	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

2nd Meeting: Geneva, CH, Jan. 29 - Feb. 1, 2002
	Document: JVT-B042

Filename: JVT-B042.doc

Generated: 2002-01-23

	Title:
	Enhanced Concept of GOP
Appendix A. Proposed Changes to the Interim File Format

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author:
	Miska M. Hannuksela
Nokia Mobile Phones
P.O. Box 68
33721 Tampere
Finland
	
Tel:
Email:
	
+358 40 5212845
miska.hannuksela@nokia.com

	Source:
	Nokia Corporation

This document highlights the proposed changes to the interim file format (VCEG-O58). The file format description of VCEG-O58 Appendix A is reprinted and modifications are highlighted with the “Track Changes” feature of MS Word.

1. File Organization

1.1 General

A file is self-contained.

A file consists of clumps, which are object-like entities and similar to boxes of ISO/IEC 14496-1:2001 (ISO media file format). Name ‘clump’ was chosen to differentiate them from MPEG-4’s boxes, chunks, and objects as well as from QuickTime’s atoms. Note: In fact, the definition of a clump is the same as the definition of a box except for the extended type mechanism of a box. Thus, in order to emphasize the common definition of a clump and a box, it might be appropriate to refer to a box instead of a clump in this document. However, as this was not agreed in the Pattaya meeting, this change was not done yet.

A clump may contain other clumps. A clump may have member attributes. If a clump contains attributes and other clumps, clumps shall follow the attribute values.

The attribute values in the clumps are stored with the most significant byte first, commonly known as network byte order or big-endian format.

A number of clumps contain index values into sequences in other clumps. These indexes start with the value 0 (0 is the first entry in the sequence).

The Syntactic Description Language (SDL) of ISO/IEC 14496-1:2001 is used to define the file format. In addition to the existing basic data types, the UVLC elementary data type is defined in this document. It shall be used to carry variable-length bit-fields that follow the JVT UVLC design.

Unrecognized clumps should be skipped and ignored.

1.2 File Identification

The File Type Clump is the first clump of the file. JVT files shall be identified from a majorBrand field equal to ‘jvt ’.

The preferred file extension is ‘.jvt’.

1.3 Clump

1.3.1 Definition

Clumps start with a header, which gives both size and type. The header permits compact or extended size (32 or 64 bits). Most clumps will use the compact (32-bit) size. The size is the entire size of the clump, including the size and type header, fields, and all contained clumps. This facilitates general parsing of the file.

1.3.2 Syntax

aligned(8) class clump (unsigned int(32) clumpType)

unsigned int(32) size;

unsigned int(32) type = clumpType;

if (size==1) {

unsigned int(64) largesize;

} else if (size==0) {

// clump extends to end of file

}
}

1.3.3 Semantics

size is an integer that specifies the number of bytes in this clump, including all its fields and contained clumps; if size is 1 then the actual size is in the field largesize; if size is 0, then this clump is the last one in the file, and its contents extend to the end of the file (normally only used for an Alternate Track Media Clump)

type identifies the clump type; standard clumps use a compact type, which is normally four printable characters, to permit ease of identification, and is shown so in the clumps below.

1.4 Clump Order

An overall view of the normal encapsulation structure is provided in the following table.

The table shows those clumps that may occur at the top-level in the left-most column; indentation is used to show possible containment. Thus, for example, an Alternate Track Header Clump (atrh) is found in a Segment Clump (segm).

Not all clumps need be used in all files; the mandatory clumps are marked with an asterisk (*). See the description of the individual clumps for a discussion of what must be assumed if the optional clumps are not present.

