DRAFT ISO/IEC 14496-10 : 2002 (E)

Error! Style not defined.

	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 May, 2002
	Document: JVT-C100

Filename: JVT-C100.doc

	Title:
	Improved Terminology for CABAC Section of WD

	Status:
	Input Document to JVT

	Purpose:
	Editorial Proposal

	Author(s) or
Contact(s):
	Barry Haskell
	
Tel:
Email:
	
+1 732 842 4394
B.Haskell@ieee.org

	Source:
	Robert Bosch GmbH

The section of the JVT working draft on context-based adaptive binary arithmetic coding (CABAC) seems difficult to read for the uninitiated. In particular, there seems to be some inconsistent use of terminology. To alleviate this problem, I propose the following definitions:
Symbol – Syntax element, or part thereof, to be coded. If a symbol is nonbinary, it is converted into a sequence of binary decisions called bins.

Context Modelling – The choice and definition of prior transmitted symbols, or parts thereof, that are to be used in the conditional coding of a symbol or bin.

Context Variable – Defined for each symbol or bin by an equation containing the recently transmitted symbols, or parts thereof, defined in the Context Modelling above. [note – this was formerly called Context Number, but I thought Variable was a better word]
Context – The numerical value of the Context Variable when coding a particular symbol at a particular point, block, macroblock, etc. in the picture.

Probability Model – The set of probability distributions to be used by the arithmetic coding engine when coding a symbol. The Context determines which probability distribution is to be used when coding a particular symbol at a particular point, block, macroblock, etc. in the picture. For each symbol, the number of probability distributions in the set is equal to the number of possible values for the Context Variable, i.e., the number of Contexts. For binary data, each probability distribution contains only two numbers, e.g. p and 1-p.

In the following, I started to edit the CABAC section using these definitions. However, the text also needs to be changed to match the most recent technical specification.
10
Context-based Adaptive Binary Arithmetic Coding (CABAC)

10.1
Overview

The entropy coding method called Context-Based Adaptive Binary Arithmetic Coding (CABAC) has three distinct elements compared to the default entropy coding method using a fixed, universal table of variable length codes (UVLC):

–
CABAC provides estimates of conditional probabilities of the symbols to be coded. Utilizing suitable context models, given inter-symbol redundancy can be exploited by switching between different conditional probability distributions according to already coded symbols in the neighbourhood of the current symbol being encoded.

–
Arithmetic codes permit non-integer number of bits to be assigned to each symbol of the alphabet. Thus the symbols can be coded almost at their entropy rate. This is extremely beneficial for symbol probabilities much greater than 0.5, which often occurs with efficient context modelling. In this case, a variable length code would have to spend at least one bit, whereas arithmetic codes may use a fraction of a bit.

· Adaptive arithmetic codes permit the entropy coder to adapt itself to non-stationary symbol statistics. For instance, the statistics of motion vector magnitudes vary over space and time as well as for different sequences and bit rates. Hence, an adaptive model taking into account the cumulative probabilities of already coded motion vectors leads to a better fit of the arithmetic codes to the current symbol statistics.
We now define some terminology to be used in discussing CABAC.

Symbol – Syntax element, or part thereof, to be coded. If a symbol is nonbinary, it is converted into a sequence of binary decisions called Bins.
Context Modelling – The choice and definition of prior transmitted symbols that are to be used in the conditional coding of a symbol.

Context Variable – Defined for each symbol by an equation containing the recently transmitted symbols defined in the Context Modelling above.

Context – The numerical value of the Context Variable when coding a particular symbol at a particular point, block, macroblock, etc. in the picture.

Probability Model – The set of probability distributions to be used by the arithmetic coding engine when coding a symbol. The Context determines which probability distribution is to be used when coding a particular symbol at a particular point, block, macroblock, etc. in the picture. For each symbol, the number of probability distributions in the set is equal to the number of possible values for the Context Variable, i.e., the number of Contexts. For binary data, each probability distribution contains only two numbers, e.g. p and 1-p.

