	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 May, 2002
	Document:  JVT-C089
Filename: JVT-C089.doc


	Title:
	FMO: Flexible Macroblock Ordering

	Status:
	Input Document to JVT 

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Stephan Wenger
Teles AG / TU Berlin
Franklinstr. 28-29
D-10587 Berlin

Germany

Michael Horowitz

Polycom Incorporated

5000 Plaza on the Lake

Austin, Texas  78746  USA
	
Tel:
Email:

Tel:
Email:
	
+49-172-3000813
stewe@cs.tu-berlin.de

+1 512.372.7091

mhorowitz@austin.polycom.com



	Source:
	Teles AG and Polycom Inc., ITU-T Sector Members


_____________________________
1 Summary

This document proposes the introduction of a new general-purpose tool into the JVT baseline, which allows the coding of macroblocks in an order other than the typical raster scan order.  The key application of the proponents for the tool is the implementation of error resilience mechanisms such as Scattered Slices and Slice interleaving, as documented in JVT-C090 and JVT-C091, but due to its flexibility, other applications are certainly possible.

Normally, macroblocks of slices are decoded in scan order.  A picture is divided into slices (the use of one slice per picture is a special case) and slices break the in-picture prediction between the macroblocks belonging to a given slice, and all other macroblocks of a picture.  Keep in mind, however, that motion compensation and the deblocking filter operate across slice boundaries. The authors believe that the current JVT draft allows the decoding of slices out-of-order – certainly the software allows for it with very minor modifications (bug fixes) to the RTP module, and there are no conceptual problems with such an approach in the current draft.

The Flexible Macroblock Ordering (FMO) is enabled when the slice header references a ParameterSet that includes a macroblock-to-slice allocation map (MBAmap).  The MBAmap contains information describing the macroblock ordering and is used when an application requires an ordering different from the default scan order mapping.  The MBAmap consists of one integer per macroblock of the picture, which indicates the SliceGroupID (SGid).  MBAmaps are picture-level parameters and transmitted as contents of the ParameterSet, with the mechanisms appropriate as identified by the application and the Network Adaptation Layer (NAL).

When the decoder receives a slice, it can identify the SGid to which the slice belongs by searching the MBAmap.  For a CIF picture, the most naïve implementations require an average of 200 compare instructions per CIF picture for this search, but the complexity can be reduced significantly using techniques such as hashing or inverse mapping techniques.  Once the SGid is determined, the decoder reconstructs the first MB of the slice.  Then it identifies the spatial address of the next macroblock, by searching the MBAmap, and reconstructs the next macroblock to that spatial address.   The process continues until the slice is fully reconstructed.  

The in-picture prediction mechanisms remain unchanged.  If the MBAmap is designed in such a way that macroblocks of an SGid have direct neighboring macroblocks in the same SGid, then in-picture prediction applies and the resulting coding efficiency gains can be leveraged.  If, however, an MB of an SGid has no direct neighbor in the same SGid, then the in-picture prediction is broken and no intra or MV prediction is performed – resulting in lower coding efficiency.  (But, as shown in JVT-C090 and JVT-C091, doing so can have advantages for error resilience when appropriate error concealment is used.)

The implementation complexity of FMO is moderate on both sides – roughly 500 lines of new C-code (with lots of comments) had to be added to the reference software, and less than 100 lines needed to be changed (many of these changes may actually be considered bug fixes as will be described later).  Similarly, the textual changes necessary in the WD are rather minor; see JVT-C092 for details and a change-barred version.  When not in use, FMO has no negative impact on the computational complexity, delay, or coding efficiency in the encoder or the decoder.  When used, there is some penalty in coding efficiency, and delay.  The amount of this penalty depends on the content of the MBAmap and the implementation details of both encoder and decoder, and is relatively easy to predict.  Since the encoder has complete control over the design of the MBAmap, it can fine-tune the amount of added redundancy and delay to the needs of the target application.