There are restrictions in which order the clumps shall appear in a file. See the clump definitions for these restrictions.

	ftyp
	
	
	
	*
	2.1
	File Type Clump, identifies the file format

	jvth
	
	
	
	*
	2.2
	File Header Clump, file-level meta-data

	cinf
	
	
	
	
	2.3
	Content Info Clump, describes file contents

	atin
	
	
	
	*
	2.4
	Alternate Track Info Clump, describes characteristics of tracks

	prms
	
	
	
	*
	2.5
	Parameter Set Clump, enumerated set of frequently changing coding parameters

	segm
	
	
	
	*
	2.6
	Segment Clump, contains meta- and media data for a defined period of time

	
	atrh
	
	
	*
	2.7
	Alternate Track Header Clump, meta-data for a track

	
	
	pici
	
	*
	2.8
	Picture Information Clump, meta-data for individual pictures

	
	
	layr
	
	
	2.9
	Layer Clump, meta-data for a layer of pictures

	
	
	
	sseq
	
	2.10
	Sub-Sequence Clump, meta-data for a sub-sequence within a layer

	
	swpc
	
	
	
	2.12
	Switch Picture Clump, identifies pictures that can be used to switch between tracks.

	
	atrm
	
	
	*
	2.11
	Alternate Track Media Clump, media data for a track

2. Clump Definitions

2.1 File Type Clump

2.1.1 Definition

Clump Type:
`ftyp’
Container:
File
Mandatory:
Yes
Quantity:
Exactly one
A media-file structured according to the ISO media file format specification may be compatible with more than one detailed specification, and it is therefore not always possible to speak of a single ‘type’ or ‘brand’ for the file. This clump identifies a JVT file in a similar fashion without claiming compatibility with the ISO format. However, it enables other file readers to identify the JVT file type. It must be placed first in the file.

2.1.2 Syntax

aligned(8) class FileTypeClump aligned(8) extends clump(‘ftyp’) {

unsigned int(32) majorBrand = ‘jvt ’;

unsigned int(16) jmMajorVersion;

unsigned int(16) jmMinorVersion;

unsigned int(32) compatibleBrands[];
// to end of the clump
}

2.1.3 Semantics

This clump identifies the specification to which this file complies.

majorBrand is a brand identifier for the interim JVT file format. Only ‘jvt ’ shall be used for majorBrand, as the file format is not compatible with any other format.

jmMajorVersion and jmMinorVersion define the version of the standard working draft the file complies with. For example, JM-1 files shall have jmMajorVersion equal to 1 and jmMinorVersion equal to 0.

compatibleBrands is a list, to the end of the clump, of brands. Should only include the entry ‘jvt ’.

Note: As the interim JVT file format is based on the ISO media file format, it might be appropriate to allow a combination of many ISO media file format based file types into the same file. In such a case, the majorBrand might not be equal to ‘jvt ‘ but ‘jvt ‘ should be one of the compatibleBrands. As this option was not discussed in the Pattaya meeting, it is not reflected in the current specification of the interim JVT file format (this document).

2.2 File Header Clump

2.2.1 Definition

Clump Type:
`jvth’
Container:
File
Mandatory:
Yes
Quantity:
One or more
This clump must be placed as the second clump of the file.

The clump can be repeated at any position of the file when no container clump is open. A File Header Clump identifies a random access point to the file. In other words, no data prior to a selected File Header Clump is required to parse any of the succeeding data. Furthermore, any segment can be parsed without a forward reference to any of the data succeeding the particular segment.

2.2.2 Syntax

aligned(8) class fileHeaderClump extends clump(‘jvth’) {

unsigned int(8) majorVersion = 0x00;

unsigned int(8) minorVersion = 0x00;

unsigned int(32) timescale;

unsigned int(32) numUnitsInTick;

unsigned int(64) duration;

unsigned int(16) pixAspectRatioX;

unsigned int(16) pixAspectRatioY;

unsigned int(16) maxPicId;

unsigned int(8) numAlternateTracks;

unsigned int(2) numBytesInPayloadCountMinusOne;

unsigned int(2) numBytesInPictureOffsetMinusTwo;

unsigned int(2) numBytesInPictureDisplayTimeMinusOne;

unsigned int(2) numBytesInPictureCountMinusOne;

unsigned int(2) numBytesInPayloadSizeMinusOne;