[image: image1.wmf]

Figure 10-1 – Generic block diagram of CABAC entropy coding scheme

Next we give a short overview of the main coding elements of the CABAC entropy coding scheme as depicted in Figure 10-1. Suppose a symbol related to an arbitrary syntax element is to be coded. Then, in a first step, a suitable set of prior transmitted symbols is chosen that should be useful in estimating the symbol to be coded. This process of constructing a model conditioned on neighbouring symbols is commonly referred to as context modelling and is the first step in the entropy coding scheme. The particular context models that are designed for each given symbol are described in detail in Section qq.2 and Section qq.3.
In a second step, if a given symbol is non-binary valued, it will be mapped onto a sequence of binary decisions called bins. The actual binarization is done according to a given binary tree, as specified in Section 10.6.
Next, for each bin a Context Variable is defined by an equation containing the prior transmitted symbols, or parts thereof, defined by the Context Modelling. The possible numerical values of the Context Variable are called Contexts. Typically, there are several possible values, i.e. several Contexts. However, in some cases the context variable may simply be a constant, in which case there is only one Context.

Associated with each Context is a probability distribution. Since we only code bins, each probability distribution contains only two numbers, for example p and 1-p. In some cases several bins may share the same Context Variable and Probability Model. The initial values for the Probability Model may be supplied by the Context Modelling or the binarization.
During actual coding of a bin at a particular point, block, macroblock, etc. in the picture, first the context is calculated, then the bin is encoded with the adaptive binary arithmetic coding (AC) engine using the probability distribution corresponding to the calculated context. After encoding of each bin, the Probability Model will be updated using the value of the encoded bin. Hence, CABAC keeps track of the actual statistics during coding.
10.2
Context Modelling for Coding of Motion and Mode Information

In this section we describe in detail our adaptive coding method for the syntax elements macroblock type (MB_type), motion vector data (MVD) and reference frame parameter (ref_idx_fwd).

[Ed. Note: Update to cover 8x8 partitioning of macroblocks]
10.2.1
Context Models for Macroblock Type

We distinguish between MB_type for intra and inter frames. In the following, we give a description of the context models which have been designed for coding of the MB_type information in both cases. The subsequent process of mapping a non-binary valued MB_type symbol to a binary sequence in the case of inter frames will be given in detail in section QQ.

10.2.1.1
Intra Pictures

For intra pictures, there are two possible modes for each macroblock, i.e. Intra4x4 and Intra16x16, so that signalling the mode information is reduced to transmitting a binary symbol. Coding of this binary symbol for a given macroblock is performed by means of context-based arithmetic coding, where the context variable of a current MB_type C is built by using the MB_types of neighbouring macroblocks A and B (as depicted in Figure 10-2) which are located in the causal past of the current macroblock C. Since the MB_types of A and B are binary symbols, we simply define the context variable ctx_mb_type_intra(C) by

ctx_mb_type_intra(C) = MB_type (A) + MB_type (B)

This results in three different contexts (0,1,2) according to the 4 possible combinations of MB_type for A and B.

In the case of MB_type Intra16x16, there are three additional parameters which have to be signalled, namely the chosen intra prediction mode, the occurrence of significant AC-coefficients and the coded block pattern for the chrominance coefficients. In contrast to the current test model, this information is not included in the CABAC mode information, but instead is coded separately by using context models as described in Section 10.6.

[image: image2.wmf]

C

B

A

Figure 10-2 – Neighbouring symbols A and B used for conditional coding of a current symbol C

10.2.1.2
P and B pictures

[Ed. Note: Frank Bossen reports software may be ahead of text in this section with regard to coding MB type for P and B pictures]

