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0. Summary
For a variety of applications, especially for use in wireless devices with limited power, memory, and CPU capacity, it is desirable to have a fixed, low bit-depth integer codec implementation (e.g., 16-bits).  Integer-only codecs are also needed if a fully lossless mode is required.  On the other hand, high-quality applications have other needs, such as support for higher-bit data, quantization matrices, or even adaptive block transforms.  Yet the greatest value of a standard is that it can enable interoperability, as well as the reusability of content.  For high-rate film/TV content to be reusable for wireless streaming, for example, it is necessary that the structures used in the high-rate application work well in the low-complexity mode of the wireless application.  FastVDO’s unified approach to transform/quantization supports all of these requirements. 

1. Introduction

In this document, we review our novel approach to the DCT, named binDCT, and its numerous advantages, among which are: 

(a) full invertibility for lossless coding, requiring no multiplications (only bit-shifts and adds);

(b) performance/complexity scalability via a family of solutions;

(c) optimized bit preservation, with 13 bits output for 9-bit input, 16 bits for 12-bit input, providing an easy avenue to support higher-bit data (e.g. for digital cinema applications);

(d) support for transforms of different sizes for adaptive block transforms;

(e) support for quantization matrix considerations for enhanced high-rate applications;

(f) recursive quantization structure for reduced-complexity (low-memory requirements);

(g) unified approach, offering interoperability/reusability of content between high and low-rate applications (e.g., reusability of film/TV content for wireless streaming media).

We believe our approach, which launched the entire 16-bit redesign of H.26L at the Austin Meeting in April, 2001 (M16 [10]), remains the only one that can support all of these diverse needs with a single unified transform/quantization method. At the Santa Barbara meeting, keen interest in achieving a 16-bit architecture for H.26L was testified by a number of relevant proposals (viz. N19, N20, N22, N24, N44).  Since then, no quality difference between the various 16-bit proposals appears to have emerged, and other considerations should be applied.  FastVDO believes that complexity metrics are also essentially inconclusive, considering the fact that we are all reducing from 32-bit to 16-bit arithmetic.  On the other hand, if interoperability/reusability of content between all the applications of H.26L/JVT is important, this should be a key consideration in choosing which transform/quantization approach should be adopted.

This document mainly addresses the 4x4 transform that is at the heart of the existing H.26L codec.  However, methods such as adaptive block transforms call for other block transform sizes such as 8x8 and 16x16.  We also have binDCT solutions for both of these sizes.  The 8x8 binDCT preserves 15 bits for a 9-bit input, and the 16x16 binDCT preserves 17 bits for a 9-bit input.  The latter can also be made to preserve 16 bits by applying a variety of available methods such as scaling, statistical sampling, and approximation. Our solutions have complexity, accuracy and performance advantages over other approximate DCT solutions recently proposed for these applications [6 - 8], which will be explored elsewhere.  Here we present our 8x8 and 16x16 solutions diagrammatically without further analysis.

2 Quantization in TML 8.5

In TML 8.5 two arrays of numbers are used for quantization/dequantization:

A(QP=0,..,31) =

{620,553,492,439,391,348,310,276,246,219,195,174,155,138,123,110,98,87,78,69,62,55,49,44,39,35,

31,27,24,22,19,17},

B(QP=0,..,31) =

{3881,4351,4890,5481,6154,6914,7761,8718,9781,10987,12339,13828,15523,17435,19561,21873,24552,27656,30847,34870,38807,43747,49103,54683,61694,68745,77615,89113,100253,109366,126635,141533}.

The relation between A() and B() is: A(QP)xB(QP)x6762 = 240.

As mentioned in our previous proposal, we will use another sect of quantization table, which is suitbal for DCT and 16 bit implementations It can be seen from the above that the equivalent quantization stepsizes for the true DCT coefficients are: 

When QP changes from 0 to 31, the stepsizes are:

DCTQ(QP=0,..,31) = 220 / (676 x A(QP)).