}

2.2.3 Semantics

majorVersion and minorVersion indicate the version of the file format. This specification defines the format for version 0.0 (majorVersion.minorVersion). Version numbering is independent of working draft document and joint model software as well as the version of the standard | recommendation. This allows parsers interpret the high-level syntax of the files, even if decoding of a file according to the indicated joint model or standard version was not supported.

timescale is the number of time units which pass in one second. For example, a time coordinate system that measures time in sixtieths of a second has a time scale of 60.

numUnitsInTick is the number of time units according to timescale that correspond to one clock tick. A clock tick is the minimum unit of time that can be presented in the file. For example, if the clock frequency of a video signal is (30 000) / 1001 Hz, timescale should be 30 000 and numUnitsInTick should be 1001.

duration is an integer that declares length of the file (in the indicated timescale). Value zero indicates that no duration information is available.

pixAspectRatioX and pixAspectRatioY define the pixel geometry, calculated by pixAspectRatioX / pixAspectRatioY. Value zero in either or both of the attributes indicate an unspecified pixel aspect ratio.

maxPicId gives the maximum value for the picture identifier.

numAlternateTracks gives the number of alternative encodings of the same source. Typically each encoding is targeted for different bit-rate. Each file shall contain at least one track.

numBytesInPayloadCountMinusOne indicates the number of bytes that are needed to signal the maximum number of payloads in any picture. For example, numBytesInPayloadCountMinusOne equal to zero indicates that one byte is needed to signal the number of payloads, and the maximum number of payloads is 255.

numBytesInPictureOffsetMinusTwo indicates the number of bytes that are needed to signal picture offsets. For example, numBytesInPictureOffsetMinusTwo equal to zero indicates that the offsets are two-byte integer values with a range of –32768 to 32767.

numBytesInPictureDisplayTimeMinusOne indicates the number of bytes that are needed to signal picture display time offsets.

numBytesInPictureCountMinusOne indicates the number of bytes that are needed to signal the maximum number of pictures in a segment.

numBytesInPayloadSizeMinusOne indicates the number of bytes to signal the maximum payload size in bytes.

2.3 Content Info Clump

2.3.1 Definition

Clump Type:
`cinf´
Container:
File
Mandatory:
No
Quantity:
Zero or more
This clump gives information about the content of the file.

The clump can be repeated at any position of the file when no container clump is open.

2.3.2 Syntax

aligned(8) class contentInfoClump extends clump(‘cinf’) {

unsigned int(64) creationTime;

unsigned int(64) modificationTime;

unsigned int(8) titleNumBytes;

if (titleNumBytes)

unsigned int(8)[titleNumBytes] title;

unsigned int(8) authorNumBytes;

if (authorNumBytes)

unsigned int(8)[authorNumBytes] author;

unsigned int(8) copyrightNumBytes;

if (copyrightNumBytes)

unsigned int(8)[copyrightNumBytes] copyright;

unsigned int(16) descriptionNumBytes;

if (descriptionNumBytes)

unsigned int(8)[descriptionNumBytes] description;

unsigned int(16) URINumBytes;

if (URINumBytes)

unsigned int(8)[URINumBytes] URI;

}

2.3.3 Semantics

creationTime is an integer that declares the creation time of the presentation (in seconds since midnight, Jan. 1, 1904).

modificationTime is an integer that declares the most recent time the presentation was modified (in seconds since midnight, Jan. 1, 1904.

titleNumBytes gives the number of bytes in title.

title, if present, contains the title of the file coded according to ISO/IEC 10646-1 UTF-8.

authorNumBytes gives the number of bytes in author.

author, if present, contains the author of the source or the encoded representation in the file coded according to ISO/IEC 10646-1 UTF-8.

copyrightNumBytes gives the number of bytes in copyright.

copyright shall be used only to convey intellectual property information regarding the source or the encoded representation in the file. copyright is coded according to ISO/IEC 10646-1 UTF-8.

descriptionNumBytes gives the number of bytes in description.

description shall be used only to convey descriptive information associated with the information contents of the file. description is coded according to ISO/IEC 10646-1 UTF-8.