So far, we have identified two mechanisms where FMO is either helpful or essential for the implementation: Slice Interleaving, as used in TMN12 of H.263 and many H.263/RFC2429 based product designs, and Scattered Slices.  Both are error resilience tools for packet networks, one more traditional (and more appropriate for small picture sizes), and the other more progressive (and more appropriate for picture sizes of CIF and above, and for bit rates of 300 Kbits/s or higher).  In both cases, substantial bit rate savings can be reported when using FMO compared to the use of regular slices and compound packets that exists in the current JVT design (JVT-C091).   Other usage scenarios for FMO, including some outside our particular interest of error resilience, are almost certainly possible as well.

2 
Introduction

In Geneva, we demonstrated a production videoconferencing system that employs the concept known as “Scattered Slices.”  The system uses non-standardized extensions of the ITU-T Recommendation H.263 to implement a macroblock allocation scheme that facilitates error concealment.  Macroblocks belonging to a single slice (in the sense of the bit stream syntax) are “scattered” over the whole picture.  Without going into too much detail, one could say that every spatial macroblock address is allocated to exactly one of six macroblock groups.  The “scatter pattern” (which defines the spatial macroblock addresses of all the macroblocks in one group) is designed in such a way that no macroblock of one group neighbors a macroblock of the same group.  See JVT-B027 for details.  Such a scheme offers the great advantage that all (or at least most) of the neighboring macroblocks are available for error concealment when only one or two slices per picture are lost.  This allows for a surprisingly efficient error concealment, which, in turn, enables the encoder to reduce the source coding-based error resilience (e.g. intra macroblock refresh) to a minimum, yielding reproduced pictures of very high quality in an error prone environment.

We would like to use a similar scheme in future H.26L products. To ensure interoperability, we propose the simple source coding based tool, called Flexible Macroblock Ordering (FMO), into the JVT standard, which is necessary to implement scattered slices.  Furthermore, when taking a closer look at the tool as defined in this document, one could anticipate additional applications due to its flexibility.

The document is structured as follows: Sections 3 and 4 paint the big picture of how FMO works from the perspective of the decoder.  These sections are followed by a definition of the ParameterSet based mechanism to update the necessary data structures for FMO.  Here, the document follows the current JVT draft in presenting a mechanism based on an SDP-like syntax, although, for our target application (videoconference based in H.323), most likely ASN.1 based control protocol functionality (standardized in H.245) would be used.  Section 6 studies the implications of FMO on the Video Coding Layer (VCL) of the encoder and decoder, based on our implementation experience.  The final section contains a brief discussion regarding the appropriate placement of FMO in the JVT standard. 

The following related documents are also available:

JVT-C090 outlines a specific example of FMO for our target application: Scattered Slices.  It includes simulation results based on the common conditions. 

JVT-C091 discusses the implementation of macroblock-line interleaving with and without FMO.  It also contains simulation results.

JVT-C092 is a changed-barred version of JWDxxx, a version of the JWD not yet produced that would include a NAL specification, with FMO included (note that this document may be uploaded late, because we want to wait for the editor’s NAL specification to be included in the JWD – editing work in this field is necessary to support FMO).

JVT-C093 is a zip file that contains an implementation of FMO based on the JM 1.7 software release.

3 The Flexible Macroblock Ordering Concept

This section contains a description of FMO, from the perspective of the decoder.  Introduced is the concept of the Macroblock Allocation Map and how this map inter-operates with slices. 

3.1 Macroblock Allocation Map (MBAmap)

Normally, the JVT implicitly uses a scan-order numbering scheme for macroblocks.  Currently, there is no scheme like rectangular slices as there was in Annex K of H.263.