Currently there are 10 different macroblock types for P frames and 18 different macroblock types for B frames, provided that the additional information of the 16x16 Intra mode is not considered as part of the mode information. Coding of a given MB_type information C is done similar to the case of intra frames by using a context model which involves the MB_type information of previously transmitted macroblocks A and B (see Figure 10-2). However, here we only use the information as to whether the neighbouring macroblocks of the given macroblock are of type Skip (P frame) or Direct (B frame). Thus the actual context variable ctx_mb_type_inter(C) is given in C-style notation by

ctx_mb_type_inter(C) = ((MB type A==Skip)?0:1) + ((MB type B==Skip)?0:1)

for P-frame coding

ctx_mb_type_inter(C) = ((MB type A==Direct)?0:1) + ((MB type B==Direct)?0:1)
for B-frame coding.
Thus, we obtain 3 different contexts. However, these are only used for coding of the first bin of the binarization b1(C) of MB type C, where the actual binarization of MB type C will be performed as outlined in Section 10.6.
For coding the second bin b2(C), a single separate context is provided. This is equivalent to using a context variable that can only have one value, i.e. one context (e.g. 3) and one probability distribution.

For all remaining bins of bi(C), i>2 two additional contexts (e.g. 4 and 5) are used as further explained in Section 10.6. Thus, a total of 6 different contexts are supplied for coding of macroblock type information relating to P-and B frames.

[image: image3.wmf]

ctx

_

mvd

(C,k) =

0,

for e

k

(C) < 3,

1,

for e

k

(C) > 15,

2,

else

ctx

_

mvd

(C,k) =

0,

for e

k

(C) < 3,

1,

for e

k

(C) > 32,

2,

else

ctx

_

mvd

(C,k) =

0,

for e

k

(C) < 3,

1,

for e

k

2,

else

e

k

(C) = |

mvd

k

(A)| + |

mvd

k

(B)|

e

k

(C) = |

mvd

k

(A)| + |

mvd

k

(B)|

C

B

A

C

B

A

Separation of

mvd

k

(C)

sign

Binariz

ation

Bin_no. 1 2 3 4 5 ...

Context

_no. {0,1,2} 3 4 5 6

Separation of

mvd

k

(C)

|

mvd

k

(C)|

|

mvd

k

(C)|

sign

Binarization

Bin_no. 1 2 3 4 5 ...

Context

_no. {0,1,2}

3 4 5 6

Bin_no. 1 2 3 4 5

...

Context

 {0,1,2} 3 4 5 6 7

mvd

k

(C)

mvd

k

mvd

k

(B)

mvd

k

mvd

k

(A)

mvd

k

ctx_mvd(C,k)

 (a)

(b)
Figure 10-3 – Illustration of the encoding process for a given residual motion vector component mvdk(C) of a block C: (a) Context variable definition. (b) Separation of mvdk(C) into sign and magnitude, binarization of the magnitude and assignment of contexts to bin_nos.

10.2.2 Context Models for Motion Vector Data
Motion vector data consists of residual vectors obtained by applying motion vector prediction. Thus, it is a reasonable approach to build a model conditioned on the local prediction error. A simple estimate of the local prediction error at a given block C is given by evaluating the L1-norm

ek(A,B) = abs[mvdk(A)] + abs[mvdk(B)]

of two neighbouring motion vector prediction residues mvdk(A) and mvdk(B) for each component k of a motion vector residue mvdk(C) of a given block, where A and B are neighbouring blocks of block C, as shown in Figure 10-3(a). If one of the neighbouring blocks belongs to an adjacent macroblock, we take the residual vector component of the leftmost neighbouring block in the case of the upper block B, and in the case of the left neighbouring block A we use the topmost neighbouring block. If one of the neighbouring blocks is not available, because, for instance, the current block is at the picture boundary, we discard the corresponding part of ek . By using ek, we now define a context variable ctx_mvd(C,k) for the residual motion vector component mvdk(C) as follows:

0 if ek(A,B)<3

ctx_mvd(C,k) = 1 if ek(A,B)>32

2 otherwise
For the actual coding process, we separate mvdk(C) into sign and modulus, where only the first bin of the binarization of the modulus of mvdk(C) is coded using the context variable ctx_mvd(C,k). For the remaining bins of the modulus, we define 4 additional contexts: one for the second bin, one for the third bin, one for the fourth bin, and one context for all remaining bins. In addition, the sign coding routine is provided with a separate context. This results in a total of 8 contexts for each vector component.