URINumBytes gives the number of bytes in URI.

URI contains a uniform resource identifier (URI), as defined in IETF RFC 2396. URI is coded according to ISO/IEC 10646-1 UTF-8. URI shall be used to convey any related information to the file.

2.4 Alternate Track Info Clump

2.4.1 Definition

Clump Type:
‘atin’
Container:
File
Mandatory:
Yes
Quantity:
One or more.

This clump specifies the characteristics of alternate tracks. The clump shall precede the first Segment Clump. The clump can be repeated at any position of the file when no container clump is open.

2.4.2 Syntax

aligned(8) class alternateTrackInfo {

unsigned int(16) displayWindowWidth;

unsigned int(16) displayWindowHeight;

unsigned int(16) maxSDUSize;

unsigned int(16) avgSDUSize;

unsigned int(32) avgBitRate;

}

aligned(8) class alternateTrackInfoClump

extends clump(‘atin’) {

(class alternateTrackInfo) trackInfo[numAlternateTracks];

}

2.4.3 Semantics

displayWindowWidth and displayWindowHeight declare the preferred size of the rectangular area on which video images are displayed. The values are interpreted as amount of pixels.

An SDU is defined as the payload and the payload header. maxSDUSize gives the size in bytes of the largest SDU of the track. avgSDUSize gives the average size of the SDU over the entire track. Value zero in either attribute indicates that no information is available.

avgBitRate gives the average bit-rate in bits/second over the entire track. Payloads and payload headers taken into account in the calculation.

2.5 Parameter Set Clump

2.5.1 Definition

Clump Type:
‘prms’
Container:
File
Mandatory:
Yes
Quantity:
One or more

This clump specifies a parameter set.

Parameter sets can be repeated in the file to allow random access. A parameter set is uniquely identified within a file based on parameterSetID. Decoders can infer a repetition of a parameter set if a set with the same parameterSetID has already appeared in a file. A redundant copy of a parameter set can safely be ignored.

2.5.2 Syntax

aligned(8) class parameterSetClump

extends clump(‘prms’) {

unsigned int(16) parameterSetID;

unsigned int(8) profile;

unsigned int(8) level;

unsigned int(8) version;

unsigned int(16) pictureWidthInMBs;

unsigned int(16) pictureHeightInMBs;

unsigned int(16) displayRectangleOffsetTop;

unsigned int(16) displayRectangleOffsetLeft;

unsigned int(16) displayRectangleOffsetBottom;

unsigned int(16) displayRectangleOffsetRight;

unsigned int(8) displayMode;

unsigned int(16) displayRectangleOffsetFromWindowTop;

unsigned int(16) displayRectangleOffsetFromWindowLeftBorder;

unsigned int(8) entropyCoding;

unsigned int(8) motionResolution;

unsigned int(8) partitioningType;

unsigned int(8) intraPredictionType;

bit temporalScalability;
};

2.5.3 Semantics

parameterSetId gives the identifier of the parameter set. The identifier shall be unique within a file.

profile defines the coding profile in use.

level defines the level in use within the profile.

version defines the version in use within the profile and the level.

pictureWidthInMBs and pictureHeightInMBs define the extents of the coded picture in macroblocks.

displayRectangleOffsetTop, displayRectangleOffsetLeft, displayRectangleOffsetBottom, and displayRectangleOffsetRight define the rectangle to be displayed from the coded picture. Pixel units are used.

