both the luminance and chrominance pixels, although in some circumstances, a second-level transform must be performed on the DC coefficients of a group of 4x4 blocks. More specifically, a special 2x2 transform is applied to the 4 DC coefficients of the blocks of the chrominance pixels. For macroblocks that are being coded in the 16x16 Intra mode, an additional scan and transform are applied to the DC values of each of the 16 4x4 luminance blocks of a macroblock.

The inverse transforms that are required for each macroblock are determined based on the coding mode and the coded block pattern (CBP) of the macroblock. The input data are the run-level codes that are parsed by the entropy decoder. These are put into their correct order based on the run values through the inverse scanning process and then the levels, which represent quantized transform coefficients, are inverse quantized via multiplication by a scaling factor. Finally, the necessary integer-specified inverse transform is performed on the inverse quantized coefficients. The inverse transformed result for each macroblock is added to the predicted macroblock and stored in the reconstructed frame buffer. 

In the final stage of the decoding process, a JVT/H.26L decoder must apply the normative de-blocking filtering process, which reduces blocking artifacts that are introduced by the coding process. Since the standard specifies that the filter be applied within the motion compensation loop, any compliant decoder must perform this filtering exactly. The filtering is based on the 4x4 block edges of both luminance and chrominance components. The type of filter used, the length of the filter and its strength are dependent on several coding parameters as well as picture content on both sides of each edge. A stronger filter is used if either side of the edge is a macroblock boundary where one or both sides of the edge are intra coded. The length of the filtering is also determined by the pixel values over the edge, which determine the so-called “activity parameters”. These parameters determine whether 0, 1, or 2 pixels on either side of the edge are modified by the standard filter.

III. JVT/H.26L DECODER: STORAGE REQUIREMENTS

The storage required by a JVT/H.26L decoder can be divided into four memory classes:

1. Memory that is needed for the whole frame: This memory includes reconstruction frame memory and reference frame memory. Assuming a 4:2:0 picture format with 8 bits per color component, one pixel takes 1.5 bytes.

2. Memory that is needed only for one line of macroblocks: This memory includes tables that are used for loop filtering and intra prediction. The loop filter and intra predictor need some values from upper macroblocks so the whole line of values has to be stored.

3. Memory that is needed for a macroblock: This memory includes temporary buffers that are used for storing transform coefficients, prediction values and pixel values. It is possible to reduce this memory to less than 1 kilobyte by copying prediction and reconstruction values directly to the frame buffer.

4. Memory that is needed for constant data: This includes VLD tables, intra prediction probability tables and some other small constant tables.

Table 1 presents a summary of the storage requirements of a JVT/H.26L decoder. In the table, w is width of the picture, h is the height of the picture and n is the number of reference frames. As expected, frames buffers dominate the storage requirements, particularly for high-resolution video (95% for QCIF, 98% for CIF). It is also clear from the table that less than 0.5 megabytes (1 megabyte for 3 reference frames) is required even when CIF resolution is used. This can be easily afforded by most general purpose processors and most DSP/media processors.

IV. JVT/H.26L DECODER COMPUTATIONAL COMPLEXITY: THEORETICAL ANALYSIS

As mentioned in the previous section, JVT/H.26L contains a number of optional features that can have a significant effect on decoder computational complexity. The features used in our analysis represent the current understanding of the features that will compose the baseline profile of JVT/H.26L. This profile would contain the simplest set of features and is most likely to be used in the first generation of JVT/H.26L-based video products, particularly those that require real-time encoding. The feature set includes UVLC entropy coding rather than CABAC, quarter-pixel accurate motion compensation, I- and P-pictures only and as many as five previous reference frames would be supported for motion compensated prediction.

To develop both our theoretical and experimental results, we have generated bitstreams using two JVT/H.26L encoders with differing characteristics. The use of two different encoders helps to establish the amount of variation that might be experienced in decoder complexity as a function of the encoder’s characteristics. The first encoder is the public JM 1.9 encoder, which performs an exhaustive search of all possible motion vectors and coding modes in order to attain the best possible rate-distortion performance. The second encoder is a real-time JVT/H.26L encoder developed by UB Video Inc. This encoder differs from the JM encoder in that it implements sub-optimal motion search and mode decision algorithms in order to reduce the encoder’s computational complexity and thereby enable real-time encoding. The UB Video encoder is highly optimized algorithmically, yet its objective and subjective performance levels are close to those of the JM encoder [VCEG-O42].

To generate the bitstreams, we have used a set of 3 QCIF- and 3 CIF-resolution video sequences. The QCIF video sequences are Container and Foreman at 10 Hz, and Silent Voice at 15 Hz. The CIF video sequences are Paris at 15 Hz, and Foreman and Mobile & Calendar at 30 Hz. Each video sequence was encoded by each of the two encoders at 3 different bit rates. The selected rates represent typical video data rates used in video conferencing systems. Neither of the two encoders employed a rate control method, and so the target rates were approximated by choosing, in each case, a constant quantization parameter that resulted in an average bit rate nearest the target rate.

Estimating computational complexity of a video decoder is a tedious and time-consuming task.  Besides its dependence on factors such as the source video content, format, frame rate, data rate, and type of encoder, this task depends on the intended use of the estimate. For hardware design, often a worst-case estimate is warranted, other times an average-case estimate is of interest, still other times the worst-likely-case estimate is considered.  Next, we describe a methodology and provide tools in the form of data tables that together will be used to derive JVT/H.26L video decoder computational estimates over a wide variety of operational scenarios.

A. Table Descriptions

In this subsection, we describe the contents of the data tables that lie at the heart of the complexity analysis methodology. As detailed later, the Decoder Sub-function, Operation Count and Operation Cost tables may be used to estimate the computational complexity of the JVT/H.26L video decoder.

1) Decoder Sub-Function Tables

The Decoder Sub-function tables contain data that describe the frequency of use of the decoder sub-functions. Such tables provide a means of evaluating the effects of the content, bit rate and encoder characteristics on the decoder computational complexity. Although we have generated several tables containing frequencies as a function of content, resolution, bit rate and type of encoder, we only present Table 2, which contains frequencies corresponding to the video sequences Mobile and Calendar encoded with a fixed quantization parameter (QP) of 21, and Forman encoded with a QP of 28, respectively.

2) Operation Count Table

The Operation Count table contains a detailed description of the number of operations required to perform different decoder sub-functions. Each operation in the table is listed in a separate column. In a given decoder implementation, there are two basic types of operations. One type is strongly dependent on the hardware platform and varies widely with implementation. For example, on some hardware platforms, function calls are computationally expensive. Consequently, a good software implementation may replace frequently used calls with the source code of the referenced functions. On other platforms, this strategy may be inappropriate. Other examples are operations related to loop overhead, arithmetic related to computing memory load and store locations and special-case codes for boundary conditions. The other type of operations includes those operations that every JVT/H.26L compliant video decoder must perform. Examples are the computation of the loop filter output values and the 6-tap half-pel and bilinear quarter-pel interpolation values. The Operation Count table accounts for the operations in this second type only.

The Operation Count table (which can be obtained from http://spmg.ece.ubc.ca) is very long, and it can be very difficult to understand. Therefore, we only present in Table 3 a summary of the number of required basic operations for the three main sub-functions of the decoder: 1) Inverse transform and reconstruction, 2) Interpolation and 3) Loop filtering. These sub-functions account for 70-80% of the decoder computational complexity. Note that there is a close (not one-to-one) correspondence of the rows in the operation count table to the rows in the sub-function tables to facilitate the process of combining data to compute a complexity estimate.
3) Operation Cost Table 

The Operation Cost table (Table 4) contains data that describes the number of execution sub-units capable of performing each of the basic operations found in the Operation Count table for a variety of hardware platforms. It is apparent from the data in the table that most platforms have several execution sub-units operating in parallel to enhance computational efficiency.