In the case of B-frame coding, an additional syntax element has to be signalled when the bi-directional mode is chosen. This element represents the block size (Blk_size), which is chosen for forward or backward motion prediction. The related code number value ranges between 0 and 6 according to the 7 possible block shapes in Figure 2 [Ed. Note: Are there still seven possible macroblock partitions?]. Coding of Blk_size is done by using the binarization of the P_MB_type as described in Section 10.6.

10.2.3
Context Models for Reference Frame Parameter

If the option of temporal prediction from more than one reference frame is enabled, the chosen reference frame for each macroblock must be signalled. Given a macroblock and its reference frame parameter as a symbol C according to the definition in Section QQ, a context model is built by using symbols A and B of the reference frame parameter belonging to the two neighbouring macroblocks (see Figure 10-2). The actual context variable of C is then defined by

ctx_ref_frame(C) = ((A==0)?0:1) + 2*((B==0)?0:1)
 This results in 4 possible contexts (0 to 3) used for coding of the first bin of the binary equivalent b1(C) of reference frame C. A single context (4) is used for the second bin. Another context (5) is used for all remaining bins of reference frame b(C), which sums up to a total number of six different contexts (and six probability distributions) for the reference frame information.

10.3
Context Modelling for Coding of Texture Information

This section provides detailed information about the context models used for the syntax elements of coded block pattern (CBP), intra prediction mode (IPRED) and (RUN, LEVEL) information.
10.3.1
Context Models for Coded Block Pattern

Except for MB_type Intra16x16, the context modelling for the coded block pattern is treated as follows. There are 4 luminance CBP bits belonging to 4 8x8 blocks in a given macroblock. Let C denote such a Y-CBP bit. Then we define the corresponding context variable

ctx_cbp_luma(C) = A + 2*B,
where A and B are Y-CBP bits of the neighbouring 8x8 blocks, as depicted in Figure 10-2.
The remaining 2 bits of CBP are related to the chrominance coefficients. In our coding approach, these bits are translated into two dependant binary decisions, such that, in a first step, we send a bit cbp_chroma_sig, which signals whether there are significant chrominance coefficients at all. The related context model is of the same kind as that of the Y-CBP bits, i.e. the context variable is defined as

ctx_cbp_chroma_sig(C) = A + 2*B,
where A and B are now notations for the corresponding cbp_chroma_sig bits of neighbouring macroblocks.
If cbp_chroma_sig = 1 (indicating that non-zero chroma coefficients exist), then a second bit cbp_chroma_ac indicating the presence of AC chrominance coefficients is signalled. This is done by using a context model conditioned on the cbp_chroma_ac decisions A and B of neighbouring macroblocks, i.e. the context variable is

 ctx_cbp_chroma_ac(C) = A + 2*B.
Note, that due to the different statistics there are different models for Intra and Inter macroblocks, so that the total number of different contexts (and probability distributions) for CBP amounts to 2*3*4=24. For the case of MB_type Intra16x16, there are three additional contexts, one for the binary AC decision and two contexts for each of the two chrominance CBP bits.

10.3.2
Context Models for Intra Prediction Mode

In Intra4x4 mode, coding of the intra prediction mode C of a given block is conditioned on the intra prediction mode of the previous block A to the left of C (see Figure 10-2). In fact, it is not the prediction mode number itself which is signalled and which is used for conditioning but rather its predicted order similar as it is described in subclause 4.4.4. There are six different prediction modes and for each mode, two different contexts are supplied: one for the first bin of the binary equivalent of C and the other for all remaining bins. Together with two additional contexts for the two bits of the prediction modes of MB_type Intra16x16 (in binary representation), a total of 14 different contexts (and 14 probability distributions) for coding of intra prediction modes is given.