displayMode defines the preferred displaying mode. Value zero indicates that the display rectangle shall be rescaled to fit onto the display window. No scaling algorithm is defined. Image shall be as large as possible, no clipping shall be applied, image aspect ratio shall be maintained, and image shall be centered in the display window. Value one indicates that the display rectangle shall be located as indicated in displayRectangleOffsetFromWindowTop and displayRectangleFromWindowLeftBorder. No scaling shall be done and clipping shall be applied to areas outside the display window. No fill pattern is defined for areas in the display window that are not covered by the display rectangle.

displayRectangleOffsetFromWindowTop and displayWindowOffsetFromWindowLeftBorder indicate the location of the top-left corner of the display rectangle within the display window. The values are given in pixels. The values are valid only if displayMode is one.

[image: image1.wmf]displayWindowWidth

pictureWidthInMBs

pictureHeightInMBs

Decoded picture

Displayed picture

displayWindowHeight

displayRectangleOffsetFromWindowTop

displayRectangleOffsetFromWindowLeftBorder

Figure 1. Relation of display window and rectangle attributes.

 REF _Ref531261064 \h
 clarifies the relation of different display rectangle and window related attributes. The dashed rectangle of in the decoded picture represents the display rectangle, which is indicated by displayRectangleOffsetTop, displayRectangleOffsetLeft, displayRectangleOffsetBottom, and displayRectangleOffsetRight.

entropyCoding equal to zero stands for UVLC, whereas value one stands for CABAC.

motionResolution equal to zero stands for full-pixel motion resolution, one stands for half-pixel motion resolution, two stands for ¼-pixel motion resolution, and three stands for 1/8-pixel motion resolution.

partitioningType equal to zero stands for the single slice mode and one stands for the data partitioning mode.

intraPredictionType equal to zero stands for normal INTRA prediction, whereas one stands for the constrained INTRA prediction.
If temporalScalability equals to zero, no temporal scalability layers or sub-sequences shall be used. If temporalScalability equals to one, temporal scalability layers and sub-sequences may be used. Decoders operation in both of these cases is defined in section CROSS-REFERENCE TO BE ADDED.

2.6 Segment Clump

2.6.1 Definition

Clump Type:
`segm’
Container:
File
Mandatory:
Yes
Quantity:
One or more
A segment clump contains data from a certain period of time. Segments shall not overlap in time. Segments shall appear in ascending order of time in the file. A segment clump is a container clump for several other clumps.

2.6.2 Syntax

aligned(8) class SegmentClump extends Clump(‘segm’) {

unsigned int(64) fileSize;

unsigned int(64) startTick;

unsigned int(64) segmentDuration;

}

2.6.3 Semantics

fileSize indicates the number of bytes from the beginning of the Segment Clump to the end of the file. Value zero indicates that no size information is available. When downloading a file to a device with limited storage capabilities, fileSize can be used to determine if a file fits into the available storage space. In a progressive downloading service, fileSize, startTick, and duration (in the File Header Clump) can be used to estimate the average bit-rate of the file including meta-data. This estimation can then be used to decide how much initial buffering is needed before starting the playback.

startTick indicates the absolute time of the beginning of the segment since the beginning of the presentation (time zero). Any time offsets within the segment are relative to startTick.

segmentDuration indicates the duration of the segment. Value zero indicates that no duration information is available.

2.7 Alternate Track Header Clump

2.7.1 Definition

Clump Type:
‘atrh’
Container:
Segment Clump (‘segm’)
Mandatory:
Yes
Quantity:
One or more

An alternate track represents an independent encoding of the same source as for the other alternate tracks. The Alternate Track Header Clump contains meta-data for an alternate track. The clumps shall appear in the same order in all Segment Clumps and they can be indexed starting from zero. Each succeeding clump is associated with an index one greater than the previous one. The index can be used to associate the clump with a particular track and with the information given in the Alternate Track Info Clump.