B. Analysis Methodology

In this subsection, we describe a method using the tables described above to derive lower-bound computational complexity estimates for JVT/H.26L decoder implementations on a variety of hardware platforms. The method consists of two basic steps. In the first step, we compute the number of cycles required to execute a particular sub-function on a chosen hardware platform. This intermediate result may be derived by mapping the sub-function operations onto the hardware, applying SIMD parallelism and distributing the remaining operations as efficiently as possible among the execution sub-units on the hardware. In the second step, the cycle count estimate is derived by multiplying the result from the first step by the frequency that the sub-function was used. The sub-function frequency data is available in the Sub-Function Tables (see Table 2 for an example).

We illustrate the estimation of the computational complexity in detail with an example in which the number of cycles required to execute the 4x4 inverse transform and reconstruction is estimated for the TriMedia TM-1300 for the video sequence Mobile and Calendar encoded with a QP of 21. There are two cases to consider when analyzing the 4x4 inverse transform and reconstruction. The first is the inverse transform and reconstruction, and the second is the reconstruction only case where no inverse transform is necessary (i.e. no non-zero coefficients were decoded).  An estimate for the number of cycles required in each case is derived below. The estimates are then combined with the sub-function frequency data to yield the computational complexity estimate.

Case 1: 4x4 Inverse Transform and Reconstruction

The operations used in the 4x4 inverse transform and reconstruction are mapped onto the TriMedia hardware architecture using data extracted from the Operation Count (Table 3) and Operation Cost (Table 4) tables as shown in Table 5. Next, the parallelism provided by the SIMD feature of the architecture is taken into account. For the inverse transform sub-function, no SIMD parallelism is exploited
. Therefore, the cycle count is estimated by distributing the required operations among the execution sub-units so as to minimize the total number of cycles. More specifically, the minimum number of cycles, C, is computed as follows: 

C = max [(A+S+ST+L)/5, (A+S+ST)/5, (A+S+L)/5, (A+L+ST)/5, (A+ST+L)/4, (A+S)/5, (A+ST)/5, (A+L)/5, (S+ST)/4, (S+L)/4, (ST+L)/2, A/5, S/2, ST/2, L/2]

= (A+S+ST+L) / 5  = 38.4 cycles,







   (1)

where A, S, ST and L represent the number of adds, shifts, stores and loads, respectively.  Rounding to the next higher integer, the 4x4 inverse transform and reconstruction requires 39 cycles on the TriMedia TM-1300 architecture. For completeness, we show all operation combinations in Equation (1), however, many may have been easily eliminated. For example, (A+S+ST+L)/5 seems to be always greater than or equal to  (A+S+ST)/5, and so the latter may be safely ignored.

Case 2: 4x4 Reconstruction Only

As in Case 1, the operations are mapped onto the hardware as shown in Table 6.  Also in this case, SIMD parallelism is not applicable. Therefore, the minimum number of cycles, C, is computed as follows:

C = max [(ST+L)/2, ST/2, L/2] = (ST+L)/2 = 16 cycles.

After estimating the number of cycles required to execute the sub-function, the overall computational cost is derived from the sub-function frequency data provided in the Sub-Function table. More specifically, from Table 2 we see that an average of 42165.7 4x4 inverse transforms are required per second to decode Mobile and Calendar encoded using a QP of 21. Using the cycle estimate derived in the first step, the computational cost due to the 4x4 inverse transform and reconstruction is 42165.7 * 39 = 1644462.3 cycles per second. Likewise, noting that, on average, 242954.3 blocks per second require reconstruction only, it follows that the computation burden for reconstruction only is 242954.3*16 = 3887268.8 cycles per second. The estimated computational cost is computed by summing the cycle estimates for the two cases. That is, the estimated cost of the 4x4 inverse transform and reconstruction for Mobile at a QP of 21 is 1644462.3 + 3887268.8 = 5531731.1 TM-1300 cycles per second.

Finally, we note that it is possible to compute alternative lower-bound computational complexity estimates using variations on the method described above.  For example, to derive a benchmark for the computational complexity, it is necessary to identify the most computationally complex decoding mode for a particular hardware platform using the Operation Count and Operation Cost tables.  Once identified, a lower bound for a benchmark computational complexity estimate may be derived under the assumption that every macroblock is to be decoded in that mode.

V. JVT/H.26L DECODER COMPUTATIONAL COMPLEXITY: COMPARATIVE ANALYSIS

In the previous section, two factors lead to the lower-bound estimates, or more precisely the under estimation of the computational complexity. First, recall that the Operation Count table contains data for only those operations that are fundamental to the decoding process. Overhead operations such as loop and flow control and boundary condition handling are not included. Second, we assume that the software is designed so that the overhead due to instruction cache misses is negligible, hardware register counts are not exceeded and operation latency is hidden. Therefore, it is usual practice to multiply an estimate derived using similar assumptions by a factor of 2-3 to achieve a realistic computational complexity target for highly optimized machine specific code. For optimized code that is not machine specific (i.e. “C” only code), factors of 4-5 are more typical. In fact, we will show in this section through a couple of examples and through a summary for the Pentium 3 that the theoretical results are approximately 5:1 away from the experimental results.

Let’s first re-visit the same example used in the previous section, except that we now develop estimates for the Pentium 3 (P3) platform. More specifically, let’s estimate the number of cycles required to execute the 4x4 inverse transformation and reconstruction for the P3 for the video sequence Mobile and Calendar encoded with a QP of 21. The same two cases are considered next.

Case 1: 4x4 Inverse Transform and Reconstruction

The operations used in the 4x4 inverse transform and reconstruction are mapped onto the P3, as shown in Table 7. Next, the parallelism provided by the SIMD feature of the architecture is taken into account. Therefore, the minimum cycle count, C, is computed as follows:

C = max [(A+S+2*ST+L)/3, (A+S)/2, A/2, S, ST, L]

= (A+S+2*ST+L)/3 = 69.3 cycles,

where A, S, ST and L represent the number of adds, shifts, stores and loads, respectively. Therefore, the cost of the 4x4 inverse transform + reconstruction is 69.3 cycles on the P3.

Case 2: 4x4 Reconstruction Only

As in the first case, the operations are mapped onto the Pentium hardware as shown in Table 8. Assuming load/store parallelism is not exploited
, C can be computed as follows:

C = max [(2*ST+L)/3,ST, L] = 16 cycles.

Next, from the Sub-Function table, we see that 42165.7 total 4x4 transforms per second, or 28266.6 luminance and 13899.1 chrominance 4x4 transforms per second, are required on average to decode Mobile and Calendar encoded using a QP of 21. Using the cycle estimate derived in the first step, the computational cost due to the 4x4 inverse transform and reconstruction is 42165.7 * 69.3 = 2922083.01 cycles per second. Similarly, noting 242954.3 4x4 luminance and chrominance blocks per second need to be reconstructed only to decode Mobile and Calendar encoded using a QP of 21, it follows that the computational cost for reconstruction only is 242954.3*16 = 3887268.8 cycles per second. Therefore, the estimated cost of the 4x4 inverse transform and reconstruction for Mobile at a QP of 21 is 2922083.01 + 3887268.8 = 6809351.81 Pentium 3 cycles per second.

To see how the above result compares with profile results generate using Intel’s VTune performance analyzer, we first note that 600 million cycles per second * (30 frames per second) / (55 frames per second) = 327.27 million cycles per second are needed to decode one second of Mobile at QP=21. The VTune analysis shows that 10.73% of the decoder computations are used for transforms and reconstruction for this sequence, and 10.73% of 327.27 million cycles gives 35.11 million cycles per second for this process. Therefore, the theoretical results are off by a factor of (35.11 million) / (6809352) = 5.16.