10.3.3
Context Models for Run/Level and Coeff_count

Coding of RUN and LEVEL is conditioned primarily on the scanning mode, the DC/AC block type, the luminance/chrominance type, and the intra/inter macroblock decision. Thus, a total of 8 different block types are given according to Table 10-1. In contrast to the UVLC coding mode, RUN and LEVEL are coded separately in the CABAC mode, and furthermore an additional coding element called COEFF_COUNT is introduced, which denotes the number of non-zero coefficients in a given block. The coefficients corresponding to a scanning mode are processed in the following way: First, the number of non-zero coefficients COEFF_COUNT is encoded. Then, in a second step, RUN, LEVEL and SIGN of all non-zero coefficients are encoded. Figure 10-4 illustrates this encoding scheme that is described in more detail in the following sections.

Table 10-1 – Numbering of the different block types used for coding of RUN, LEVEL and COEFF_COUNT
	Block Type

Number
	Block Type

	0
	Double Scan (Intra Luma only)

	1
	Single Scan (Inter Luma only)

	2
	Intra Luma 16x16, DC

	3
	Intra Luma 16x16, AC

	4
	Inter Chroma, DC

	5
	Intra Chroma, DC

	6
	Inter Chroma, AC

	7
	Intra Chroma, AC

[image: image4.wmf]

Count the number of coefficients of

transform unit (

COEFF_COUNT

)

Encode

COEFF_COUNT

;

For (i = 0; i <

COEFF_COUNT

; i++)

Encode

RUN

[i];

Encode

LEVEL

[i];

Encode

SIGN

[i];

If (i == 0)

MaxRun = MaxCoeff

–

COEFF_COUNT

;

If (MaxRun > 0)

Encode

 (

RUN

[i], MaxRun);

MaxRun = Max Run

–

RUN

[i];

Encode

RUN

[i];

Figure 10-4 – Coding scheme for transform coefficients
10.3.3.1
Context-based Coding of COEFF_COUNT Information

For capturing the correlations between COEFF_COUNTs of neighbouring blocks appropriate context models are designed, which are only applied to the first binary decision (bin) in the unary binarization tree of COEFF_COUNT. More specifically, first the COEFF_COUNT is classified according the block type, and then a context variable ctx_coeff_count for the first bin of COEFF_COUNT is built according to the rules specified in Table 10-2. The remaining bins are coded with two additional contexts; one for the second bin and the other for all remaining bins. The total number of contexts for coding COEFF_COUNT is 15.

Table 10-2 – Description of the context variable for the first bin for coding of COEFF_COUNT
(CC denotes the COEFF_COUNT of the corresponding blocks)

	Block Type

Number
	Number of ctx’s
	Description of the context variable
ctx_coeff_count for the first bin
	Comments

	0
	3
	ctx_coeff_count(UP) =0;

ctx_coeff_count(LO) = (CC(UP)==0) ? 1 : 2;
	UP: upper scan path;

LO: lower scan path

	1
	4
	ctx_coeff_count(C) = ((CC(A)==0) ? 0 : 1)
 + 2*((CC(B)==0)?0:1) + 3
	A, B, C as in Figure 10-2

	2
	1
	ctx_coeff_count = 7 (only one ctx)
	

	3
	3
	ctx_coeff_count(0) =8;

ctx_coeff_count(i) = 8+(CC(i-1)==0) ? 1 : 2;
 i={1,..,15}
	i denotes the number of the 4x4 block
as in Figure QQ

	4, 5, 6, 7
	2
	ctx_coeff_count(U) == 11;

ctx_coeff_count(V) == 12;
	U, V : the different chroma parts

10.3.3.2
Context-based Coding of RUN Information

For encoding the RUN, the information of the initially encoded COEFF_COUNT and all previously encoded RUN elements is exploited, as shown in the Encode RUN[i] code of Figure 10-4. Here, we make use of the fact that, if the maximum number of a RUN range is known in advance, the binarization can be restricted to a truncated code tree, which is explained in section qq4.5.2.3.5. However, by using the information given by previously encoded RUNs the MaxRun counter can further be adapted on the fly, which may lead to potentially shorter binarized codewords of subsequent RUN elements to encode. In some cases, where, for instance, coefficients are aggregated at the end of the scan path, signaling of zero-valued RUN elements is completely omitted.