When using FMO, the ordering of the macroblocks can be changed through the use of the ParameterSet mechanism.  As the reader may recall, each slice references one ParameterSet, which contains the picture (and higher) level information relevant for this slice.  Typical elements of the ParameterSet include, for example, the spatial picture size or the use of CABAC or 1/8th pel motion compensation.  FMO adds a data structure called the Macroblock Allocation Map (MBAmap) to the ParameterSet.  This data structure maps a macroblock (identified by its spatial address) to a SliceGroup.  Explicitly written, this data structure will assign each macroblock to SliceGroup 0, yielding the scan-order slice mechanism that has been available in JVT for a very long time.  Figure 1 depicts this default MBAmap:

	0
	0
	0
	0
	0
	0

	0
	0
	0
	0
	0
	0

	0
	0
	0
	0
	0
	0

	0
	0
	0
	0
	0
	0


Figure 1: Default MBAmap.  All macroblocks of the picture (here in a size 
of 6 by 4 macroblocks) are allocated to the SliceGroup 0

However, a ParameterSet update can change the MBAmap, either in the preferred way of using control protocol functionality, or by PUPs.  As usual, it is expected that those updates are transmitted reliably and that the synchronicity between the referenced ParameterSets of encoder and decoder is guarantied. 

Figure 2 shows an MBAmap that enables an efficient macroblock line-interleaving scheme (which has been shown to be very efficient in the H.263-based research of VCEG).  As demonstrated in JVT-C091, the use of FMO yields a very substantial bit rate savings over the current JVT design, because the overhead of compound packets and slice headers at the beginning of each macroblock line can be omitted.

	0
	0
	0
	0
	0
	0

	1
	1
	1
	1
	1
	1

	0
	0
	0
	0
	0
	0

	1
	1
	1
	1
	1
	1


Figure 2: Slice Interleaving using FMO.  The MBs in the even lines are assigned to 
the SliceGroup 0, whereas those in the odd lines are assigned to SliceGroup 1.

Figure 3, finally, depicts an example MBAmap for a scattered slices scheme, again using only two SliceGroups.  Such an MBAmap is appropriate for small picture sizes such as QCIF.  A pattern like this could also be implemented using compound packets and scan order slices, but only at the expense of the overhead of a full slice header and the three bytes for the compound structure, per macroblock – which is impractical due to the overhead.  Hence, such a scheme is made practical only when FMO is available.

	0
	1
	0
	1
	0
	1

	1
	0
	1
	0
	1
	0

	0
	1
	0
	1
	0
	1

	1
	0
	1
	0
	1
	0


Figure 3: MBAmap for two scattered slices

3.2 Slices and FMO: SliceGroups

The primary reason for the introduction of the slice concept (in the sense of MPEG-1 and H.263 Annex K) is the MTU size adaptation.  In packet networks, but also when using bit steams in bit error prone environments, one wants to have a flexible mechanism capable of placing as many macroblocks as appropriate into one packet, or between two synchronization markers.  On packet networks, the main reason is to keep the payload/overhead relationship optimal.  In bit error prone and bit-oriented environments one wants to adjust the payload size between two synchronization markers to the error conditions – the smaller those blocks are, the less likely they are to get corrupted by bit errors, but this error resilience comes with a higher overhead cost.  Hence, both cases are roughly equivalent.  Later we will discuss packet networks and MTU size matching as the prime application for slices, but those thoughts also apply to all other error prone environments.

FMO allows the assignment of macroblocks to SliceGroups, and not directly to Slices, because we want to preserve the MTU-size matching property of Slices.  In the NALP stream, all macroblocks belonging to one SliceGroup are represented by one or more slices, which are packetized in the usual manner (one SSP when data partitioning is not used, or one set of DPA, DPB, DPC when data partitioning is enabled).

4 Decoder Operation

The operation of the decoder with FMO is very similar to that specified in the current JVT design.  There are two changes:

· The spatial address of the next decoded macroblock is determined by examining the MBAmap, and it is not necessarily the next one in scan order.

· In picture prediction is interrupted if no appropriate macroblocks are available as “neighbors.”  