As a second example, let’s estimate the overall computational complexity that is required to decode Forman encoded using a QP of 28. From the Sub-Function table, we see that 4509.8 total 4x4 transforms per second, or 2591.8 luminance and 1918.0 chrominance 4x4 transforms per second, are required to decode Forman. Using the cycle estimate derived in the first step, the computational cost due to the 4x4 inverse transform and reconstruction is 4509.9 * 69.3 = 312536.07 cycles per second. Similarly, noting that (30 * 396 * 24) – 4509.8 = 280610.2 4x4 luminance and chrominance blocks per second need to be reconstructed only to decode Forman encoded using a QP of 28, it follows that the computational cost for reconstruction only is 280610.2 * 16 = 4489763.2 cycles per second. Therefore, the estimated cost of the 4x4 inverse transform and reconstruction for Forman at a QP of 28 is 312536.07 + 4489763.2 = 4802299.27 P3 cycles per second.

To see how the above result compares with the VTune results, we first note that 600M cycles per second * (30 frames per second) / (86 frames per second) = 209.30 million cycles per second are needed to decode one second of Foreman at QP=28. Inverse transforms and reconstruction compose 13.7% of the decoder complexity, or 29.0 million cycles per second, based on VTune results. This is a factor of 6.04 larger than the theoretically derived result of 4.8 million cycles per second.

The above two examples indicate that, as expected, the theoretical estimates are approximately 5:1 lower than the experimental measurements. On average, across all sources and data rates, we found the theoretical estimates to be 4.2 times lower than the measured values. Table 9 indeed confirms this result. The same table, which displays the (theoretical/experimental) estimate ratios for several sequences, resolutions and bit rates, also demonstrate that our theoretical analysis can be used effectively to predict accurately the computational complexity of a JVT/H.26L decoder implementation on a specific general-purpose platform.

VI. JVT/H.26L DECODER COMPUTATIONAL COMPLEXITY: EXPERIMENTAL ANALYSIS

In this section, we investigate the relationship between the video decoder’s computational complexity and the source content, format, bit rate and encoder characteristics. Our experimental analysis reveals that the computational complexity of the decoder and the important sub-functions that form the decoder operation is primarily dependent upon the bit rate of the coded bitstream. The characteristics of the source content is also found to affect decoder complexity, but to a lesser degree. However, a significant observation from our experiments is that the characteristics of the source encoder do not have a significant impact on decoder complexity for the two encoders that were tested in this study. We next present an analysis for each of the most computationally intensive sub-functions of the decoder: 1) Loop filtering, 2) Interpolation and 3) Inverse transform and reconstruction. The analysis is based on the VTune profile data generated using the UB Video codec.

A. Loop Filtering

The complexity of the loop filter can be separated into two parts: the computation of the strength for each 4-pixel edge and the actual filtering. Since the computation of the strength is generally performed in the same way for every macroblock, the time required for this operation remains relatively constant per macroblock over various types of content and bit rates. At lower bit rates, the complexity of this operation is slightly reduced, since some of the strength computations can be skipped when there are a larger number of macroblocks coded in the SKIP mode. The presence of INTRA-coded macroblocks can also reduce the complexity of the strength measurement, since block edges that neighbor INTRA-coded blocks have a constant strength, regardless of other coding parameters. However, the amount of INTRA coding is limited in our test set, and so this is not a significant factor.

The complexity of the filtering process varies significantly with the content characteristics, the bit rate, and also the quantization parameter. Block edges that have been copied directly or simply motion compensated from a previous frame, without having different motion vectors or non-zero residual coded blocks are not filtered, since blocking artifacts are not generated by such coding modes. Therefore, sequences coded at low bit rates that generally contain a large number of zero-valued residual blocks require less filtering operations. The decision to filter each row or column of a block edge is also strongly dependent on content and the quantization parameter. Sequences that are high in spatial detail (Mobile & Calendar, for example) require less filtering since true edges are not filtered in order to preserve detail. When the quantization parameter at a block edge is small, the maximum pixel intensity difference across the edge that can be the result of a coding artifact, and therefore not a true edge, is also small. This characteristic of the loop filter has the tendency to reduce the time spent filtering when the quantization parameter is small. In fact, for a quantization parameter with a value that is less than 8, no filtering takes place. Still, these content-dependent decisions require a number of calculations to be performed on each row or column of pixels to determine whether to filter or not. 

B. Interpolation

Interpolation of both luminance and chrominance samples is generally performed for each macroblock that is coded in the INTER mode (i.e. not SKIP or INTRA coded). Thus, we expect that the average time required for interpolation in the decoder is a direct factor of the number of INTER-coded macroblocks. Our experimental results meet this expectation, as illustrated in Figure 1, which plots the percentage of INTER-coded macroblocks against the average number of cycles per macroblock spent performing interpolation of luminance and chrominance pixels for each sequence in the test set. The relationship is approximately linear. INTER macroblocks are used most frequent when the content exhibits temporal redundancy so that INTRA coding is inefficient, and the SKIP mode is also not suitable for coding the content with the desired fidelity, determined in our experiments with the fixed quantization parameter. We can also observe from this figure that the complexity of chrominance interpolation is generally just less than half that of luminance. This approximate relationship is expected, since there are half as many chrominance samples as there are luminance sample in the input data. While fewer basic operations are required for the chrominance interpolation, there is also a larger proportion of setup and looping overhead for chrominance, since the basis for interpolation is sub-sampled by a factor of 2 in each direction.

C. Inverse Transforms and Reconstruction

The complexity of the inverse transform and reconstruction is directly affected by the number of blocks and macroblocks that contain non-zero coefficients. While macroblocks coded in the SKIP mode or INTER mode with no coefficients require only simple and regular copying of data from the reference frame or predicted macroblock to the current frame, inverse transforms, addition of the coded residual and clipping must be performed to reconstruct macroblocks with non-zero coefficients. Thus, the number of inverse transforms is a key factor in determining the complexity of this decoder sub-function. Again, the bit rate is the most important factor that determines the number of non-zero blocks that require inverse transforms, with larger numbers occurring at higher bit rates.

D. Intra Prediction

Intra prediction is not a large factor in our tests, since the generated bit streams only used a single I-picture per sequence, there was no Intra MB refresh, and there are no scene changes in the input content. Thus, although it is not addressed by our results, the complexity of the intra prediction is still important. Such complexity is largely a factor of the application, and how much intra coding it requires, either for random access or error resilience, and (of course) content.

VII. COMPUTATIONAL COMPLEXITY: JVT/H.26L VERSUS H.263 BASELINE

The Baseline profile of ITU-T Recommendation H.263 is the most widely implemented standard for use in real-time video communications. Since decoder cost is often the most critical factor in the cost effectiveness of deploying a JVT/H.26L-based video solution, a comparison of the decoding cost of these two standards is valuable. As discussed previously in this paper, the storage requirements of a JVT/H.26L decoder are dominated by frame buffers, the number of which is determined by the number of reference frames supported. In this section, we describe an experiment that we have performed to estimate the computational complexity of JVT/H.26L decoding compared to that of H.263 Baseline.

Our comparison is based on two similarly optimized “C” only decoder implementations running on a 600 MHz P3 PC. The encoders also used similar motion estimation and mode decision processes while generating bit streams compliant with their respective standards. The JVT/H.26L encoder used the same feature set as in our previous experiments, as described in Section IV. Three CIF-resolution sequences were encoded by both encoders at three different bit rates each, using different constant quantization parameters to control the rate. Decoding speed was measured for each coded sequence and bit rate. These results, along with the speed ratio between the two decoders for each sequence and matching bit rate, are presented in Table 10.