[2.5019,    2.8050,    3.1527,    3.5334,    3.9671,    4.4573,    5.0037,    5.6201,

6.3055,    7.0829,    7.9546,    8.9146,    10.0074,   11.2402,   12.6110,   14.1013,

15.8280,   17.8293,   19.8865,   22.4804,   25.0185,   28.2027,   31.6561,   35.2534,

39.7730,   44.3185,   50.0370,   57.4499,   64.6312,   70.5067,   81.6394,   91.2440];

Since there is an  12% increament from one stepsize to the next one, the stepsize is about  double every 6 QP indes. We can reduce our  Qantization Table by following formula:

Q_TABLE(QP%6=0,1,…,5)  =  [2.5019,    2.8050,    3.1527,    3.5334,    3.9671,    4.4573, ];

Let QP=6k+l, where k and l are positive integer. 0<=QP<=31, thus

DCTQ(QP)=2kQ_TABLE(l).

Fig 1. Plane rotation-based factorization of the 4-point DCT.

3 General Structure of the binDCT

The general structure for the lifting-based 4-point DCT, denoted by binDCT is shown in Fig.4. Because of the butterflies, a scaling factor of 2 is introduced after the inverse transform, which can be compensated by a right-shift.
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Fig. 4 (a) Forward transform of the 4-point binDCT; (b) Inverse transform of the 4-point binDCT.

	binDCT Config.
	-
	1
	2
	3
	4

	P
	0.41421356237310
	7/16
	3/8
	1/2
	1/2 

	U
	0.35355339059327
	3/8
	3/8
	3/8
	1/2 

	Number of Shifts
	-
	5
	5
	4
	3

	Number of Adds
	-
	10
	10
	9
	8

	Coding Gain (dB)
	7.5701 (true DCT)
	7.5697
	7.5566
	7.5493
	7.5485


Table 1. Some configurations of the binDCT and their performances.

Table 1 tabulates the floating-point values of the parameters p and u in Fig. 4, as well as some of their dyadic approximations, which allow for fast implementations with only shift and addition operations. The coding gains of the floating-point 4-point DCT and various binDCT configurations are also presented in Table 1, showing that the binDCT is very close to the true DCT in terms of the energy compaction capability. 

The first configuration in Table 1 with p = 7/16 and u = 3/8 will be used in the following tests, which requires 5 shifts and 10 additions. As a comparison, the integer transform in the current TML 8.5 needs 6 fixed-point multiplications and 8 additions. Note that 7/16x can be implemented as 1/2x – 1/16x, and 3/8x can be obtained by 1/2x – 1/8x. That is, only right-shifts are involved, which minimizes the dynamic ranges of the intermediate results. The forward and inverse transforms for this configuration are (without considering the scaling factors):

Forward transform T  = 
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Inverse transform IT = 
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4. Scaling Factors and Quantization

The 4-point DCT transform is:

DCT=[

0.50000000000000   0.50000000000000   0.50000000000000   0.50000000000000

   0.65328148243819   0.27059805007310  -0.27059805007310  -0.65328148243819

   0.50000000000000  -0.50000000000000  -0.50000000000000   0.50000000000000

   0.27059805007310  -0.65328148243819   0.65328148243819  -0.27059805007310];

The 1-D scaling vector in Fig.1.4 is:

S1 =  [ 0.50000000000000   0.76536686473018   1.00000000000000   0.65328148243819],

And 

C1=Diag(S1)*T= [

0.50000000000000   0.50000000000000   0.50000000000000   0.50000000000000

   0.63979886348538   0.28701257427382  -0.28701257427382  -0.63979886348538

   0.50000000000000  -0.50000000000000  -0.50000000000000   0.50000000000000

   0.28581064856671  -0.65328148243819   0.65328148243819  -0.28581064856671].

