	[image: image161.png][image: image162.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

8th Meeting: San José, CA, USA, 1–10 February, 2012
	Document: JCTVC-H1002

	Title:
	HM6: High Efficiency Video Coding (HEVC) Test Model 6 Encoder Description

	Status:
	Output Document of JCT-VC

	Purpose:
	Report

	Author(s) or
Contact(s):
	Ken McCann (Samsung/ZetaCast)

Benjamin Bross (HHI)
Il-Koo Kim (Samsung)
Kazuo Sugimoto (Mitsubishi)

Woo-Jin Han (Gachon University)
	Email:
	ken@zetacast.com
benjamin.bross@hhi.fraunhofer.de
ilkoo.kim@samsung.com
Sugimoto.Kazuo@ak.MitsubishiElectric.co.jp
hurumi@gmail.com

	Source:
	Editors

Abstract

The JCT-VC established a 6th HEVC test model (HM6) at its 8th meeting in San José from 1 to 10 February 2012.
 This document serves as a source of general tutorial information on HEVC and also provides an encoder-side description of HM6.
CONTENTS

Page

1Abstract

51
Introduction

62
Scope

63
Description of HEVC Test Model

63.1
General Coding Structure

63.2
Picture Partitioning

63.2.1
LCU Partitioning

73.2.2
Slice structure

73.2.3
Tile structure

73.2.4
Coding Unit (CU) structure

83.2.5
Prediction Unit (PU) structure

83.2.6
Transform Unit (TU) structure

93.3
Intra Prediction

113.4
Inter Prediction

113.4.1
Prediction Modes

113.4.1.1
Derivation of motion merge candidates

113.4.1.2
Spatial merge candidates

123.4.1.3
Temporal merge candidates

133.4.1.4
Generated merge candidates

133.4.2
Motion vector prediction

133.4.2.1
Derivation of motion vector prediction candidates

143.4.2.2
Spatial motion vector candidates

153.4.2.3
Temporal motion vector candidates

153.4.3
Interpolation filter

163.4.4
Weighted Prediction

163.5
Transform and Quantization

163.5.1
Transform matrices

173.5.2
Scaling and quantization

173.6
Entropy Coding

173.7
Loop Filtering

173.7.1
Deblocking filter

183.7.1.1
Boundary decision

183.7.1.2
Boundary strength calculation

193.7.1.3
β and tC decision

203.7.1.4
Filter on/off decision for 4 lines

203.7.1.5
Strong/weak filter selection for 4 lines

213.7.1.6
Strong filtering

213.7.1.7
Weak filtering

213.7.1.8
Chroma filtering

213.7.2
Sample Adaptive Offset (SAO)

223.7.3
Adaptive loop filter (ALF)

223.7.3.1
Overview

233.7.3.2
Filter shapes

233.7.3.3
Luma pixel classification

243.7.3.4
Filtering control map

243.8
Wavefront parallel processing

244
Description of encoding methods

244.1
Cost Functions

244.1.1
Sum of Square Error (SSE)

244.1.2
Sum of Absolute Difference (SAD)

244.1.3
Hadamard transformed SAD (SATD)

254.1.4
RD cost functions

254.1.4.1
Lagrangian constant values

254.1.4.2
Weighting factor for chroma component

254.1.4.3
SAD based cost function for prediction parameter decision

264.1.4.4
SATD based cost function for prediction parameter decision

264.1.4.5
Cost function for mode decision

264.2
Encoder configurations

264.2.1
Overview of Encoder Configurations

264.2.2
High Efficiency (HE) coding

264.2.3
Low Complexity (LC) coding

264.3
Temporal Prediction Structure

264.3.1
Intra-only configuration

274.3.2
Low-delay configurations

274.3.3
Random-access configuration

284.4
Input bit depth modification

284.5
Slice partitioning operation

284.6
Tile partitioning operation

284.7
Wavefront parallel encoding

284.8
Derivation process for Slice-level coding parameters

284.8.1
Sample Adaptive Offset (SAO) parameters

304.8.2
Adaptive Loop Filter (ALF) parameters

304.8.2.1
Derivation of luma pixel classifications

314.8.2.2
Derivation of filter coefficients and applying the filter

314.8.2.3
Encoding of filter coefficients

324.8.2.4
Derivation of ALF control map

324.8.2.5
Decision of luma pixel classification and filter coefficients by estimating filtering RD cost in 1-pass encoding