For all 9 coded bit streams, the ratio of decoding speed between H.263 Baseline and JVT/H.26L lies in the range from 2.1 to 2.9, with an average of 2.4.  Therefore, our conclusion is that the computational complexity of JVT/H.26L decoding is 2 to 3 times that of H.263 Baseline decoding for the same sequence encoded at the same bit rate. We also note that at the same bit rate, JVT/H.26L has a clear quality advantage, and if the goal in an application was to achieve similar visual quality, the JVT/H.26L bit streams could have at a bit rate that is 35 - 50% lower than the H.263 baseline bit streams [WSJKS, CSVT]. Since lowering the bit rate reduces the decoding complexity, as discussed in the previous section, the ratio of complexity between H.263 and JVT would also be reduced in this scenario.

VIII. CONCLUSIONS

In this paper, we study the complexity of the JVT/H.26L decoder using both theoretical and experimental methods. We derive our theoretical estimates using bit streams generated with two encoders with different characteristics for different content, format and bit rates. Together with hardware-specific cycle counts for each basic operation (e.g., add, shift) as well as measured numbers of computational operations for each sub-function (e.g., interpolation), the resulting frequencies can be used to estimate the JVT/H.26L decoder complexity for various hardware platforms. The resulting estimates are on average 4.2:1 lower than measured values, and this is expected since we ignore major bottlenecks (computational overhead, memory transfer, etc.) in our theoretical analysis. We also study the behavior of the JVT/H.26L decoder as a function of encoder characteristics, content, resolution and bit rate. Moreover, we demonstrate, through the use of fairly optimized decoders on the P3 platform, that the JVT/H.26L decoder is 2-3:1 higher in terms of complexity than an H.263 baseline decoder. Finally, we note that, at the time of the writing of this paper, JVT/H.26L was still an evolving standard, and the final decoder may differ from the decoder analyzed in this paper.

	Buffer name
	Formula
	QCIF

w=176,

h=144,n=1
	CIF

w=176,h=144,n=1

	Reconstruction frame
	1.5*w*h
	38016
	152064

	Reference frames
	n*1.5*w*h
	38016
	152064

	Reference indices
	w/16
	11
	22

	Motion vectors
	w/16*64
	704
	1408

	Intra prediction modes
	w/16*16
	176
	352

	CBP values
	w/16*4
	44
	88

	MB types
	w/16
	11
	22

	MB temp data
	~2048
	2048
	2048

	Constants
	~1024
	1024
	1024

	TOTAL
	(n+1)*1.5*w*h + w/16*84 + 3072
	80050
	309092


Table 1. Storage requirements of the JVT/H.26L decoder. 

	
	Foreman, QP = 28
	Mobile, QP = 21

	SKIP MBs
	4322.8
	276.7

	INTER MBs
	7222.3
	11545.7

	INTRA MBs
	334.9
	57.6

	
	
	

	4x4 Luma Transforms
	2591.8
	28266.6

	4x4 Chroma Transforms
	1918
	13899.1

	
	
	

	"b" 4x4 blocks
	30669.4
	37481.2

	"c" 4x4 blocks
	8713.8
	6134.2

	"d" + "e" 4x4 blocks
	24141
	59797.4

	"f" + "g" 4x4 blocks
	8945.4
	22023.6

	"h" 4x4 blocks
	13634.2
	13634.2

	"i" 4x4 blocks
	6307.2
	6307.2

	
	
	

	Edges with Non-zero Strength
	343608.4
	746964.8

	Filter Type Decision (L+C) 
	322985.2
	332858.8

	Strong Luma Filter
	5770.7
	269.1

	Strong Chroma Filter
	3882
	493.5

	Standard Filter (P0 + Q0)
	313332.5
	332096.2

	Filter P1 or Q1
	304341
	160411.8


Table 2. Sub-Function Operation Counts (Data specified as average number of operations per second). 

	
	Add8
	Add16
	Mult8
	Mult16
	MAC8
	MAC16
	Branch
	Shift
	Load
	Store
	AND
	OR
	? :

	4x4 Inverse Transform + Reconstruction
	0
	96
	0
	0
	0
	0
	0
	32
	48
	16
	0
	0
	0

	4x4 Null Inv. Transform  (reconstruct only)
	0
	0
	0
	0
	0
	0
	0
	0
	16
	16
	0
	0
	0

	Luma Interpolation  (ops per sample)
	
	
	
	
	
	
	
	
	
	
	
	
	

	    "b"  (MAC support)
	1
	2
	0
	0
	1
	0
	0
	1
	7
	1
	0
	0
	0

	    "b"
	0
	6
	0
	2
	0
	0
	0
	1
	7
	1
	0
	0
	0

	    "c"  (MAC support)
	2
	5
	0
	0
	2
	3
	0
	1
	20
	3
	0
	0
	0

	    "c"
	0
	17
	0
	6
	0
	0
	0
	1
	20
	3
	0
	0
	0

	    "d", "e" (MAC support)
	2
	2
	0
	0
	1
	0
	0
	2
	9
	2
	0
	0
	0

	    "d", "e"
	1
	6
	0
	2
	0
	0
	0
	2
	9
	2
	0
	0
	0

	    "f", "g" (MAC support)
	3
	6
	0
	0
	2
	3
	0
	3
	24
	5
	0
	0
	0

	    "f", "g" 
	1
	17
	0
	6
	0
	0
	0
	3
	24
	5
	0
	0
	0

	    "h" (MAC support)
	1
	2
	0
	0
	0
	12
	0
	3
	16
	3
	0
	0
	0

	    "h" 
	1
	12
	0
	4
	0
	0
	0
	3
	16
	3
	0
	0
	0

	    "i" - "funny position"
	4
	0
	0
	0
	0
	0
	0
	1
	2
	2
	0
	0
	0

	Chroma Interpolation
	
	
	
	
	
	
	
	
	
	
	
	
	

	   One Chroma Sample (MAC support)
	0
	1
	0
	0
	0
	2
	0
	1
	4
	1
	0
	0
	0

	   One Chroma Sample
	0
	4
	0
	4
	0
	0
	0
	1
	4
	1
	0
	0
	0

	Deblocking Filter (ops per block edge)
	
	
	
	
	
	
	
	
	
	
	
	
	

	    Strength Measure Inter 
	0
	5
	0
	0
	0
	0
	1
	8
	11
	1
	4
	3
	7

	    Strength Measure Intra 
	0
	0
	0
	0
	0
	0
	0
	0
	0
	2
	0
	0
	0

	    Edges With Non-Zero Strength
	7
	0
	0
	0
	0
	0
	1.25
	0.25
	5.25
	0
	2.5
	0
	3

	    Filtered Edges
	
	
	
	
	
	
	
	
	
	
	
	
	

	        Filter Type Decision (luma+chroma)
	2
	0
	0
	0
	0
	0
	1
	0
	2
	0
	3
	0
	2

	        Strong Luma Filter  (MAC support)
	4
	10
	0
	0
	6
	0
	0
	6
	2
	6
	0
	0
	0

	        Strong Luma Filter 
	28
	0
	2
	0
	0
	0
	0
	12
	2
	6
	0
	0
	0

	        Strong Chroma Filter  (MAC support) 
	0
	8
	0
	0
	4
	0
	0
	4
	2
	4
	0
	0
	0

	        Strong Chroma Filter 
	20
	0
	0
	0
	0
	0
	0
	8
	2
	4
	0
	0
	0

	        Standard Filter p0 + q0
	8
	0
	0
	0
	0
	0
	0
	2
	2
	2
	0
	0
	2

	        Standard Filter p1, q1 (each)
	3
	0
	0
	0
	0
	0
	0
	2
	0
	1
	0
	0
	2


Table 3. Summary of Sub-Function Operation Count table. 