The Alternate Track Header clump is a container clump including at least a Picture Information Clump and optionally one or more Layer Clumps.
2.7.2 Syntax

aligned(8) class alternateTrackHeaderClump extends clump(‘atrh’) {

unsigned int(8) numLayers;
}

2.7.3 Semantics

numLayers indicates the number of layers and Layer Clumps within the Alternate Track Header Clump.

2.8 Picture Information Clump

2.8.1 Definition

Clump Type:
‘pici’
Container:
Segment Clump (‘atrh’)
Mandatory:
Yes
Quantity:
One or more

The clump contains an indication of the number of the pictures in the alternate track in this segment. In addition, the clump contains picture information for each of these pictures. Picture information shall appear in ascending order of picture identifiers (in modulo arithmetic). In other words, picture information shall appear in coding/decoding order of pictures.

A picture information block contains a pointer to the coded representation of the picture. A picture is associated with a display time and with a number of so-called payloads.

A payload refers to a slice, a data partition, or a piece of supplemental enhancement information. A payload header refers to an equivalent definition as in VCEG-N72R1. For example, a payload header of a single slice includes the “first byte”, an indication of the parameter set in use, and the slice header.

2.8.2 Syntax

aligned(8) class payloadInfo {

unsigned int((numBytesInPayloadSizeMinusOne + 1) * 8) payloadSize;

unsigned int(8) headerSize;

unsigned int(4) payloadType;

unsigned int(1) errorIndication;

unsigned int(3) reserved = 0;

if (payloadType == 0) { // single slice

UVLC parameterSet;

sliceHeader;

else if (payloadType == 1) { // partition A

UVLC parameterSet;

sliceHeader;

UVLC sliceID;

}

else if (payloadType == 2 || partitionType == 3) { // Partition B or C

UVLC pictureID;

UVLC sliceID;

}

else if (payloadType == 5) { // Supplemental enhancement information

// no additional codewords

}

}

aligned(8) class pictureInfo {

bit intraPictureFlag;

bit syncPictureFlag;

aligned(8) int((numBytesInPictureOffsetMinusTwo + 2) * 8) pictureOffset;

int((numBytesInPictureDisplayTimeMinusOne + 1) * 8) pictureDisplayTime;

if (numLayers) { // from AlternateTrackHeaderClump

unsigned int(8) layerNumber;

unsigned int(16) subSequenceIdentifier;

if (syncPictureFlag) {

unsigned int(8) originLayerNumber;

unsigned int(16) originSubSequenceIdentifier;

}

}

unsigned int((numBytesInPayloadCountMinusOne + 1) * 8) numPayloads;

(class payloadInfo) payloadData[numPayloads];

}

aligned(8) class PictureInformationClump extends Clump(‘pici’) {

unsigned int((numBytesInPictureCountMinusOne + 1) * 8) numPictures;

(class pictureInfo) pictureData[numPictures];

}

2.8.3 Semantics

payloadInfo gives information related to a payload. payloadSize indicates the number of bytes in the payload (excluding the payload header). The value of headerSize is the number of bytes in the payload header, i.e., the number of bytes remaining in the structure. The rest of the data is defined in VCEG-N72R1.

pictureInfo gives information related to a picture.

intraPictureFlag is set to one, when the picture is an INTRA picture. The flag is zero otherwise.
If syncPictureFlag is one, the coded picture represents the same picture content than the previous or succeeding coded picture having syncPictureFlag equal to one. Any coded representation of a sync picture can be used to recover the reconstructed picture, and no noticeable difference on the reconstructed picture or any picture based on that should occur. Reconstructred pictures that are exactly equal can be reached with SP pictures. The picture number of the sync pictures shall be the same, and, if present, the layer number and sub-sequence identifier of the sync pictures shall be the same.
A picture pointer is maintained to point to the beginning of the latest picture in the corresponding Alternate Track Media Clump. The pointer is relative to the beginning of the Alternate Track Media Clump. pictureOffset gives the increment or the decrement (in bytes) for the picture pointer to obtain the coded data for the picture. Initially, before updating the pointer for the first picture of the alternate track in a segment, the picture pointer shall be zero.