Obviously, C1 is not DCT. In this proposal, we provide another scaling vector:

S_vector = [0.50000000000000   0.72159480019493   1.00000000000000   0.61850982873851]

C2= diag(S-vector)*T=[

   0.50000000000000   0.50000000000000   0.50000000000000   0.50000000000000

   0.60320815328795   0.27059805007310  -0.27059805007310  -0.60320815328795

   0.50000000000000  -0.50000000000000  -0.50000000000000   0.50000000000000

   0.27059805007310  -0.61850982873851   0.61850982873851  -0.27059805007310]

The diagonal entries of C2 are consistant with the diagonal entries of 4-point DCT. We can approximate the DCT by C2.

The corresponding 2-D binDCT scaling matrix is 

S_MATRIX = S_vectorT x S_vector = 
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where S_vectorT is the transpose of S_vector.

Yb ~C2 X C2 ( S_MATRIX. 

where ( represents entry-wise multiplications between two matrices.

In the current H.26L test model, the integer transform has a uniform scaling factor for all transform coefficients, which is no longer true in the binDCT, because of the 2-D scaling matrix S2. Hence, to maintain the compatibility of the binDCT and the true DCT, a quantization matrix Qb should be applied to the binDCT results, whose elements are defined as:

Qb(i, j) = DCTQ(QP) / S_MATRIX(i, j),   i, j = 1 to 4.

where DCTQ is the equivalent quantization stepsize for the true DCT coefficients, as derived in the first section.

Note that the quantization matrix is determined by both the binDCT scaling matrix and the QP value. Since the first frame could have different QP value from other frames, and QPluma and QPchroma might be different, two quantization matrices should be defined for each frame --- Qbchroma for the chroma quantization and Qbluma for the luma part. These two matrices should be updated after the processing of the first frame, if the QP of the remaining frames is different from the first frame.

The vector DCTQ and the binDCT scaling matrix S2 have floating-point entries. In implementation, two methods can be used to obtain integer quantization matrix. In the first method, floating-point operations can be used to obtain the floating-point values of Qb from DCTQ and S2, these results can then be rounded into integers. 

In order to generate the quantization matrix with 16-bit fixed-point operations, we can scale DCTQ by a factor of 8, and 1 / S_MATRIX(i,j) by a factor of 16, for i, j = 1 … 4, then rounded to integer. That is:

Q_Table[6]= 
[image: image5.wmf]{

}

.

36

32

28

25

22

20


S_MATRIX =
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Denote S_INDEX =  -.Let QP=6K+l, the integer binDCT quantization table can be computed by 16-bit operations as:

Qb(i, j) =(  (Q_Table(l) << k) * S_MATRIX(i, j) + 64) / 128,   i, j = 1 to 4.

Both Qbchroma  and Qbluma can be performed in this way. 

This scaling approach introduces some round-off errors for the binDCT quantization table, compared with the quantization stepsizes used by the current TML, especially for smaller QP. However, experiments show that the effect is negligible for QP >= 8.

After the quantization matrix is obtained, the quantization can be performed in a similar way to the current integer transform. That is,

LEVEL(i, j) = ( Yb(i, j) + f x Qb(i, j) ) /  Qb(i, j);

Notice that S_MATRIX   can be represented using 3 numbers 16,22,26, The quantizaton table need to be stored can be further reduced to a 3x6 array.

Q_MATRIX=
[image: image7.wmf].
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Denote Q1=
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Qb( I, j ) = Q_MATRIX[Q_idx[I][j]][QP%6]<<(QP/6+Q1[I][j]).

The dequantization is simply performed by 

Yb’(i, j) = LEVEL(i, j) * Qb(i, j).

To speed up the quantization, we can also store Q_MATRIX* f for f=1/6 and 1/3. Where, f equales to : 1/3 for intra blocks, 1/6 for inter blocks. 