	
	Add8
	Add16
	Add32
	Mult8
	Mult16
	MAC8
	MAC16
	Branch
	Shift
	Load
	Store
	OR
	AND
	? :

	TriMedia
	1,3
	1,3
	1,2,3,4,5
	2,3
	2,3
	2,3
	2,3
	2,3,4
	1,2
	4,5
	4,5
	1,2,3,4,5
	1,2,3,4,5
	1,2,3,4,5

	Pentium III
	1,2
	1,2
	1,2
	N/A
	1
	N/A
	1
	2
	2
	3
	4
	1,2
	1,2
	1,2

	C64
	1,2
	1,2,5,6,7,8
	1,2,5,6,7,8
	3,4
	3,4
	N/A
	N/A
	5,6
	3,4,5,6
	7,8
	7,8
	1,2,5,6,7,8
	1,2,5,6,7,8
	1,2

	MAP-CA
	
	
	
	
	
	
	
	
	
	
	
	
	
	


Table 4. Operation Cost for Several Hardware Platforms. 

	Operation
	Operation Count
	Sub-units Capable of Performing Operation

	Add
	96
	1, 2, 3, 4, 5

	Shift
	32
	2, 3

	Store
	16
	4, 5

	Load
	48
	4, 5


Table 5. Mapping of 4x4 Inverse Transform operations onto the TriMedia TM-1300. 

	Operation
	Operation Count
	Sub-units Capable of Performing Operation

	Store
	16
	4, 5

	Load
	16
	4, 5


Table 6. Mapping of 4x4 Reconstruction Only operation onto TriMedia TM-1300. 

	Operation
	Operation Count
	Sub-units Capable of Performing Operation

	Add
	96
	1, 2

	Shift
	32
	2

	Store
	16
	4

	Load
	48
	3


Table 7. Mapping of 4x4 Inverse Transform operations onto the P3.

	Operation
	Operation Count
	Sub-units Capable of Performing Operation

	Store
	16
	4

	Load
	16
	3


Table 8. Mapping of 4x4 Reconstruction Only operation onto the P3. 

	
	Container (QCIF, QP=15)
	Foreman (QCIF, QP=24)
	Silent

(QCIF, QP=22)
	Paris

(CIF, QP=17)
	Foreman

(CIF, QP=28)
	Mobile

(CIF, QP=21)

	Loop filtering
	3.66
	3.24
	3.77
	4.12
	3.64
	4.10

	Reconstruction
	4.66
	5.66
	4.94
	5.01
	6.04
	5.16

	Luma interpolation
	2.62
	2.35
	2.63
	2.97
	2.49
	2.57

	Chroma interpolation
	5.38
	4.59
	5.24
	5.97
	4.88
	5.40


Table 9. Experimental (VTune)/Theoretical estimate ratios for the P3. 

	
	H.263 Baseline
	H.26L
	

	
	QP
	Bit Rate (Kbps)
	Decoding Speed (fps)
	QP
	Bit Rate (Kbps)
	Decoding Speed (fps)
	Speed Ratio

	Paris, 15 Hz
	5
	672
	140
	11
	677
	67
	2.09

	
	10
	298
	183
	17
	313
	82
	2.23

	
	21
	111
	220
	24
	116
	100
	2.20

	Foreman, 30 Hz
	9
	652
	149
	14
	680
	56
	2.66

	
	14
	342
	192
	19
	326
	67
	2.87

	
	31
	149
	225
	28
	120
	85
	2.65

	Mobile & Calendar, 30 Hz
	12
	1842
	96
	16
	1723
	44
	2.18

	
	23
	699
	130
	21
	704
	55
	2.36

	
	31
	443
	155
	26
	307
	65
	2.38

	AVERAGE
	
	
	
	
	
	
	2.40


Table 10. Decoding speed ratios for H.263 Baseline and H.26L measured on 600 MHz Pentium 3. 

[image: image1.emf]Buffer

Video Bit

Stream

Entropy

Decoding and

Demultiplexing

Motion

Compensation

Process

Spatial

Compensation

Process

Inverse Scan

and

Quantization

Inverse

Transform

+

Current Picture

Store

Multiple

Previous Picture

Store

SW

Motion Vectors

Spatial Prediction Modes

Deblocking

Filter

Inter/

Intra MB

Video

Out


Figure 1. Block diagram of a JVT decoder. 
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Figure 2. Interpolation complexity as a function of Inter MB frequency. 

� The TriMedia TM-1300 data bus is 32 bits wide. Consequently, if the data were packed appropriately, two sixteen-bit loads or four eight-bit stores could be performed per operation, thereby reducing the total operation count.  To simplify our methodology, we assume that for most operations the cost of packing and merging the data into the proper format to exploit SIMD loads and stores is balanced by the gains that the parallel operations would yield.


� The P3 can load and store 64 bit words. Since the data consists of 8-bit pixels, we can load and store the data for 8 pixels at a time. Since such amounts to a simple data move, it would be easy to parallelize the loads and stores. However, data has to often be packed/merged to be placed into the correct format to perform parallel load/stores, reducing the gains realized by the parallelism. Since parallelization of loads and stores is beneficial sometimes and not others we have opted not to try to exploit this kind of parallelism to simplify our methodology.
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		60.7937710438		60.7937710438