Note: In the following, Macroblock Address is understood to be used as a scan order address.  

Each slice header contains the macroblock address of the first macroblock of the slice.  In the current draft, the X and Y addresses are coded independently, because this has advantages when using UVLC to code this information.  Out of these two values and the known picture size, the Macroblock Address is readily computed.  This address can be used as an index into the MBAmap to determine the SliceGroupID of that macroblock.  The SliceGroupID is stored for future use.

Using the calculated macroblock address, the macroblock can be reconstructed directly.  Since no other macroblock belonging to this slice has been decoded (as it is the first macroblock after the slice header), all in-picture prediction mechanisms are reset before decoding and reconstruction.  This is the same as with the current scan-order slices.

Normally, the macroblock address of the next macroblock would implicitly be the current macroblock address plus 1.  With FMO, however, the next macroblock address is determined by searching the MBAmap for the next macroblock with the same SliceGroupID (which was determined above for the first macroblock in the slice).  

When the encoder and decoder ParameterSet are consistent, a slice will never contain a macroblock with an incorrect SliceGroupID.  Hence, if such a condition occurs, a mismatch of the ParameterSets is detected with the similar, often fatal, consequences as might occur when a wrong picture size or the attempt to decode CABAC coded content with an UVLC decoder is encountered.  

The macroblock address of the next macroblock, as found above, is used for reconstruction of that macroblock.  This reconstruction is performed in the usual way.  The main difference between FMO and the current design (with scan order slices) is that, except at the left edge of the picture, a scan-order slice system can always assume that at least the neighbor to the left is available, whereas an FMO-based system cannot rely on this property.  However, since the MBAmap is static (unless changed by another parameter set), it is possible to pre-determine, for each macroblock, the potential candidate macroblocks for in-picture prediction as well.  Hence, there is no computational complexity increase for the macroblock neighbor determination.

In-picture prediction for intra macroblocks and for the Motion Vectors operates using the available neighbors.  If no neighbors exist, then the decoding is identical to the decoding of the first macroblock of the slice.

[By the way, this is an area in the reference software where considerable speed improvements are possible with very little implementation effort – there, the neighbor determination is done not once, but twice, per macroblock, using a fairly long if() chain, where one compare and one table lookup would do the job.  If FMO is accepted, such an optimization will be part of the final software implementation].

No special considerations have to be observed when reaching the end of the slice.  The decoder simply restarts the same algorithm with the next slice.

One interesting point is the determination of the complete reconstruction of a picture.  In the current software and in the bit stream format, a picture is considered reconstructed when the last macroblock (that is, the macroblock with the highest macroblock address) is reconstructed.  For the bitstream format and assuming an error free environment and no FMO, such a mechanism is appropriate, because no problems such as packet reordering will occur.  The unchanged JM 1.7 software version has a similar end-of-picture detection in the RTP NAL.  This has to be considered a bug, because it disallows the decoding of slices out-of-order (the end-of-picture condition will often be detected too early, with fatal consequences).  Furthermore, even in the current system there would be a problem if the last slice of a picture were to get lost.  When FMO comes into play it is inappropriate to determine the end-of-picture condition using the reconstruction of the last macroblock as the criterion.

We believe that, for FMO and the normative part of the WD, we can follow the current outline of the WD and not cover the topic at all – it is an implementation detail for error prone environments, which is outside the scope of the WD.  For the test model, however, we propose that the end-of-picture condition be determined by the arrival of the first NALP with a PictureId (sometimes called TR, the temporal reference) different from the one associated with the current picture.  At this time, error concealment starts using a bit map where each reconstructed macroblock is represented by a “1” and all lost MBs are represented by a “0” bit.  For the RTP NAL, this algorithm requires the ordering of NALPs according to their timestamp, which, for video, is a commonly accepted strategy.