324.8.2.6
Decision of chroma component(s) to be filtered

324.8.3
Rounding control

334.9
Derivation process for CU-level and PU-level coding parameters

334.9.1
Intra prediction mode and parameters

334.9.2
Inter prediction mode and parameters

334.9.2.1
Derivation of motion parameters

344.9.2.2
Motion estimation

344.9.2.3
Decision process on AMP mode evaluation procedure

354.9.3
Intra/inter/PCM mode decision

374.10
Derivation process for TU-level coding parameters

374.10.1
Residual Quad-tree partitioning

374.10.2
Rate-Distortion Optimized Quantization

405
References

List of figures
7Figure 3‑1 – Example of a picture divided into LCUs

8Figure 3‑2 – Example of Coding Unit structure

8Figure 3‑3 – Four types of Prediction Unit structure [needs to add AMP figures]

9Figure 3‑4 – Example of Transform Unit structure

10Figure 3‑5 – The 33 intra prediction directions

10Figure 3‑6 – Mapping between intra prediction direction and intra prediction mode

11Figure 3‑7 – Derivation process for motion merge candidate

12Figure 3‑8 – Positions of spatial merge candidate

12Figure 3‑9 – Positions for the second PU of Nx2N and 2NxN partitions

13Figure 3‑10 – Illustration of motion vector scaling for temporal merge candidate

13Figure 3‑11 – Candidate positions for temporal merge candidate, C3 and H

14Figure 3‑12 – Overall processing flow of deblocking filter process

15Figure 3‑13 – Illustration of motion vector scaling for spatial motion vector candidate

18Figure 3‑14 – Overall processing flow of deblocking filter process

19Figure 3‑15 – Flow diagram for Bs calculation

19Figure 3‑16 – Referred information for Bs calculation at LCU boundary.

20Figure 3‑17 – Red boxes represent pixels involving in filter on/off decision and strong/weak filter selection.

22Figure 3‑18 – Four 1-D 3-pixel patterns for the pixel classification in EO; from left to right: 0-degree, 90-degree, 135-degree, 45-degree

23Figure 3‑19 – Flow-graph of encoder decision for ALF

23Figure 3‑20 – Filter shapes for both luma and chroma samples

24Figure 3‑21 – Illustration of filtering control map derivation

27Figure 4‑1 Graphical presentation of Intra-only configuration

27Figure 4‑2 Graphical presentation of Low-delay configuration

28Figure 4‑3 Graphical presentation of Random-access configuration

34Figure 4‑4 Three step motion search strategy for integer-pel accuracy

36Figure 4‑6 The schematic of Intra/Inter/PCM mode decision

38Figure 4‑7 – Graph structure for RDO quantization based on CABAC in H.264/AVC

39Figure 4‑8 – Possible quantized values in RDO-Q

List of tables

5Table 1‑1 – Structure of Tools in HM6 Configurations

9Table 5‑1 – Maximum quadtree depth according to test scenario and prediction modes

9Table 5‑2 – Number of supported intra modes according to PU size

15Table 5‑3 – 8-tap DCT-IF coefficients for 1/4th luma interpolation

15Table 5‑4 – 4-tap DCT-IF coefficients for 1/8th chroma interpolation

20Table 5‑5 – Derivation of threshold variables β and tC from input Q (same table with Table 8-15 in WD)

22Table 5‑6 – Specification of SAO type

22Table 5‑7 – Pixel classification rule for EO

Table 6‑1 – Derivation of
25

1 Introduction

The 6th HEVC test model (HM6) was defined by decisions taken at the 8th meeting of JCT-VC in San José from 1 to 10 February 2012. Two configurations have been defined: Main and High efficiency 10 (HE10). A summary list of the tools that are included in Main and HE10 is provided in Table 1‑1 below.
Table 1‑1 – Structure of Tools in HM6 Configurations