		77.6271043771		77.6271043771

		86.2643097643		86.2643097643

		88.1161616162		88.1161616162

		94.9276094276		94.9276094276

		97.186026936		97.186026936

		31.4646464646		31.4646464646

		41.5858585859		41.5858585859

		59.8282828283		59.8282828283

		73.1818181818		73.1818181818

		80.1818181818		80.1818181818

		84.2121212121		84.2121212121

		26.3905723906		26.3905723906

		32.8484848485		32.8484848485

		39.6902356902		39.6902356902

		28.7070707071		28.7070707071

		37.2272727273		37.2272727273

		50.6464646465		50.6464646465



Luma cycles

Chroma cycles

Inter MB %

Average Cycles per MB

Interpolation complexity vs. Inter percentage

3525.6241802629

1621.0993837884

4718.8166228044

2182.2111497438

5284.8399634242

2450.994217351

5564.4156607027

2342.7449379368

6162.7378676044

2751.5040636391

6375.9537848419

2937.4735005675

1116.3436959727

695.2620358291

1528.9535494346

899.7283139356

2366.6813330051

1260.1515217414

4019.1088682828

1872.4755183096

5102.8576071279

2123.9013660892

5759.7914333048

2333.300204788

1450.6856557678

690.3888234144

1925.2349054233

878.145108521

2356.5416852254

1040.7899322541

1863.9210868692

793.0951447587

2249.8020341243

995.1294548425

2575.2835231915

1209.2673068739



container

		Sequence:		Container		Cy/Fr		Cy/MB

		QP:		11

		Frames per second @ 600 MHz:		303

		Cycles per frame:		1980198.01980198

		Loop Filter (filtering)		23.8514949695		472306.831079877		4770.7760715139

		Loop Filter (strength calc)		11.1293750886		220383.66512009		2226.0976274757

		Chroma Comp		6.3001275329		124755.000652396		1260.1515217414

		Luma Interpolation		11.8322233244		234301.451967501		2366.6813330051

		InverseTrans, Recon:		10.4605356384		207139.319571747		2092.3163593106

		MBCopy		3.168485192		62742.2810298601		633.760414443

		GetBits/VLC		8.0685843843		159773.948203946		1613.8782646863

		Read Elements		1.3008360493		25759.1296893612		260.1932291855

		Read Coeffs, Iquant		7.2920504464		144397.038541887		1458.5559448675

		Read & Decode MVs		2.4231259742		47982.6925586139		484.6736622082

		Intra Pred		0.2097208446		4152.888010921		41.9483637467

		TOTAL		86.0365594445		1703694.2464262		17209.0327921839

		Sequence:		Container		Cy/Fr		Cy/MB

		QP:		15

		Frames per second @ 600 MHz:		417

		Cycles per frame:		1438848.92086331

		Loop Filter (filtering)		21.6432645897		311413.878988954		3145.5947372622

		Loop Filter (strength calc)		14.2350446102		204820.785758405		2068.8968258425

		Chroma Comp		6.190580664		89073.1030796249		899.7283139356

		Luma Interpolation		10.5199648969		151366.401394023		1528.9535494346

		InverseTrans, Recon:		8.8891326605		127901.189360052		1291.9312056571

		MBCopy		6.4026619863		92124.6328957019		930.5518474313

		GetBits/VLC		5.2874067573		76077.7950697801		768.4625764624

		Read Elements		1.2322656136		17730.4404830677		179.0953584148

		Read Coeffs, Iquant		4.9656281995		71447.8877626289		721.6958359861

		Read & Decode MVs		3.3677051338		48456.1889759803		489.4564543028

		Intra Pred		0.2486470674		3577.655646435		36.1379358226

		TOTAL		82.9823021793		1193989.95941465		12060.5046405521

		Sequence:		Container		Cy/Fr		Cy/MB

		QP:		19

		Frames per second @ 600 MHz:		500

		Cycles per frame:		1200000

		Loop Filter (filtering)		20.0910045502		241092.05460273		2435.2732788155

		Loop Filter (strength calc)		16.9802240112		203762.688134407		2058.2089710546

		Chroma Comp		5.7359117956		68830.9415470774		695.2620358291

		Luma Interpolation		9.2098354918		110518.025901295		1116.3436959727

		InverseTrans, Recon:		7.906020301		94872.2436121806		958.3054910321

		MBCopy		8.5535526776		102642.632131607		1036.7942639556

		GetBits/VLC		3.6620581029		43944.6972348617		443.8858306552

		Read Elements		1.2600630032		15120.7560378019		152.7349094727

		Read Coeffs, Iquant		3.6183059153		43419.6709835492		438.5825351874

		Read & Decode MVs		3.0801540077		36961.8480924046		373.3520009334

		Intra Pred		0.3062653133		3675.183759188		37.1230682746

		TOTAL		80.4033951698		964840.742037102		9745.8660811829





ForeQCIF

		Sequence:		ForeQCIF		Cy/Fr		Cy/MB

		QP:		18

		Frames per second @ 600 MHz:		213

		Cycles per frame:		2816901.4084507

		Loop Filter (filtering)		23.9815380725		675536.283731176		6823.5988255674

		Loop Filter (strength calc)		7.9327277709		223457.120306191		2257.1426293555

		Chroma Comp		8.2003835697		230996.720274014		2333.300204788

		Luma Interpolation		20.2427869923		570219.351897174		5759.7914333048

		InverseTrans, Recon:		10.7863179414		303839.942010384		3069.0903233372

		MBCopy		0.5353115977		15079.1999356463		152.3151508651

		GetBits/VLC		6.2719973024		176675.980348359		1784.6058621046

		Read Elements		1.1591392864		32651.8108842734		329.8162715583

		Read Coeffs, Iquant		5.8336318995		164327.659141216		1659.8753448608

		Read & Decode MVs		3.9726864634		111906.660939737		1130.3703125226

		Intra Pred		0.8366878122		23568.6707655573		238.0673814703

		TOTAL		89.7532087083		2528259.40023373		25537.9737397346

		Sequence:		ForeQCIF		Cy/Fr		Cy/MB

		QP:		24

		Frames per second @ 600 MHz:		263

		Cycles per frame:		2281368.82129278

		Loop Filter (filtering)		22.1388833698		505069.582580067		5101.7129553542

		Loop Filter (strength calc)		9.4128750248		214742.396003865		2169.1151111501

		Chroma Comp		9.2166699781		210266.235242835		2123.9013660892

		Luma Interpolation		22.1438505861		505182.903105662		5102.8576071279

		InverseTrans, Recon:		10.8384661236		247265.386849833		2497.6301702003

		MBCopy		0.9859924498		22494.1243307479		227.2133770783

		GetBits/VLC		3.6831909398		84027.1697292168		848.7592901941

		Read Elements		1.0754023445		24533.8937914706		247.8171090048

		Read Coeffs, Iquant		3.8148221737		87030.1636575031		879.092562197

		Read & Decode MVs		3.8719451619		88333.3497018537		892.2560575945

		Intra Pred		0.8369759587		19094.5085628766		192.8738238674

		TOTAL		88.0190741109		2008039.71355593		20283.2294298579

		Sequence:		ForeQCIF		Cy/Fr		Cy/MB

		QP:		30

		Frames per second @ 600 MHz:		313

		Cycles per frame:		1916932.90734824

		Loop Filter (filtering)		21.3485754076		409237.867239261		4133.7158306996

		Loop Filter (strength calc)		10.9702315325		210291.978259261		2124.1613965582

		Chroma Comp		9.6703998143		185375.076312647		1872.4755183096

		Luma Interpolation		20.7566877502		397891.777959999		4019.1088682828

		InverseTrans, Recon:		10.987639993		210625.686767475		2127.5321895705

		MBCopy		2.0019729589		38376.4784445624		387.6411964097

		GetBits/VLC		2.3095224279		44271.9954230024		447.1918729596

		Read Elements		1.259211977		24138.2487607827		243.8206945534

		Read Coeffs, Iquant		2.8811002147		55228.7581093485		557.8662435288

		Read & Decode MVs		3.6238611965		69466.9877931282		701.6867453851

		Intra Pred		0.6760285499		12959.0137356276		130.8991286427

		TOTAL		86.4852318227		1657863.8688051		16746.0996849





Silent

		Sequence:		Silent		Cy/Fr		Cy/MB

		QP:		30

		Frames per second @ 600 MHz:		333

		Cycles per frame:		1801801.8018018

		Loop Filter (filtering)		23.0830822394		415911.391701021		4201.1251686972

		Loop Filter (strength calc)		12.2653237531		220996.824380798		2232.2911553616