Context models for coding of RUN information depend on a threshold decision involving mostly the coefficient counter. The idea behind this context design is that the COEFF_COUNT represents the activity of the given block, and that the probability distribution of the RUN symbol somehow depends on the activity of the block. First, the RUN is classified according the given block type. Then for the first bin of RUN, a context variable ctx_run1 is calculated according to Table 10-2a resulting in 8 contexts. [Where does MaxRun come into this??????]
Table 10-2a – Description of the context variable for RUNs
(the variable i denotes the coefficient counter (0 ≤ i ≤COEFF_COUNT-1)

	Block Type

Number
	Context variable ctx_run1 for the runs

	0,3,6,7
	ctx_run1 = ((COEFF_COUNT-i) >= 3) ? 1 : 0;

	1
	ctx_run1 = (COEFF_COUNT >= 4) ? 3 : 2;

	2
	ctx_run1 = ((COEFF_COUNT-i) >= 4) ? 5 : 4;

	4,5
	ctx_run1 = ((COEFF_COUNT-i) >= 2) ? 7 : 6;

For all the remaining bins of the binary codeword related to RUN a second context variable is used. It is defined by

Ctx_runx = 8 + ctx_run1

10.3.3.3
Context-based Coding of LEVEL Information

LEVEL information is first separated into sign and magnitude. Then the magnitude and sign of LEVEL, are first classified based on the block type. For coding the bins of ABS_LEVEL=abs(LEVEL), the context variable ctx_abs_level is defined, which depends on the previously transmitted ABS_LEVEL within the block. More specifically,

if (bin_number>3) bin_number=3;

if (Prev_level>MAX_LEVEL) Prev_level=MAX_LEVEL;

ctx_abs_level = (bin_number-1)*MAX_LEVEL+Prev_level,

At the beginning of each scan we initialize MAX_LEVEL=3 and Prev_level =0. and updated [bgh: be more specific] after each en-/decoding step by the most recently en-/decoded ABS_LEVEL value. Note that for double-scan, Prev_level is initialized at the beginning of each scan, i.e., twice per block. [bgh: let’s turn these mind bending words into pseudo code. Also what about the sign?]
10.4
Double Scan Always for CABAC Intra Mode

In the UVLC mode, the scan mode for intra coding depends on the QP value, i.e. for QP < 24 the double scan is used, whereas for QP>=24 the single scan mode is employed. In the contrast to that, CABAC entropy coding always uses the double scan mode, independently of the given QP value.

10.5
Context Modelling for Coding of Dquant

For a given macroblock, the value of Dquant is first mapped to a positive value using the arithmetic wrap as described in subclause QQ. This wrapped value C is then coded conditioned on the corresponding Dquant A of the left neighbouring macroblock. The context variable is given by

ctx_dquant(C)=(A !=0);
This results in 2 contexts (0,1) for the first bin. Another context (2) is used for the second bin. Finally, all remaining bins of the binarized value C are coded using the last context (3). Thus, a total of four contexts are used for Dquant.
Table 10-3 – Binarization by means of the unary code tree
	Code symbol
	Binarization

	0
	1
	
	
	
	
	
	
	

	1
	0
	1
	
	
	
	
	
	

	2
	0
	0
	1
	
	
	
	
	

	3
	0
	0
	0
	1
	
	
	
	

	4
	0
	0
	0
	0
	1
	
	
	

	5
	0
	0
	0
	0
	0
	1
	
	

	6
	0
	0
	0
	0
	0
	0
	1
	

	. . .
	.
	.
	.
	.
	.
	.
	.
	.

	Bin_no.
	1
	2
	3
	4
	5
	6
	7
	…

10.6
Binarization of Non-Binary Valued Symbols

A non-binary valued symbol will be decomposed into a sequence of binary decisions. Except for the MB_type syntax element we use the binarization given by the unary code tree in Table 10-3.
For the binary decomposition of the MB_type symbols of P or B frames, which are of limited range (0 … 9) or (0 … 17) respectively, an alternative binarization is used, which is shown in Table 10-4.