pictureDisplayTime gives the time when the picture is to be displayed. It is assumed that the picture remains visible until the next picture is to be displayed. The value is relative to the corresponding value of the previous picture.
layerNumber and subSequenceIdentifier are present if numLayers in the Alternate Track Header Clump is greater than zero. layerNumber and subSequenceIdentifier identify to which layer and sub-sequence the picture belongs. In case of a sync picture, originLayerNumber and originSubSequence indicate the sub-sequence, based on which the sync picture was created. Notice that the sync picture itself may reside in a different sub-sequence.
numPayloads indicates the number of payloads in the picture. payloadData is an array of payloadInfo structures signaling the characteristics of the payloads.

numPictures indicates the number of pictures in the track during the period of the segment. pictureData is an array of pictureInfo structures signaling the meta-data of the pictures.

2.9 Layer Clump

2.9.1 Definition

Clump Type:
‘layr’
Container:
Segment Clump (‘atrh’)
Mandatory:
No
Quantity:
Zero or more

This clump defines the layer information of the pictures in the segment.
Layers can be ordered hierarchically based on their dependency on each other: The base layer is independently decodable. The first enhancement layer depends on some of the data in the base layer. The second enhancement layer depends on some of the data in the first enhancement layer and in the base layer and so on.

A layer number is assigned to layers. Number zero stands for the base layer. The first enhancement layer is associated with number one and each additional enhancement layer increments the number by one. Layer Clumps shall appear in ascending order of layer numbers starting from zero.

A Layer Clump contains at least one Sub-Sequence Clump.
2.9.2 Syntax

aligned(8) class LayerClump extends Clump(‘layr’) {

unsigned int(32) avgBitRate;

unsigned int(32) avgFrameRate;

}

2.9.3 Semantics

avgBitRate gives the average bit-rate in bits/second of the layer within the segment. Payloads and payload headers taken into account in the calculation. Value zero means an undefined bit-rate.

avgFrameRate gives the average frame rate in frames/(256 seconds) of the layer within the segment. Value zero means an undefined frame rate.

2.10 Sub-Sequence Clump

2.10.1 Definition

Clump Type:
‘sseq’
Container:
Segment Clump (‘layr’)
Mandatory:
Yes
Quantity:
One or more
This clump defines the sub-sequence information of the pictures in a particular layer within a segment.

A sub-sequence shall not depend on any other sub-sequence in the same or in a more enhanced scalability layer. In other words, it shall only depend on one or more sub-sequences in one or more less enhanced scalability layers. A sub-sequence in the base layer can be decoded independently of any other sub-sequences.

A sub-sequence covers a certain period of time within the sequence. Sub-sequences within a layer and in different layers can partly or entirely overlap. A picture shall reside in one layer and in one sub-sequence only.

A sub-sequence identifier is assigned to sub-sequences. Sub-sequences within a particular layer in a segment shall have unique identifiers. If a sub-sequence continues in the next segment, it shall retain its identifier.
2.10.2 Syntax

aligned(8) class dependencyInfo{

unsigned int(8) layerNumber;

unsigned int(16) subSequenceIdentifier;

}

aligned(8) class SubSequenceClump extends Clump(‘sseq’) {

unsigned int(16) subSequenceIdentifer;

bit continuationFromPreviousSegmentFlag;

bit continuationToNextSegmentFlag;

bit startTickAvailableFlag;

aligned(32) unsigned int(64) ssStartTick;

unsigned int(64) ssDuration;

unsigned int(32) avgBitRate;

unsigned int(32) avgFrameRate;

unsigned int(16) numReferencedSubSequences;

(class dependencyInfo) dependencyData[numReferencedSubSequences];