5 MBAmaps in the ParameterSet

In the current WD, ParameterSets are informatively defined in an ASCII syntax that has many similarities to SDP.  Since ParameterSet information is normally conveyed through control protocol mechanisms (where available), such an informative description is more appropriate than a complete syntax (which may or may not be conveyable directly through the control protocol of choice).  [Some say that there is a need for a normative definition of a compressed format for PUP packets.  If it turns out to be the group’s decision that such a definition is needed, then we volunteer to define the mechanisms to transmit MBAmaps consistent with this syntax].

For the definition of the current syntax of PUPs, please see VCEG-N52, VCEG-N72 and (hopefully) the WD containing the NAL specification (which the authors have not yet seen).  It is reproduced here for the reader’s convenience.  The following Figure 4 is an excerpt from VCEG-N52, edited slightly to reflect the newer terminology of the WD:

 

Figure 4: PUP syntax (Excerpt from VCEG-N52)

Following this syntax concept, we propose (for now) to define the MBAmap as a simple string of integers, separated by commas.  Each integer represents the SliceGroupID of one macroblock in scan order.  The same three simple examples as used above in section 3.1 are used to show what an MBAmap would look like.  

	0
	0
	0
	0
	0
	0

	0
	0
	0
	0
	0
	0

	0
	0
	0
	0
	0
	0

	0
	0
	0
	0
	0
	0


a=H26L:(0) MBAmap 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

	0
	0
	0
	0
	0
	0

	1
	1
	1
	1
	1
	1

	0
	0
	0
	0
	0
	0

	1
	1
	1
	1
	1
	1


a=H26L:(0) MBAmap 0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,1,1,1,1,1,1

	0
	1
	0
	1
	0
	1

	1
	0
	1
	0
	1
	0

	0
	1
	0
	1
	0
	1

	1
	0
	1
	0
	1
	0


a=H26L:(0) MBAmap 0,1,0,1,0,1,1,0,1,0,1,0,0,1,0,1,0,1,1,0,1,0,1,0
Figure 5: MBAmaps are their representation in PUPs
Note: The authors fully understand that such a scheme is not the most efficient implementation even in the context of an ASCII-only, SDP-like syntax.  However, as mentioned earlier, a mapping for the transmission to control protocols has not yet been defined.  

6 The impact of FMO to the current JVT design

The authors acknowledge that FMO comes in at a relatively late time for incorporation into the JVT WD.  Hence, we feel that in addition to the “normal” technical information that has to accompany every proposal, we should spend some time and space covering the procedural impact that the adoption of FMO to the JVT WD would have.

6.1 Technical Impact

Table 1 summarizes the technical impact to the system design introduced by FMO:

Table 1: Attributes of FMO: Technical

	Attribute
	Encoder
	Decoder
	Remarks

	Computational complexity
	Very small
	Very small
	Practically only through D-cache misses with complex MBAmaps, none for the default MBAmap. Experience with real-world designs, CIF, 30fps, 384 Kbits/s: less than 5 per cent.

	Implementation complexity
	Small
	Small
	One man-week for the implementation into the JM 1.7 reference software

	Coding efficiency with default MBAmap
	 No impact
	No impact
	Identical NALP streams

	Coding efficiency with other MBAmaps
	N/A
	Slightly to Moderately Negative
	Configuration dependent. The encoder controls the error resilience / coding efficiency trade-off.

	Delay
	None
	Up to one frame
	Configuration dependent.  Encoder can reduce delay to a small fraction of a frame.


6.1.1 Computational Complexity

Based on our analysis of the design, and our experience with the H.263-based product implementation, the increase in the computational complexity of the implementation of FMO is not measurable when using the default MBAmap (one additional table lookup per macroblock).  

