	ITU - Telecommunications Standardization Sector

STUDY GROUP 16 Question 6

Video Coding Experts Group (VCEG)

15th Meeting: Pattaya, Thailand, 4-6 Dec., 2001
	Document VCEG-O18
Filename: VCEG-O18.doc

Generated: 27 November ’01

	Question:
	Q.6/SG16 (VCEG)

	Source:
	Detlev Marpe, Gabi Blättermann
and Thomas Wiegand
Image Processing Department
Heinrich-Hertz-Institute
Einsteinufer 37

D-10587 Berlin, Germany
	
Tel:
Fax:
Email:
	
+49 30 31 002 619/621/617
+49 30 392 72 00
marpe@hhi.de, blaetter@hhi.de,
wiegand@hhi.de

	Title:
	Improved CABAC

	Purpose:
	Proposal

1 Introduction

The method of Context-based Adaptive Binary Arithmetic Coding (CABAC), as currently implemented in TML8 [1], already provides significant improvements in coding efficiency compared with the baseline entropy coding method using the Universal Variable Length Code (UVLC). In a number of previous contributions [2]

 REF _Ref531499803 \r \h
[3], however, it has been shown that there is room for further improvements with respect to coding efficiency. In this document, we will present a set of modifications, which not only improves the coding performance of CABAC but also simplifies the algorithm both conceptually and computationally.

2 Description of the Proposed New Coding Elements

The current TML defines two different methods of binarization together with a number of different schemes for assigning models to the related binary decisions [1]. To improve on the design of that part of CABAC, we propose a generic binarization scheme using the exponential Golomb (exp-Golomb) code tree as further described in the following section. Establishing a unified binarization strategy enables us to restrict the variation of different model assignment schemes to two different cases. However, by using the exp-Golomb binarization, the CABAC method of coefficient coding has to be revisited, as explained in more detail in Section 2.2. We propose an alternative coding scheme for transform coefficients, which not only fits better to our new binarization scheme but also allows for a more efficient exploitation of inter-symbol redundancies. Finally, we propose to add a flag in the sequence header to indicate either the usage of fixed pre-computed start distributions or the usage of distributions gathered on previously en-/decoded frames of a group of pictures of a whole sequence. Of course, the latter would be useful only in an error-free transmission scenario. However, in that case the overall coding performance might be further increased.

2.1 Unified Binarization Scheme

Binarization in the CABAC scheme serves as an interface between potentially non-binary symbols and the binary arithmetic coder. It can be shown, that, theoretically, all binary code trees are equivalent in sense of representing the entropy of the original symbols provided that each node of the corresponding trees corresponds to an appropriately initialized probability model. In practice, however, we want to minimize the burden of the binary arithmetic coder, and hence, we should choose a binarization code tree, which matches the probability distribution of a given syntax element.

In TML8, two methods of binarization are defined: the first one serves only for the syntax element of macroblock type (MB_type) and a second one given by the unary code tree is used for all remaining (non-binary) syntax elements [1]. Despite its simplicity, binarization by means of the unary code tree has some serious disadvantages. Unary codes are known to be optimal for sources with geometric probability density functions (pdf) p(x) = 2–(x+1). In practice, however, a geometric pdf is only a good first-order approximation for the most probable symbols and even for those symbols deviations from a geometric distribution are very likely. But more seriously, large symbols result in potentially very long “intermediate” codewords, which, in turn, cause a high workload of the subsequent stage of arithmetic coding.

For the optimal design of a binarization scheme we have to make a compromise between the conflicting goals of a unifying solution and the best fit to the given individual symbol probabilities. Thus, it is not surprising, that our proposed solution has a close conceptual affinity to the UVLC design. In fact, our new proposal relies on the exponential Golomb (Exp-Golomb) code tree, which was first described by Teuhola [4] in the context of run-length coding schemes
. Table 1 shows the first entries of the exp-Golomb code table. The construction of a codeword for a given index i is relatively simple and consists of two steps:

1. Extract the symbol
[image: image1.wmf]g

 representing the most significant bit (MSB) of i+1, i.e.,
[image: image2.wmf]ë

û

)

1

log(

+

=

i

g

, and put it in a unary representation. This part forms the prefix of the codewords shown in the MSB column of Table 1.

2. Append the
[image: image3.wmf]g

 least significant bits (LSB) in its binary representation to the prefix. The corresponding suffix bits are shown in the LSB column of Table 1.

	Index
	MSB
	LSB

	0
	0
	

	1
	10
	0

	2
	10
	1

	3
	110
	00

	4
	110
	01

	5
	110
	10

	6
	110
	11

	7
	1110
	000

	8
	1110
	001

	9
	1110
	010

	10
	1110
	011

	11
	1110
	100

	12
	1110
	101

	.
	.
	.

