	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

3rd Meeting: Fairfax, Virginia, USA, 6-10 May, 2002
	Document: JVT-C037
Filename: JVT-C037.doc

	Title:
	Full 16-bit implementation of ¼ pel motion compensation

	Status:
	Input Document to JVT

	Purpose:
	Information

	Author(s) or
Contact(s):
	Frank Bossen
DoCoMo Communications Labs USA
181 Metro Drive Suite 300
San Jose CA 95110 USA
	
Tel:
Email:
	
+1 408 451 4712
bossen@docomolabs-usa.com

	Source:
	DoCoMo Communications Laboratories USA, Inc.

1 Introduction

In the Joint Working Draft 2.0 of the Joint Video Team, a quarter-pel interpolator is used for motion compensation. This document describes an implementation relying on separable filters that requires 16-bit registers only, and in which multiplications are replaced by shift operations. Furthermore this document describes an implementation relying on 2-D filters that requires 14-bit registers only.
To interpolate a pixel at position (i+1/2, j+1/2) where i and j are integer numbers, a separable filter with coefficients (1,-5,20,20,-5,1)2 is used. In a straightforward implementation the range of values, after two passes (horizontal and vertical), is (-840*255,1864*255). 20 bits are required to represent a number in that range. The resulting value is then shifted to the right by 10 bits (with rounding, i.e. 512 is added before shifting) and clipped to the range (0,255).

In Section 2 it is first shown that the use of shift operations instead of multiplications can reduce the maximum number of bits for any register to 17. Further study shows that it is possible to reduce this number to 16. Section 3 describes the 2-D filter approach.
2 Separable filter implementation

2.1 Shift implementation: first pass

The input is a vector x containing 6 values (A,B,C,D,E,F) and the output a vector y containing a single value. The code below describes the process.

	Operation
	Comment
	Min val
	Max val
	Reg size

	r1 = x[0]
	r1 is pixel A
	0
	255
	8u

	r2 = x[5]
	r2 is pixel F
	0
	255
	8u

	r1 = r1+r2
	r1 is A+F
	0
	510
	9u

	r2 = x[1]
	r2 is pixel B
	0
	255
	8u

	r3 = x[4]
	r3 is pixel E
	0
	255
	8u

	r2 = r2+r3
	r2 is B+E
	0
	510
	9u

	r1 = r1-r2
	r1 is A+F-B-E
	-510
	510
	10s

	r3 = x[2]
	r3 is pixel C
	0
	255
	8u

	r4 = x[3]
	r4 is pixel D
	0
	255
	8u

	r3 = r3+r4
	r3 is C+D
	0
	510
	9u

	r2 = r3-r2
	r2 is C+D-B-E
	-510
	510
	10s

	r2 = r2 << #2
	r2 is 4*(C+D-B-E)
	-2040
	2040
	12s

	r1 = r1+r2
	r1 is (A+F)-5*(B+E)+4*(C+D)
	-2550
	2550
	13s

	r3 = r3+#1
	r3 is C+D+1
	1
	511
	9u

	r3 = r3 << #4
	r3 is 16*(C+D)+16
	16
	8176
	13u

	r1 = r1+r3
	r1 is (A+F)-5*(B*E)+20*(C+D)+16
	-2534
	10726
	15s

	y[0] = r1
	store result
	
	
	16s

The output is stored as a 16-bit signed value.

2.2 Shift implementation: Second pass

The second pass is very similar to the first, except that shift right operations are used instead of shift left. Also the final result is clipped to the range (0,255). Shift rights operations are used such as to discard less significant bits as they become irrelevant with regard to the final result.
	Operation
	Comment
	Min val
	Max val
	Reg size