When using any other MBAmap, the additional algorithmic complexity is also not measurable.  However, depending on the size of the D-cache and the chosen MBAmap, there could be a complexity increase due to D-cache misses when Slices are decoded in the order they are received.  This is mostly relevant for systems with real-time latency requirements (conversational systems) and for such systems that do not have the memory to buffer one full frame.  The possibility of D-cache inefficiency is no greater than that of other features currently part the JVT design (e.g. multiple reference frames). 

When there is enough buffer space available to collect all the coded slices before starting the decoding process (and the latency requirements of the application allow for such a buffering), then the computational complexity increase due to D-cache misses can be minimized by decoding the macroblocks in scan order.  In such a case, the D-cache situation is identical to that when using a system based on the current WD with respect to motion compensation and reconstruction.  A small D-cache penalty is possible due to the access of more than one buffer containing the coded slices, but the authors very much doubt that this would be measurable.

Mixing forms between the two extremes mentioned above are possible for larger pictures, where normally more than one slice per SliceGroup is used.  If, for example, the average slice group covers four slices, it would be possible to collect the first slice of each slice group and start reconstructing the MBs that are in this upper quarter of the picture.  The working set (with respect of macroblock reconstruction) would then cover only one fourth of the picture.  When most of those macroblocks are reconstructed then the attention can be focused on the next quarter of the picture.

The authors believe that these thoughts (verified by a real-time, product implementation) warrant the “very small” label specified in the computational complexity column of Table 1.

6.1.2 Implementation Complexity

An implementation of scattered slices using essentially all the functionality of FMO took only one man-week to implement.  The authors believe that for a from-scratch design, as is likely for production JVT systems, FMO would lead to a very small implementation complexity increase, if it is adopted into the standard now.  However, adding it later as a feature in a JVT version 2 (if one were planned) may break existing designs and would certainly be more difficult to integrate into implementations not designed for the feature.

6.1.3 Coding Efficiency

Experimental results are reported in the accompanying documents JVT-C090 and JVT-C091.  The coding efficiency impact for using FMO results from the broken in-picture prediction and depends highly on the MBAmap.  An analysis of the upper bound of the coding efficiency impact, using a worst-case MBAmap where every macroblock has its own SliceGroup was already presented in Geneva, see JVT-B024.  Our experiments verify that the results reported there are correct, as the coding efficiency loss never exceeded the theoretically predicted maximum.

6.1.4 Delay

With the default MBAmap there is no delay impact compared to the current design.

Assuming an environment where the size of a packet has to be known before a given packet can be sent (which is the case for RTP and for H.223 as soon as one of the mobile annexes B, C, or D is used), an encoder can be implemented without any additional delay.   Only in such systems where the packet size does not need to be known at the decoding time could a small delay be introduced if the encoder starts encoding as soon as the YUV data reaches the frame buffer, meaning before a full frame is captured.  The authors are unaware of systems performing such an optimization.  Also, the only real-world system that uses real-time encoding and is not packet oriented is H.320.  This system can rely on a very good quality of service, and, hence, it is unlikely that FMO with an MBAmap other than default will ever be used.  

[A quick note to those few of us that are interested in H.323 to H.320 gateway designs.  Using FMO in an H.320 system that codes MBs is-sync with the received camera signal would not be possible for obvious reasons.  Hence, in such cases when FMO is helpful in H.320 (e.g. when working through an H.320-H.323 gateway, the H.320 system would not be able to keep its extremely good delay characteristics.  However, there would still be a huge performance gain (both in terms of quality and delay) compared to today’s systems, because trans-coding could be avoided, which is normal in H.261/H.263 gateway designs.

Depending on the implementation of FMO in the decoder, and the design of the MBAmap, there is a theoretical delay of up to one frame in the decoder.  However, an encoder can drastically reduce this maximum delay by choosing an appropriate MBAmap and/or appropriate slice sizes, and also use tricks similar to the ones mentioned above under computational complexity to reduce the delay (by trading in some cache misses).  In practice, the authors expect an additional delay of on the order of one macroblock-line (16 scan lines), or less than 2 ms when operation in CIF @ 30 fps, for a delay-optimized real-world implementation.