		Chroma Comp		5.7186202828		103038.20329316		1040.7899322541

		Luma Interpolation		12.9480182895		233297.626837314		2356.5416852254

		InverseTrans, Recon:		8.1143724057		146204.908210007		1476.8172546465

		MBCopy		5.4468067174		98140.6615743622		991.3198138824

		GetBits/VLC		6.5382751428		117806.759328915		1189.9672659486

		Read Elements		1.0893613435		19628.1323148724		198.2639627765

		Read Coeffs, Iquant		5.2908826566		95331.2190379975		962.9416064444

		Read & Decode MVs		3.5251480225		63516.1805856511		641.5775816732

		Intra Pred		0.6953370278		12528.5950945994		126.551465602

		TOTAL		84.7152278809		1526400.5023587		15418.1868925121

		Sequence:		Silent		Cy/Fr		Cy/MB

		QP:		22

		Frames per second @ 600 MHz:		405

		Cycles per frame:		1481481.48148148

		Loop Filter (filtering)		22.3045772487		330438.181462847		3337.7594087156

		Loop Filter (strength calc)		14.2054239784		210450.725605959		2125.7649051107

		Chroma Comp		5.8682046877		86936.3657435814		878.145108521

		Luma Interpolation		12.8653822555		190598.255636911		1925.2349054233

		InverseTrans, Recon:		7.1910663885		106534.316866873		1076.1042107765

		MBCopy		7.4659467419		110606.618398986		1117.2385696867

		GetBits/VLC		3.3991900847		50358.3716247847		508.6704204524

		Read Elements		1.3130445453		19452.5117828591		196.4900180087

		Read Coeffs, Iquant		3.4899987729		51703.6855237861		522.2594497352

		Read & Decode MVs		3.1881212419		47231.425805484		477.0851091463

		Intra Pred		0.6062093508		8980.8792717125		90.7159522395

		TOTAL		81.8971652964		1213291.33772378		12255.468057816

		Sequence:		Silent		Cy/Fr		Cy/MB

		QP:		27

		Frames per second @ 600 MHz:		469

		Cycles per frame:		1279317.69722815

		Loop Filter (filtering)		21.7533701787		278294.714439283		2811.0577216089

		Loop Filter (strength calc)		16.6154925871		212564.937148005		2147.1205772526

		Chroma Comp		5.34257391		68348.4935180227		690.3888234144

		Luma Interpolation		11.2261309472		143617.879921012		1450.6856557678

		InverseTrans, Recon:		6.7549785069		86417.6354825574		872.9054089147

		MBCopy		9.3019855543		119001.947389617		1202.0398726224

		GetBits/VLC		2.2458110361		28731.0580305645		290.2127073794

		Read Elements		1.2106325116		15487.8359696012		156.4427875717

		Read Coeffs, Iquant		2.3627803609		30227.4673029898		305.3279525555

		Read & Decode MVs		2.7487791327		35165.617901993		355.2082616363

		Intra Pred		0.5643769921		7220.1747394518		72.9310579743

		TOTAL		80.1269117174		1025077.7618431		10354.320826698





Paris

		Sequence:		Paris		Cy/Fr		Cy/MB

		QP:		11

		Frames per second @ 600 MHz:		67

		Cycles per frame:		8955223.88059702

		Loop Filter (filtering)		21.8316488072		1955073.02751075		4937.0530997746

		Loop Filter (strength calc)		9.9070103544		887194.957107628		2240.3913058273

		Chroma Comp		5.347380031		478869.853522079		1209.2673068739

		Luma Interpolation		11.3879037396		1019812.27518384		2575.2835231915

		InverseTrans, Recon:		8.5031329334		761474.591046933		1922.9156339569

		MBCopy		4.1883373109		375074.98306628		947.1590481472

		GetBits/VLC		12.167571525		1089633.27089652		2751.5991689306

		Read Elements		0.8942409173		80081.2761802125		202.2254448995

		Read Coeffs, Iquant		8.1465775437		729544.257641745		1842.2834788933

		Read & Decode MVs		3.236572124		289842.279763364		731.9249488974

		Intra Pred		0.311391707		27885.8245071979		70.4187487556

		TOTAL		85.9217669934		7694486.59642656		19430.5217081479

		Sequence:		Paris		Cy/Fr		Cy/MB

		QP:		17

		Frames per second @ 600 MHz:		82

		Cycles per frame:		7317073.17073171

		Loop Filter (filtering)		22.4558150316		1643108.41694498		4149.263679154

		Loop Filter (strength calc)		11.9875992351		877141.40744583		2215.0035541561

		Chroma Comp		5.3856406096		394071.264117636		995.1294548425

		Luma Interpolation		12.1759286087		890921.60551321		2249.8020341243

		InverseTrans, Recon:		7.332676595		536537.311829629		1354.89220159

		MBCopy		6.6570087501		487098.201224812		1230.0459626889

		GetBits/VLC		7.3234049951		535858.902078619		1353.1790456531

		Read Elements		0.9665642928		70724.2165427391		178.5965064211

		Read Coeffs, Iquant		5.4598134091		399498.542125712		1008.8347023377

		Read & Decode MVs		3.0822275019		225528.841601217		569.5172767707

		Intra Pred		0.3297212725		24125.9467702749		60.9241080057

		TOTAL		83.1564003013		6084614.65619466		15365.1885257441

		Sequence:		Paris		Cy/Fr		Cy/MB

		QP:		24

		Frames per second @ 600 MHz:		100

		Cycles per frame:		6000000

		Loop Filter (filtering)		21.482859574		1288971.57443863		3254.9787233299

		Loop Filter (strength calc)		14.7874933299		887249.599792325		2240.5292924049

		Chroma Comp		5.2344279554		314065.677324449		793.0951447587

		Luma Interpolation		12.3018791733		738112.750400208		1863.9210868692

		InverseTrans, Recon:		6.36582587		381949.552200061		964.5190712123

		MBCopy		9.2307359495		553844.15696794		1398.5963559797

		GetBits/VLC		3.6141276915		216847.661489205		547.5951047707

		Read Elements		1.0946220742		65677.324449444		165.8518294178

		Read Coeffs, Iquant		3.0466259969		182797.559814823		461.6099995324

		Read & Decode MVs		2.4531648856		147189.893133734		371.6916493276

		Intra Pred		0.3699216891		22195.3013455631		56.0487407716

		TOTAL		79.9816841893		4798901.05135638		12118.4369983747





ForeCIF

		Sequence:		ForeCIF		Cy/Fr		Cy/MB

		QP:		14

		Frames per second @ 600 MHz:		56

		Cycles per frame:		10714285.7142857

		Loop Filter (filtering)		24.8019464376		2657351.40402758		6710.483343504

		Loop Filter (strength calc)		8.4274222869		902938.102172813		2280.1467226586

		Chroma Comp		9.0588746273		970593.710070978		2450.994217351

		Luma Interpolation		19.5327685048		2092796.625516		5284.8399634242

		InverseTrans, Recon:		10.1044166288		1082616.06737513		2733.878958018

		MBCopy		0.7892662929		84564.2456641873		213.5460749096

		GetBits/VLC		5.8123881005		622755.867907953		1572.6158280504

		Read Elements		0.958675542		102715.236640913		259.3819107094

		Read Coeffs, Iquant		5.1805426992		555058.146341628		1401.6619857112

		Read & Decode MVs		3.6236284631		388245.906762023		980.4189564698

		Intra Pred		0.3138591309		33627.7640253255		84.9185960235

		TOTAL		88.603788714		9493263.07650453		23972.8865568296

		Sequence:		ForeCIF		Cy/Fr		Cy/MB

		QP:		19

		Frames per second @ 600 MHz:		67

		Cycles per frame:		8955223.88059702

		Loop Filter (filtering)		22.825235379		2044050.92946374		5161.7447713731

		Loop Filter (strength calc)		9.9752594323		893306.814836545		2255.8252899913

		Chroma Comp		9.6497377042		864155.615298533		2182.2111497438

		Luma Interpolation		20.866607106		1868651.38263052		4718.8166228044

		InverseTrans, Recon:		9.9420429295		890332.202638789		2248.3136430272

		MBCopy		1.8037706458		161531.699621609		407.9083323778

		GetBits/VLC		3.4870455639		312272.737063771		788.5675178378

		Read Elements		0.9971823242		89299.9096333329		225.5048223064

		Read Coeffs, Iquant		3.4499347124		308949.377229036		780.1751950228

		Read & Decode MVs		3.5335486679		316437.194140629		799.0838235874

		Intra Pred		0.3353721394		30033.3259138983		75.8417321058

		TOTAL		86.8657366046		7779021.1884704		19643.9929001778