	r1 = x[0]
	r1 is pixel A+16
	-2534
	10726
	15s

	r2 = x[5]
	r2 is pixel F+16
	-2534
	10726
	15s

	r1 = r1+r2
	r1 is A+F+32
	-5068
	21452
	16s

	r2 = x[1]
	r2 is pixel B+16
	-2534
	10726
	15s

	r3 = x[4]
	r3 is pixel E+16
	-2534
	10726
	15s

	r2 = r2+r3
	r2 is B+E+32
	-5068
	21452
	16s

	r1 = r1-r2
	r1 is (A+F)-(B+E)
	-26520
	26520
	16s

	r1 = r1 >> #2
	r1 is ((A+F)-(B+E))>>2
	-6630
	6630
	14s

	r3 = x[2]
	r3 is pixel C+16
	-2534
	10726
	15s

	r4 = x[3]
	r4 is pixel D+16
	-2534
	10726
	15s

	r3 = r3+r4
	r3 is C+D+32
	-5068
	21452
	16s

	r2 = r3-r2
	r2 is (C+D)-(B+E)
	-26520
	26520
	16s

	r1 = r1 + r2
	r1 is ((A+F)-5*(B+E)+4*(C+D))>>2
	-33150
	33150
	17s

	r1 = r1 >> #2
	r1 is ((A+F)-5*(B+E)+4*(C+D))>>4
	-8288
	8287
	15s

	r1 = r1 + r3
	r1 is ((A+F)-5*(B+E)+20*(C+D)+512)>>4
	-13356
	29739
	16s

	r1 = r1 >> #6
	r1 is ((A+F)-5*(B+E)+20*(C+D)+512)>>10
	-209
	464
	10s

	r1 = max(#0,r1)
	clip r1 on the low side
	0
	464
	9u

	r1 = min(#255,r1)
	clip r1 on the high side
	0
	255
	8u

	y[0] = r1
	store result
	
	
	8u

It can be noted that the result of operation r1 = r1 + r2 (bold) requires a 17-bit signed integer, thus preventing a full 16-bit implementation.

2.3 Shift implementation: full 16-bit second pass

To alleviate the need for a 17th bit, the following question can be asked: for what values of C+D+32 is the result always going to be 0 or 255?

For the result to be 0, (A+F+32)-5*(B+E+32)+20*(C+D+32) needs to be equal to or less than 1023. A+F+32 can be as high as 21452, -5*(B+E+32) as high as 25340. Therefore if 20*(C+D+32) is less than or equal to 1023-21452-25340 = -45769, the final result will always be 0. For that condition to be satisfied C+D+32 must be less than or equal to -2289. Clipping C+D+32 on the low end to -2289 will thus not affect the result.

For the result to be 255, (A+F+32)-5*(B+E+32)+20*(C+D+32) needs to be at least 261120. A+F+32 can be as low as -5068, -5*(B+E+32) as low as -107260. Therefore if 20*(C+D+32) is greater than or equal to 261120+5068+107260 = 373448, the final result will always be 255. For that condition to be satisfied C+D+32 must be greater than or equal to 18673. Clipping C+D+32 on the high end to 18673 will thus not affect the result.

We also need to consider the values to which C+D+32 needs to be clipped such that intermediate results always hold in 16-bit registers, we find that C+D+32 needs to be clipped to the range (-4686,21069) for the result of the r1 = r1 + r2 operation to lie in the (-32768,32767) range. -4686 is obtained by -32768+33150-5068 and 21069 by 32767-33150+21452.

Taking into account the observations above the value of C+D+32 needs to be clipped to the range (x,y) where x is any number in the range (-4686,-2289) and y any number in the range (18673,21069) to guarantee proper 16-bit operation.

The code below describes the implementation with clipping to (-4686,21069).