6.1.5 Overhead for the ParameterSet transmission

The proposed way to communicate the MBAmap (through the ParameterSet transmission) seems at the first glance to incur a lot of overhead.  However, please keep the following in mind:

· As usual for all entries of ParameterSets, there is a default value for the MBAmap as well – please see VCEG-N52 for a discussion.  For most, if not all, profiles, this entry will be an MBAmap consisting of all zeros, which yields an MBAmap for regular, scan-order slices.  Applications that want to take advantage of FMO require the transmission of a different MBAmap. No MBAmap transmission is required for applications not using FMO. 

· As mentioned before, the definition of the syntax of the ParameterSet transmission is NAL dependent.  Naturally, those networks and applications that need to transmit ParameterSets more frequently (e.g. broadcast) will have a more optimized syntax, e.g. a binary representation or some ZIP-code.  This has to be seen in the context of the definition of PUPs.

· Finally, in JVT-C090 and JVT-C091 we propose a “shortcut” mechanism for the two (anticipated) most popular forms of the use of FMO.  Both consist of only one integer and allow the set up of a ParameterSet for scattered slices and for slice interleaving.  

6.1.6 Deblocking Filter issues

During our internal review process we identified a computational complexity issue that has to do with the deblocking filter.  Some seem to believe that the deblocking filter process should be performed immediately after the reconstruction of each macroblock, whereas other prefer, for reasons of computational performance, to apply the filter after the entire picture has been reconstructed.  

The option to filter the entire picture is, of course available.  We also believe that it is possible to use the current, MB-based deblocking filter with FMO.  However, we believe that this filter cannot be applied before upper and left MBs of the MB in question have been reconstructed, which is not the case when you reconstruct the MBs in the order they are received in the NALP stream.  But, as discussed in section 6.1.1 above, it is possible to buffer incoming slices and reconstruct (and filter) MBs in scan order as well, if the delay constraints allow for this.

6.2 Procedural Impact

Our understanding of the JVT schedule is that shortly after this meeting a technically stable WD should be available that the ISO/IEC process can use to move to CD status.

In order to facilitate the decision for the adoption of FMO, we plan to make a change-barred WD available that covers the complete changes necessary for FMO.  This will be a late, hand-carried document, because as far as we know there will be no WD with enough detail of the NAL concept available until shortly before the document deadline, and some core concepts of FMO directly influence the NAL.  

Reference software containing an implementation of FMO, along with scattered slices and slice interleaving as implementation examples is available in JVT-C093.  As mentioned before, the changes are relatively minor and well documented.  Only about 100 lines of code had to be changed in the core code of the codec, and many of these changes may actually be considered bug fixes (e.g. to implement out-of-order decoding of slices).  New code was necessary only for the implementation of the MBAmap (setup and search functions) and to change the address of the decoded macroblock.

To summarize, we believe that completing the editing work for the CD-candidate should be easily accomplished, due to the change-barred version of the latest WD.  Bringing the software up to date to support the full FMO (including the application examples of Scattered Slices and Slice Interleaving) is a bit more work, but should be possible within one to two man-weeks.

7 Profile Considerations

We see conversational multimedia, and especially IP-based videoconferencing as a key application for FMO.  However, we believe that FMO is helpful for all multimedia applications that operate over error prone networks, and especially those, which cannot offer any feedback mechanisms such as IP-based broadcast and multicast streaming.  Based on the Polycom/Tandberg/Teles proposal for profiles and levels, JVT-C026, we believe that FMO provides benefits for every application mentioned there, and does not impact negatively such applications in terms of computational/implementation complexity or delay. Hence, we believe the inclusion of FMO into baseline is the appropriate way to move forward.