		Sequence:		ForeCIF		Cy/Fr		Cy/MB

		QP:		28

		Frames per second @ 600 MHz:		85

		Cycles per frame:		7058823.52941176

		Loop Filter (filtering)		20.1570845303		1422853.02566747		3593.06319613

		Loop Filter (strength calc)		12.4610209296		879601.477385399		2221.2158519833

		Chroma Comp		9.0943675431		641955.355980209		1621.0993837884

		Luma Interpolation		19.7787516513		1396147.1753841		3525.6241802629

		InverseTrans, Recon:		9.3325105667		658765.451764276		1663.5491206169

		MBCopy		4.3653563309		308142.799825415		778.1383833975

		GetBits/VLC		1.6085887255		113547.439447092		286.7359581997

		Read Elements		1.1928119748		84198.4923423318		212.6224554099

		Read Coeffs, Iquant		1.9123334122		134988.240862242		340.8793961168

		Read & Decode MVs		3.1039471832		219102.154106289		553.2882679452

		Intra Pred		0.3211186432		22667.1983402762		57.2403998492

		TOTAL		83.3278914907		5881968.81110509		14853.4565936997





Mobile

		Sequence:		Mobile		Cy/Fr		Cy/MB

		QP:		21

		Frames per second @ 600 MHz:		55

		Cycles per frame:		10909090.9090909

		Loop Filter (filtering)		20.3863918734		2223970.02255588		5616.0859155451

		Loop Filter (strength calc)		8.4982684394		927083.829749071		2341.1207821946

		Chroma Comp		10.6630288071		1163239.50622472		2937.4735005675

		Luma Interpolation		23.144712239		2524877.69879738		6375.9537848419

		InverseTrans, Recon:		10.5204175558		1147681.91518223		2898.1866545006

		MBCopy		0.2076221689		22649.691155926		57.1961897877

		GetBits/VLC		5.8394250971		637028.192411303		1608.6570515437

		Read Elements		0.923774183		100775.365421396		254.4832460136

		Read Coeffs, Iquant		5.4681405226		596524.420652346		1506.3747996271

		Read & Decode MVs		3.6525816558		398463.453357434		1006.2208418117

		Intra Pred		0.0561364115		6123.9721614432		15.4645761653

		TOTAL		89.3604989536		9748418.06766914		24617.2173425988

		Sequence:		Mobile		Cy/Fr		Cy/MB

		QP:		26

		Frames per second @ 600 MHz:		65

		Cycles per frame:		9230769.23076923

		Loop Filter (filtering)		15.6934699453		1448627.99494983		3658.1515023986

		Loop Filter (strength calc)		9.8686429629		910951.658115078		2300.3829750381

		Chroma Comp		11.803952433		1089595.60920108		2751.5040636391

		Luma Interpolation		26.438145452		2440444.19557133		6162.7378676044

		InverseTrans, Recon:		11.0621236732		1021119.10829655		2578.5836068095

		MBCopy		0.470789745		43457.5149242594		109.7411993037

		GetBits/VLC		3.2407462783		299145.810304341		755.4187128897

		Read Elements		0.999232096		92236.8088610933		232.9212344977

		Read Coeffs, Iquant		3.5694378991		329486.575297192		832.036806306

		Read & Decode MVs		3.8584185962		356161.716571839		899.3982741713

		Intra Pred		0.0662646135		6116.7335538719		15.4462968532

		TOTAL		87.0712236945		8037343.72564647		20296.3225395113

		Sequence:		Mobile		Cy/Fr		Cy/MB

		QP:		31

		Frames per second @ 600 MHz:		76

		Cycles per frame:		7894736.84210526

		Loop Filter (filtering)		11.2221979557		885962.996500935		2237.2802941943

		Loop Filter (strength calc)		11.272618441		889943.561128062		2247.3322250709

		Chroma Comp		11.7512086087		927726.995422989		2342.7449379368

		Luma Interpolation		27.9111089541		2203508.60163829		5564.4156607027

		InverseTrans, Recon:		11.5136661085		908973.640147591		2295.3879801707

		MBCopy		1.1847465899		93532.6255165687		236.1934987792

		GetBits/VLC		2.1842585627		172441.465477861		435.4582461562

		Read Elements		1.0747382584		84847.7572391996		214.2620132303

		Read Coeffs, Iquant		3.0362838754		239706.62174376		605.3197518782

		Read & Decode MVs		3.7055012255		292539.570431089		738.7362889674

		Intra Pred		0.0744174007		5875.057952338		14.8360049301

		TOTAL		84.9307459805		6705058.89319868		16931.9669020169





Scratch

		

				Interpolation

				InterMB		NumMB		%InterMB		Luma		Chroma

		ForeCIF		72223		118800		60.7937710438		3525.6241802629		1621.0993837884

				92221		118800		77.6271043771		4718.8166228044		2182.2111497438

				102482		118800		86.2643097643		5284.8399634242		2450.994217351

		Mob		104682		118800		88.1161616162		5564.4156607027		2342.7449379368

				112774		118800		94.9276094276		6162.7378676044		2751.5040636391

				115457		118800		97.186026936		6375.9537848419		2937.4735005675

		Cont		3115		9900		31.4646464646		1116.3436959727		695.2620358291

				4117		9900		41.5858585859		1528.9535494346		899.7283139356

				5923		9900		59.8282828283		2366.6813330051		1260.1515217414

		ForeQ		7245		9900		73.1818181818		4019.1088682828		1872.4755183096

				7938		9900		80.1818181818		5102.8576071279		2123.9013660892

				8337		9900		84.2121212121		5759.7914333048		2333.300204788

		Silent		3919		14850		26.3905723906		1450.6856557678		690.3888234144

				4878		14850		32.8484848485		1925.2349054233		878.145108521

				5894		14850		39.6902356902		2356.5416852254		1040.7899322541

		Paris		17052		59400		28.7070707071		1863.9210868692		793.0951447587

				22113		59400		37.2272727273		2249.8020341243		995.1294548425

				30084		59400		50.6464646465		2575.2835231915		1209.2673068739

		Inv. Trans. And Recon.

				SKIP MBs		TOTAL		CODED		%SKIP		%CODE		MBCopy		Tran+Rec

		Cont		6603		9900		3297		66.696969697		33.303030303		1036.7942639556		958.3054910321

				5601		9900		4299		56.5757575758		43.4242424242		930.5518474313		1291.9312056571

				3801		9900		6099		38.3939393939		61.6060606061		633.760414443		2092.3163593106

		ForeQ		2096		9900		7804		21.1717171717		78.8282828283		387.6411964097		2127.5321895705

				1230		9900		8670		12.4242424242		87.5757575758		227.2133770783		2497.6301702003

				732		9900		9168		7.3939393939		92.6060606061		152.3151508651		3069.0903233372

		Silent		10590		14850		4260		71.3131313131		28.6868686869		1202.0398726224		872.9054089147

				9556		14850		5294		64.3501683502		35.6498316498		1117.2385696867		1076.1042107765

				8413		14850		6437		56.6531986532		43.3468013468		991.3198138824		1476.8172546465

		Paris		41199		59400		18201		69.3585858586		30.6414141414		1398.5963559797		964.5190712123

				36105		59400		23295		60.7828282828		39.2171717172		1230.0459626889		1354.89220159

				28128		59400		31272		47.3535353535		52.6464646465		947.1590481472		1922.9156339569

		ForeCIF		43228		118800		75572		36.3872053872		63.6127946128		778.1383833975		1663.5491206169

				22326		118800		96474		18.7929292929		81.2070707071		407.9083323778		2248.3136430272

				11957		118800		106843		10.0648148148		89.9351851852		213.5460749096		2733.878958018

		Mobile		13347		118800		105453		11.2348484848		88.7651515152		236.1934987792		2295.3879801707

				5382		118800		113418		4.5303030303		95.4696969697		109.7411993037		2578.5836068095

				2767		118800		116033		2.3291245791		97.6708754209		57.1961897877		2898.1866545006
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Luma cycles

Chroma cycles

Inter MB %

Average Interpolation Cycles per MB

Interpolation complexity vs. Inter percentage
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Macroblock Copy

Transform and Reconstruction

% Skipped MB's

Average Cycles per MB

Copy, Transform and Reconstruction Complexity vs. % SKIP
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