	Main
	High efficiency 10 (HE10)

	High-level Structure:

	High-level support for frame rate temporal nesting and random access

	Clean random access (CRA) support

	Rectangular tile-structured scanning

	-
	Wavefront-structured processing dependencies for parallelism

	Slices with spatial granularity equal to largest coding unit
	Slices with spatial granularity possibly smaller than largest coding unit: 16x16 or larger

	-
	Entropy slices to support parallel parsing

	Coding units, Prediction units, and Transform units:

	Coding unit quadtree structure
(square coding unit block sizes 2Nx2N, for N=4, 8, 16, 32;
i.e., up to 64x64 luma samples in size)

	Prediction units
(for coding unit size 2Nx2N: for Inter, 2Nx2N, 2NxN, Nx2N; for Intra, only 2Nx2N and, for N=4, also NxN)
	Prediction units
(for coding unit size 2Nx2N: for Inter, 2Nx2N, 2NxN, Nx2N, and,
for N>4, also 2Nx(N/2+3N/2) & (N/2+3N/2)x2N; for Intra, only 2Nx2N and, for N=4, also NxN)

	Transform unit tree structure within coding unit (maximum of 3 levels)

	Transform block size of 4x4 to 32x32 samples
(always square)
	Transform block size of 4x4 to 32x32 samples
(always square for Intra; also non-square 4x16, 16x4, 8x32, 32x8 for Inter)

	Spatial Signal Transformation and PCM Representation:

	DCT-like integer block transform;
for Intra also a DST-based integer block transform (selected based on the intra prediction mode)

	Transforms can cross prediction unit boundaries for Inter; not for Intra

	PCM coding with worst-case bit usage limit

	Intra-picture Prediction:

	Angular intra prediction (35 directions)

	Planar intra prediction

	-
	Chroma intra prediction separate from or using luma samples

	Inter-picture Prediction:

	Luma motion compensation interpolation: 1/4 sample precision,
8x8 separable with 6 bit tap values

	Chroma motion compensation interpolation: 1/8 sample precision,
4x4 separable with 6 bit tap values

	Advanced motion vector prediction with motion vector “competition” and “merging”

	Entropy Coding:

	Context adaptive binary arithmetic entropy coding

	RDOQ on

	Picture Storage and Output Precision:

	8 bit-per-sample storage and output
	10 bit-per-sample storage and output

	In-Loop Filtering:

	Deblocking filter

	Sample-adaptive offset filter

	-
	Adaptive loop filter

At its 1st meeting, in April 2010, the JCT-VC defined a "Test Model under Consideration" (TMuC), which was documented in JCTVC-B204 [1]. At its 3rd meeting, in October 2010, the JCT-VC defined a 1st HEVC Test Model (HM1) [2]. The majority of the tools within HM1 were in the TMuC, but HM1 had substantially fewer coding tools and hence there was a substantial decrease in the computational resources necessary for encoding and decoding. Further optimizations of the HEVC Test Model in HM2 [3], HM3 [4], HM4 [5], HM5 [6], and HM6 were specified at subsequent meetings, with each successive model achieving better performance than the previous in terms of the trade-off between coding efficiency and complexity.

2 Scope

This document provides an encoder-side description of HEVC Test Model (HM), which serves as tutorial information of the encoding model implemented into the HM software. The purpose of this text is to share a common understanding on reference encoding methods supported in the HM software, in order to facilitate the assessment of the technical impact of proposed new technologies during the HEVC standardization process. Although brief descriptions of HEVC design are provided to help understanding of HM, the corresponding sections of the HEVC working draft [6] should be referred to for any descriptions regarding normative processes. A further document [7] defines the common test conditions and software reference configurations that should be used for experimental works.
3