(Append for Proposal Documents)

JVT Patent Disclosure Form

	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission  

	[image: image1.wmf]
	[image: image2.png]1S0
NS




	[image: image3.png]





Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int  Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard.  JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis.  If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”.  The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis.  Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	Polycom Incorporated
	

	Mailing address
	Michael Horowitz

Polycom Incorporated

5000 Plaza on the Lake, Austin, Texas, 78746
	

	Country
	USA
	

	Contact person
	Michael Horowitz
	

	Telephone
	+1 512.372.7091
	

	Fax
	+1 512.372.7001
	

	Email
	mhorowitz@austin.polycom.com
	

	Place and date of submission
	Austin, Texas USA.  April 28, 2002.
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	
	

	Title
	FMO: Flexible Macroblock Ordering
	

	Contribution number
	JVT-C089
	

	
	
	


(Form continues on next page)

	Disclosure information – Submitting Organization/Person  (choose one box)

	
	

	[image: image4.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.  In which case,



	[image: image5.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image6.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.


Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	X
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image7.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above.  In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	Patent provisionally filed, Fall 2001
	

	Inventor(s)/Assignee(s)
	Michael Horowitz / Polycom Inc.
	

	Relevance to JVT
	H.26L general-purpose tool allowing the coding of macroblocks in an order other than raster scan  (proposal)


	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)




(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	X
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.



	[image: image8.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.



	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:



	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	


	Any other comments or remarks:





(Append for Proposal Documents)

JVT Patent Disclosure Form

	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission  

	[image: image9.wmf]
	[image: image10.png]1S0
NS




	[image: image11.png]





Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int  Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard.  JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis.  If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”.  The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis.  Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	Teles AG
	

	Mailing address
	Stephan Wenger
TELES AG / TU Berlin Sekr.  FR 6-3
Franklinstr, 28-29

D-10587 Berlin
	

	Country
	Germany
	

	Contact person
	Stephan Wenger
	

	Telephone
	+49-172-3000813
	

	Fax
	+49-30-36282387
	

	Email
	stewe@cs.tu-berlin.de
	

	Place and date of submission
	Berlin, 28.04.2002
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	
	

	Title
	FMO: Flexible Macroblock Ordering
	

	Contribution number
	JVT-C089.doc
	

	
	
	


(Form continues on next page)

	Disclosure information – Submitting Organization/Person  (choose one box)

	
	

	X
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.  In which case,



	[image: image12.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image13.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.


Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	[image: image14.wmf]
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image15.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above.  In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	
	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)




(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	[image: image16.wmf]
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.



	X
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.



	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:



	3rd party name(s)
	Polycom Inc (Please see their disclosure form in the same document)
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	


	Any other comments or remarks:




Syntax Definition


It is suggested that we use the following syntax for parameter updates (of course we would register with IANA H.264, or whatever the ITU recommendation number is, and not H.26L):


a=H26L:<AttributeValue>, whereby


<AttributeValue> ::= (<ParameterSetNumber>* ) <ParameterName> <ParameterValue>


<ParameterSetNumber> ::= int


<ParameterName> ::= (MaxPicID | PixAspectRatio | DisplayWindowOffsetTop | DisplayWindowOffsetBottom | DisplayWindowOffsetRight | DisplayWindowOffsetLeft | XsizeMB | YSizeMB | EntropyCoding | MotionResolution | SliceType )


<ParameterValue> ::= string


Examples:


A QCIF sequence using UVLC, I and P pictures, 1/8th pel MV resolution and up to 5 reference frames. (Note: it is assumed that during capability exchange a version/profile/level was selected that has QCIF as its maximum picture size).





m=video 49170 RTP/AVP 105


a=H26L:(0) MaxPicID 5


a=H26L:(0) MotionResolution eigth


The first line announces a video data stream, to be sent to port #49170 on the target system, using RTP with the audio-visual minimal control profile and the dynamic RTP payload type 105.  











File:JVT-C089.doc
Page: 14
Date Saved: 2002-04-30