2.5 Dynamic Range Analysis

The elimination of the floating-point and fixed-point multiplications enables the binDCT to be implemented with narrower data bus than other fast algorithms. 

After the prediction, the input data to the binDCT are 9-bit signed integers, ranging from -255 to 255. To check the dynamic range of the binDCT, we examine the signs of the binDCT coefficients and find out the set of input data which would generate the maximum or minimum outputs in different binDCT subbands. For example, the second row of the forward binDCT used in this proposal is:

[107/128        3/8         -3/8       -107/128],

thus the input x = [255, 255, -255, -255] will generate the maximum output for the second binDCT coefficient, and x = [-255, -255, 255, 255] will give its minimum. 

It may appear that intermediate calculations, which amount to multiplying numbers such as 107x255, would lead us outside a desired low-bit range (e.g., beyond 16-bits).  However, given our method of calculating these transforms in terms of cascaded lifting steps, these multiplications never take place.  We are able to verify that the entire calculation, beginning to end, stays within 13 bits, as shown in figure 5. In general, as all lifting parameters in the binDCT are less than 1, they can be implemented with addition and right-shift operations, which can minimize the intermediate dynamic range. Furthermore, since the first row has the maximum absolute sum, the dynamic range of the binDCT is therefore determined by the DC subband.
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Figure 5.  Dynamic range of intermediate calculations for our 1-D 4-point binDCT.  The numbers in brackets give the worst case range, and numbers in parentheses give the bit depth.  The 1D transform thus maps 9-bit integers to 11-bit integers.  The 2D transform takes 9 bits to 13 bits, 12 bits to 16 bits..

It can be verified that given the input range of [-255, 255], the 1-D binDCT outputs are within [-1020, 1020], which requires 11 bits to represent. The range of the 2-D binDCT output is [-4080, 4080], which needs 13 bits. If all the lifting parameters are implemented with only right shifts, the intermediate results are less than the final results in the worst cases. Therefore, the binDCT transform can be well fitted into a 16-bit architecture.  The implementation of figure 5 in C is shown below.

/*  Horizontal transform */

for (i=0;i<4;i++)

{

M5[0]= M0[i][ii][0][jj] + M0[i][ii][3][jj];

M5[3]= M0[i][ii][0][jj] - M0[i][ii][3][jj];

M5[1]= M0[i][ii][1][jj] + M0[i][ii][2][jj];

M5[2]= M0[i][ii][1][jj] - M0[i][ii][2][jj];

M0[i][ii][0][jj] = M5[0] + M5[1];

M0[i][ii][2][jj] = (M0[i][ii][0][jj] >> 1) - M5[1];




M0[i][ii][3][jj] = ((M5[3] >> 1) - (M5[3] >> 4)) - M5[2];

M0[i][ii][1][jj] = M5[3] - ((M0[i][ii][3][jj] >> 1) - (M0[i][ii][3][jj] >> 3));

}

4. Experimental Results

The attached results are obtained with 10 frames of various test sequences. 

In the implementation of the inverse binDCT transform, if all the AC coefficients are zero, the inverse transform is bypassed and all the outputs are set to one half of the DC coefficients. This can make the inverse transform a slightly faster.

In the following tests, we encode and decode a sequence with two different methods, and measure their difference in term of PSNR Y and the compressed bit rate.

5. Conclusion

A lifting-based fast approximation of the 4-point DCT, named the binDCT, is proposed, which can be implemented with only addition and right-shift operations. The binDCT can be well fitted into 16-bit architecture. Most of the quantization can also be implemented with 16-bit operations, except the RD-optimized quantization. Experimental results show that the binDCT has the same performance as the integer transform used in TML 8.5.  

Patent Policy

FastVDO has IP in this technology.  FastVDO subscribes to subclause 2.2 of the Patent Policy, but agrees conditionally to license this technology at no cost, conditioned on a mutual agreement with other IPR holders in the H.26L/JVT Codec.
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