	Index
	MSB
	LSB

	0
	0
	
	
	
	
	
	
	
	
	

	1
	1
	0
	
	
	
	0
	
	
	
	

	2
	1
	0
	
	
	
	1
	
	
	
	

	3
	1
	1
	0
	
	
	0
	0
	
	
	

	4
	1
	1
	0
	
	
	0
	1
	
	
	

	5
	1
	1
	0
	
	
	1
	0
	
	
	

	6
	1
	1
	0
	
	
	1
	1
	
	
	

	7
	1
	1
	1
	0
	
	0
	0
	0
	
	

	8
	1
	1
	1
	0
	
	0
	0
	1
	
	

	9
	1
	1
	1
	0
	
	0
	1
	0
	
	

	10
	1
	1
	1
	0
	
	0
	1
	1
	
	

	11
	1
	1
	1
	0
	
	1
	0
	0
	
	

	12
	1
	1
	1
	0
	
	1
	0
	1
	
	

	.
	
	
	
	
	
	
	
	
	
	

Table 1: Exp-Golomb codes (left) and their related models, where different models are depicted by different colors (right).

The construction of UVLC codewords follows the same principle with the only difference that the bits corresponding to the prefix and the suffix will be interleaved, which enables the well-known reversibility feature of the UVLC. In particular, the length of a UVLC codeword and that of its corresponding exp-Golomb codeword are identical. The implied source pdf related to the exp-Golomb code (or the UVLC) is given by
[image: image4.wmf]2

)

1

(

2

1

)

(

+

=

x

x

p

.
By using a single, unified binarization scheme, each syntax element uses at least 4 different models: 3 models switching between the first, the second and all remaining bins of the prefix bins, and one additional model for all suffix bits. For all syntax elements, which are not confined to an explicitly restricted alphabet, like coefficient level, reference frame parameter or motion vector data, one additional model is used to separate between the suffix bits belonging to the indices {1,2} and those related to indices greater than 2. Table 1 illustrates the assignment of different models for the latter case. Note that we do not alter the assignment of context models as defined in TML8 [1]. However, appropriate start distributions have been derived for all models.

[image: image5.wmf]

Count the number of coefficients of

transform unit (

COEFF_COUNT

)

Encode

COEFF_COUNT

;

For (i = 0; i <

COEFF_COUNT

; i++)

Encode

RUN

[i];

Encode

LEVEL

[i];

Encode

SIGN

[i];

If (i == 0)

MaxRun = MaxCoeff

–

COEFF_COUNT

;

If (MaxRun > 0)

Encode

 (

RUN

[i], MaxRun);

MaxRun = Max Run

–

RUN

[i];

Encode

RUN

[i];

Figure 1: Proposed alternative coding scheme for transform coefficients
2.2 Alternative Coding of Coefficients

The CABAC scheme involves a separate coding tool for RUN and LEVEL, which might cause some problems, if the exp-Golomb binarization scheme is applied to the coding of transform coefficients. Especially for the EOB symbol and the magnitude of the most probable level, there might be a mismatch between the underlying pdf of the exp-Golomb code and the actual probability distribution. To reduce the resulting burden of the arithmetic coder, and at the same time, to further improve the coding efficiency, we propose to substitute the EOB symbol.

For this purpose, we introduce an additional symbol, dubbed COEFF_COUNT, which indicates the number of nonzero coefficients in a given block. Figure 1 illustrates our new encoding scheme. First, the number of nonzero coefficients COEFF_COUNT is encoded. Then, in a second step, RUN, LEVEL and SIGN of all nonzero coefficients are encoded. For encoding the RUN, we exploit the information of the initially encoded COEFF_COUNT and all previously encoded RUN elements, as shown in the pseudo-C code of Figure 1. Here, we make use of the fact that, if the maximum number of a given syntax element is known in advance, we can restrict the binarization to a truncated code tree. Suppose, we have given 9 nonzero coefficients in a 4x4 single scan block. Then, at the beginning of the loop, it is known that the maximum RUN (maxRun) is given by the 7, since in this particular case the maximum number of coefficients MaxCoeff is given by 16. Consequently, we can omit the terminating “0” in the prefix of the exp-Golomb binarization of RUN=7 (cp. Table 1). By using the information given by previously encoded RUNs we can further adapt the MaxRun, which leads to a potentially shorter binarization of the current RUN to encode.

Exploiting the correlations between COEFF_COUNTs of neighboring blocks by using appropriately designed context models further increases coding efficiency. More specifically, if A and B denote the COEFF_COUNTs of the block to the left and on top of a given block, then the context model ctx_coeff_count(C) of the actual COEFF_COUNT symbol C is defined by ctx_coeff_count(C) = ((A==0)?0:1) + 2*((B==0)?0:1).