}

2.10.3 Semantics

layerNumber and subSequenceIdentifier within the dependencyInfo class identify a sub-sequence that is used as a motion compensation reference for the current sub-sequence.
subSequenceIdentifier in the Sub-Sequence Clump gives the identifier for the sub-sequence.

continuationFromPreviousSegmentFlag is equal to one, if the current sub-sequence continues from the previous segment.
continuationToNextSegmentFlag is equal to one, if the current sub-sequence continues in the next segment.
If startTickAvailableFlag equals to zero, the value of ssStartTick and ssDuration is undefined. Otherwise, ssStartTick indicates the start time of the sub-sequence relative to the start time of the segment. ssDuration indicates the duration of the sub-sequence. ssDuration equal to zero indicates an undefined duration.
avgBitRate gives the average bit-rate in bits/second of the sub-sequence within the segment. Payloads and payload headers taken into account in the calculation. Value zero means an undefined bit-rate.
avgFrameRate gives the average frame rate in frames/(256 seconds) of the sub-sequence within the segment. Value zero means an undefined frame rate.
numReferencedSubSequences gives the number of directly referenced sub-sequences. dependencyData is an array of dependencyInfo structures giving the identification information of the referenced sub-sequences.
2.11 Alternate Track Media Clump

2.11.1 Definition

Clump Type:
‘atrm’
Container:
Segment Clump (‘segm’)
Mandatory:
Yes
Quantity:
One or more

An alternate track represents an independent encoding of the same source as for the other alternate tracks. The Alternate Track Media Clump contains the media-data for an alternate track and for the duration of the segment. The clumps shall appear in the same order in all Segment Clumps and they can be indexed starting from zero. Each succeeding clump is associated with an index one greater than the previous one. The index can be used to associate the clump with a particular track and with the information given in other track-related clumps.

Pictures can appear in the clump in any order. This ensures that disposable pictures, such as conventional B pictures, can be located flexibly. Data for different pictures shall not overlap. Data for a picture consists of payloads, i.e., slices, data partitions, and pieces of supplemental enhancement information. Payloads shall appear in successive bytes, and the order of payloads shall be the same as in the Alternate Track Header Clump.

2.11.2 Syntax

aligned(8) class AlternateTrackMediaClump extends Clump(‘atrm’) {

}

2.12 Switch Picture Clump

2.12.1 Definition

Clump Type:
‘swpc’
Container:
Segment Clump (‘segm’)
Mandatory:
No
Quantity:
Zero or one

This clump defines which pictures can be used to switch from an alternate track to another. Typically these pictures are SP pictures.

2.12.2 Syntax

aligned(8) class uniquePicture {

unsigned int(8) alternateTrackIndex;

unsigned int((numBytesInPictureCountMinusOne + 1) * 8) pictureIndex;

}

aligned(8) class switchPictureSet {

unsigned int(8) numSyncPictures;

(class uniquePicture) syncPicture[numSyncPictures];

}

aligned(8) class switchPictureClump extends Clump(‘swpc’) {

unsigned int((numBytesInPictureCountMinusOne + 1) * 8) numSwitchPictures;

(class switchPictureSet) switchPicture[numSwitchPictures];

}

2.12.3 Semantics

uniquePicture uniquely identifies a picture within this segment. It contains two attributes: alternateTrackIndex and pictureIndex. alternateTrackIndex identifies the alternate track where the picture lies, and pictureIndex gives the picture index in coding order.

switchPictureSet gives a set of pictures that represent the same picture contents and can be used to replace any picture in the set as a reference picture for motion compensation. numSyncPictures gives the number of pictures in the set. syncPicture is an array of uniquePicture structures indicating which pictures belong to the set.

numSwitchPictures indicates the number of picture positions that have multiple interchangeable representations. switchPicture is an array of switchPictureSet structures indicating the set of pictures that can be used interchangeably for each picture position.
File:JVT-B042 subSequences file format v02.doc
Page: 1
Date Printed: 23.01.2002