	Operation
	Comment
	Min val
	Max val
	Reg size

	r1 = x[0]
	r1 is pixel A+16
	-2534
	10726
	15s

	r2 = x[5]
	r2 is pixel F+16
	-2534
	10726
	15s

	r1 = r1+r2
	r1 is A+F+32
	-5068
	21452
	16s

	r2 = x[1]
	r2 is pixel B+16
	-2534
	10726
	15s

	r3 = x[4]
	r3 is pixel E+16
	-2534
	10726
	15s

	r2 = r2+r3
	r2 is B+E+32
	-5068
	21452
	16s

	r1 = r1-r2
	r1 is (A+F)-(B+E)
	-26520
	26520
	16s

	r1 = r1 >> #2
	r1 is ((A+F)-(B+E))>>2
	-6630
	6630
	14s

	r3 = x[2]
	r3 is pixel C+16
	-2534
	10726
	15s

	r4 = x[3]
	r4 is pixel D+16
	-2534
	10726
	15s

	r3 = r3+r4
	r3 is C+D+32
	-5068
	21452
	16s

	r3 = max(#-4686,r3)
	clip r3 to avoid overflow (low side)
	-4686
	21452
	16s

	r3 = min(#21069,r3)
	clip r3 to avoid overflow (high side)
	-4686
	21069
	16s

	r2 = r3-r2
	r2 is (C+D)-(B+E)
	-26138
	26137
	16s

	r1 = r1 + r2
	r1 is ((A+F)-5*(B+E)+4*(C+D))>>2
	-32768
	32767
	16s

	r1 = r1 >> #2
	r1 is ((A+F)-5*(B+E)+4*(C+D))>>4
	-8192
	8191
	15s

	r1 = r1 + r3
	r1 is ((A+F)-5*(B+E)+20*(C+D)+512)>>4
	-12878
	29260
	16s

	r1 = r1 >> #6
	r1 is ((A+F)-5*(B+E)+20*(C+D)+512)>>10
	-202
	457
	10s

	r1 = max(#0,r1)
	clip r1 on the low side
	0
	457
	9u

	r1 = min(#255,r1)
	clip r1 on the high side
	0
	255
	8u

	y[0] = r1
	store result
	
	
	

On some processor architectures the additional clipping operations can be removed altogether and the r1 = r1 + r2 operation that may cause overflow can be replaced by a saturated add operation.

3 2-D filter implementation

In a 2-D filter implementation the following filter kernel is used:
	1
	-5
	20
	20
	-5
	1

	-5
	25
	-100
	-100
	25
	-5

	20
	-100
	400
	400
	-100
	20

	20
	-100
	400
	400
	-100
	20

	-5
	25
	-100
	-100
	25
	-5

	1
	-5
	20
	20
	-5
	1

In a first step pixels that need to be multiplied by a same factor are added together:

	Assignment
	factor
	factor (binary)
	min
	max
	reg size

	r1 = A00+A05+A50+A55
	1
	1
	0
	1020
	10u

	r2 = A01+A04+A10+A15+A40+A45+A51+A54
	-5
	-101
	0
	2040
	11u

	r3 = A02+A03+A20+A25+A30+A35+A52+A53
	20
	10100
	0
	2040
	11u

	r4 = A11+A14+A41+A44
	25
	11001
	0
	1020
	10u

	r5 = A12+A13+A21+A24+A31+A34+A42+A43
	-100
	-1100100
	0
	2040
	11u

	r6 = A22+A23+A32+A33
	400
	110010000
	0
	1020
	10u

Using shift right operations the size of registers can be limited as in the separable filter case:
	Operation
	min
	max
	reg size

	r7 = r1 - r2
	-2040
	1020
	12s

	r7 = r7 + r4
	-2040
	2040
	12s

	r7 = r7 >> #2
	-510
	510
	10s

	r7 = r7 - r2
	-2550
	510
	13s

	r7 = r7 + r3
	-2550
	2550
	13s

	r7 = r7 - r5
	-4590
	2550
	14s

	r7 = r7 >> #1
	-2295
	1225
	13s

	r7 = r7 + r4
	-2295
	2265
	13s

	r7 = r7 >> #1
	-1148
	1132
	12s

	r7 = r7 + r3
	-1148
	3172
	13s

	r7 = r7 + r4
	-1148
	4192
	14s

	r7 = r7 + r6
	-1148
	5212
	14s

	r7 = r7 >> #1
	-574
	2606
	13s

	r7 = r7 - r5
	-2614
	2606
	13s

	r7 = r7 >> #1
	-1307
	1303
	12s

	r7 = r7 - r5
	-3347
	1303
	13s

	r7 = r7 >> #1
	-1674
	651
	12s

	r7 = r7 + r6
	-1674
	1671
	12s

	r7 = r7 >> #1
	-837
	835
	11s

	r7 = r7 + r6
	-837
	1855
	12s

	r7 = r7 + #2
	-835
	1857
	12s

	r7 = r7 >> #2
	-209
	464
	10s

	r7 = max(#0, r7)
	0
	464
	9u

	r7 = min(#255, r7)
	0
	255
	8u

Although the above implementation uses small registers, it is clearly not optimal in terms of number of operations. By using larger registers it is possible to reduce the number of operations.

4 Conclusion

Two implementations of ¼ pel motion compensation that make use of small registers have been presented. In a separable filter approach it was shown that a full 16-bit implementation is possible. In a 2-D filter approach the maximum size of any register can be further reduced to 14 bits.

We recommend the addition of an informative annex to the CD describing the 16-bit implementation.

Acknowledgements

Thanks to Dan Lelescu and Huipin Zhang for reviewing early draft versions of this document.

File:JVT-C037
Page: 1
Date Saved: 2002-04-30