Constructing context models that depend on the related COEFF_COUNT further enhances coding of RUN information. The context model we used for encoding RUN in 4x4 single scan mode, for instance, is given by ctx_run = ((COEFF_COUNT) >= 4) ? 1 : 0

For intra coding, we further investigate the context models recently proposed in [3] for conditioning the LEVEL information on previously encoded LEVELs (Nokia model). However, in contrast to [3], we use a value of MAX_LEVEL=3 and a default value of prev_level=0 at the beginning of each block, such that 4 different context classes are obtained. By using a separate exp-Golomb binarization tree for each class, we get a total number of 4*5=20 different models for coding of luminance LEVEL information in intra mode.
2.3 Initialization of Statistical Models

In the current TML, pre-computed start distributions are used for initialization of the statistical models at the beginning of each frame/slice. This enables the decoder to resynchronize in the case where a frame/slice or parts of it are lost. However, for applications where no transmission errors happen, we propose to introduce an init_flag on frame or sequence level, indicating whether the fixed start distribution is used (init_flag ON) or the distribution is gathered on previously en-/decoded frames/slices (init_flag OFF).

3 Experimental Results

The experimental results related to our proposal can be found in the Excel-document VCEG-O18.xls. For our experiments, we implemented the proposed scheme using the current test model, software version TML8.5. In the first part of our experiments, we evaluated our improved CABAC scheme for the case of I-frame coding only. The second part of our experiments was devoted to the evaluation of our new methods using entire sequences. Both sets of experiments were performed using a test set of QCIF- and CIF-sequences including the official test set as a subset. Coding parameters were chosen according to the common test conditions. No B-frames were used and motion vector resolution was restricted to quarter-pel accuracy.

For pure intra coding, performance improvements are in the range of 0-6.1%
 or 0-4.7% depending on the usage of the Nokia model. On the average, we obtained an additional gain of 1% by using the Nokia model, which results in a total bit-rate reduction of 5.7-25.4 relative to the UVLC. By simply substituting the binarization as proposed in Section 2.1, a performance loss of up to 0.5% can be observed. (See Figure 2.)

For combined intra and inter frame coding according to the common test conditions, we observed a gain of up to 1.5% bit-rate reduction relative to the original CABAC. Assuming an error-free environment, we can get up to 4.3% additional bit-rate reduction, if the init_flag is turned off. (See Figure 3 and Figure 4.)

IPR Statement

The contributors are not aware of any issued, pending, or planned patents associated with the technical content of this proposal.

[image: image6.emf]Mobile CIF, INTRA

-1

0

1

2

3

4

5

6

481216202428

qp

 gain relative to CABAC[%]

TML8.5 improved cabacTML8.5 improved cabac without Nokia-model

TML8.5 exp-Golomb only

Figure 2: Performance gain relative to the original CABAC scheme (in percent) vs. quantization parameter (qp) for coding the first frame of “Mobile and Calender” in intra frame mode.

[image: image7.emf]"Mobile", CIF

0

2

4

6

8

10

12

14

16

18

20

481216202428

qp

gain relative to UVLC [%]

CABAC

improved CABAC

improved CABAC (init flag off)

Figure 3: Gain relative to UVLC (in percent) vs. quantization parameter (qp) for coding the “Mobile and Calender” at a frame rate of 30Hz.
[image: image8.emf]"Container", QCIF

0

2

4

6

8

10

12

14

16

481216202428

qp

gain relative to UVLC [%]

CABAC

improved CABAC

improved CABAC (init flag off)

Figure 4: Gain relative to UVLC (in percent) vs. quantization parameter (qp) for coding the “Container” at a frame rate of 10Hz.
4 References

[1] G. Bjontegaard, Th. Wiegand (eds.), “H.26L Test Model Long-Term Number 8”, Doc. VCEG-N10, ITU-T Video Coding Experts Group, Oct. 2001.

[2] D. Marpe et al., "Improving coding efficiency of H.26L using CABAC", Doc. D.151, ITU-T Q6/16, WP 3/16, Porto Seguro, 28 May – 8 June 2001.

[3] R. Kurceren and M. Karczewicz, "Improvements on CABAC", Doc. VCEG-N41, Santa Barbara, CA, USA, 24-27 Sep, 2001.
[4] J. Teuhola, "A Compression Method for Clustered Bit-Vectors", Information Processing Letters, Vol. 7, pp. 308-311, Oct. 1978.

� More precisely, the term “exp-Golomb” characterizes a whole parameterized family of codes.

� The differences in objective quality obtained for various schemes at a given QP are (almost) negligible as can be seen from the detailed results documented in the Excel-file.

File:VCEG-O18
Page: 5
Date Printed: 28.11.2001

_1068388140.unknown

_1068390770.unknown

_1068388095.unknown

_1068384892.doc

Count the number of coefficients of transform unit (COEFF_COUNT)

Encode COEFF_COUNT;

For (i = 0; i < COEFF_COUNT; i++)

Encode RUN[i];

Encode LEVEL[i];

Encode SIGN[i];

If (i == 0)

MaxRun = MaxCoeff – COEFF_COUNT;

If (MaxRun > 0)

	Encode (RUN[i], MaxRun);

MaxRun = Max Run – RUN[i];

Encode RUN[i];