Table 10-4 – (a) Binarization for P-frame MB_type and (b) for B-frame MB_type

	P_MB_type
	Binarization
	
	B_MB_type
	Binarization

	0
	0
	
	0
	0

	1
	1 0 0
	
	1
	1 0 0

	2
	1 0 1
	
	2
	1 0 1

	3
	1 1 0 0 0
	
	3
	1 1 0 0 0

	4
	1 1 0 0 1
	
	4
	1 1 0 0 1

	5
	1 1 0 1 0
	
	5
	1 1 0 1 0

	6
	1 1 0 1 1
	
	6
	1 1 0 1 1

	7
	1 1 1 0 0
	
	7
	1 1 1 0 0 0 0

	8
	1 1 1 0 1
	
	.
	.

	9
	1 1 1 1 0
	
	17
	1 1 1 1 0 1 0

	Bin_no
	1 2 3 4 5
	
	Bin_no
	1 2 3 4 5 6 7

10.6.1
Truncated Binarization for RUN, COEFF_COUNT and Intra Prediction Mode

If the maximum number of a given syntax element is known in advance, the binarization can be restricted to a truncated code tree. Suppose the alphabet size of a specific syntax element is fixed, then for the unary binarization of the maximum value of this syntax element the terminating “1” can be omitted. This mechanism applies for RUN, COEFF_COUNT and Intra Prediction Mode.

10.7
Adaptive Binary Arithmetic Coding

At the beginning of the overall encoding of a given frame the probability distributions associated with all 126 different contexts are initialized with a pre-computed start distribution. For each symbol to encode the frequency count of the related binary decision is updated, thus providing a new probability estimate for the next coding decision. However, when the total number of occurrences of a given model exceeds a pre-defined threshold, the frequency counts will be scaled down. This periodical rescaling exponentially weighs down past observations and helps to adapt to the non-stationarity of a source.

The binary arithmetic coding engine used in our presented approach is a straightforward implementation similar to that given in "Arithmetic Coding Revisited", Moffat, Neal, Witten. ACM Transactions on Information Systems, 16(3):256-294, July 1998.

56
DRAFT ITU-T Rec. H.264 (2002 E)

Error! Style not defined.
9

_1068384892.doc

Count the number of coefficients of transform unit (COEFF_COUNT)

Encode COEFF_COUNT;

For (i = 0; i < COEFF_COUNT; i++)

Encode RUN[i];

Encode LEVEL[i];

Encode SIGN[i];

If (i == 0)

MaxRun = MaxCoeff – COEFF_COUNT;

If (MaxRun > 0)

	Encode (RUN[i], MaxRun);

MaxRun = Max Run – RUN[i];

Encode RUN[i];

_1081605022.doc

ctx

_

mvd

(C,k) =

0,

for e

k

(C) < 3,

1,

for e

k

(C) > 15,

2,

else

ctx

_

mvd

(C,k) =

0,

for e

k

(C) < 3,

1,

for e

k

(C) > 32,

2,

else

ctx

_

mvd

(C,k) =

0,

for e

k

(C) < 3,

1,

for e

k

2,

else

e

k

(C) = |

mvd

k

(A)| + |

mvd

k

(B)|

e

k

(C) = |

mvd

k

(A)| + |

mvd

k

(B)|

C

B

A

C

B

A

Separation of

mvd

k

(C)

sign

Binariz

ation

Bin_no. 1 2 3 4 5 ...

Context

_no. {0,1,2} 3 4 5 6

Separation of

mvd

k

(C)

|

mvd

k

(C)|

|

mvd

k

(C)|

sign

Binarization

Bin_no. 1 2 3 4 5 ...

Context

_no. {0,1,2}

3 4 5 6

Bin_no. 1 2 3 4 5 ...

Context

 {0,1,2} 3 4 5 6 7

mvd

k

(C)

mvd

k

mvd

k

(B)

mvd

k

mvd

k

(A)

mvd

k

ctx_mvd(C,k)

_1068377807.doc

C

B

A