4

5 Description of HEVC Test Model
5.1 General Coding Structure

[Ed. Note: Insert general overview, including graphical representation of encoding and decoding]
The HEVC standard adopts well-known block-based hybrid coding scheme that relies on advanced intra and motion-compensated prediction and transform coding with high-performance entropy coder. In contrast to conventional schemes, it employs flexible quad-tree coding block partitioning that also enables use of large and multiple sizes of prediction and transform blocks, adaptive motion parameter coding, and adaptive in-loop filtering tools. These new enhancements in HEVC significantly improve its coding efficiency. A general block-diagram of HM encoder is depicted in Figure 1.
(Ed. Note: more words on brief explanation on Figure 1 should be added.)
Figure 1 Block Diagram of HM encoding scheme
5.2 Picture Partitioning

5.2.1 LCU Partitioning

[Ed. Note: Revise text to ensure consistent use of terminology
· block = a rectangular 2D array (one component)

· unit = collective term for both luma and chroma. Only use ‘unit’ with prefix, e.g. coding unit, prediction unit or transform unit.]

Pictures are divided into a sequence of largest coding units (LCUs). A LCU consists of an NxN block of luma samples together with two corresponding blocks of chroma samples for a picture that has three sample arrays, or an NxN block of samples of a monochrome plane in a picture that is coded using three separate colour planes. The LCU concept is broadly analogous to that of the macroblock in previous standards such as AVC [8]. The maximum allowed size of the luma block in a LCU is 64x64.
[image: image4.emf]
Figure 3‑1 – Example of a picture divided into LCUs
[Ed. Note: Needs expansion]
5.2.2 Slice structure

Slice is specified as a unit of packetization of coded video data for transmission purpose. Slices are designed to be independently decodable, so no prediction is performed across slice borders, and entropy coding is restarted between slices. A slice consists of a slice header followed by a series of successive coding units in coding order. Slice boundaries can be located inside a LCU to ease encoder-side control for finding slice boundary that can maximize packetization efficiency. The level at which slice boundaries may be present is determined by the slice granularity parameter in the sequence parameter set. A slice granularity of 0 means that boundaries may only occur between LCUs, a granularity of 1 means that boundaries may be present after each quarter of a LCU, and so on.

Entropy slices are similar to slices, except in that prediction may be performed between entropy slices. If both regular slices and entropy slices are used, an entropy slice is always contained in a single slice, while a slice may contain several entropy slices.
5.2.3 Tile structure

[Ed. Note: Needs description]
5.2.4 Coding Unit (CU) structure

The Coding Unit (CU) is the basic unit of region splitting used for inter/intra coding. It is always square and it may take a size from 8x8 luma samples up to the size of the LCU.
The CU concept allows recursive splitting into four equally sized blocks, starting from the LCU. This process gives a content-adaptive coding tree structure comprised of CU blocks, each of which may be as large as the LCU or as small as 8x8.

[image: image5.emf]
Figure 3‑2 – Example of Coding Unit structure

Both skipped CU and non-skipped CU types are allowed. The skipped CU is considered to be an inter prediction mode without coding of motion vector differences and residual information. The non-skipped CU is assigned to one of two prediction modes, intra prediction and inter prediction.

[Ed. Note: Needs expansion]
5.2.5 Prediction Unit (PU) structure
The Prediction Unit (PU) is the basic unit used for carrying the information related to the prediction processes. In general, it is not restricted to being square in shape, in order to facilitate partitioning which matches the boundaries of real objects in the picture. Each CU may contain one or more PUs, each of which may be as large as the CU or as small as 8x4 or 4x8 in luma block size. It should be noted that PU type NxN is allowed only when the corresponding CU size is greater than the smallest allowed CU size, which is denoted as SCUSize.
NOTE: The usage of 4x4 block as luma component of a PU can be enabled via a specific flag inserted into sequence parameter set, however, the current HM4 encoder sets its value to be “disable”.

[image: image6.emf]2Nx2NNx2N2NxNNxN

Figure 3‑3 – Four types of Prediction Unit structure [needs to add AMP figures]
 [Ed. Note: Needs expansion] need to add AMP
5.2.6 Transform Unit (TU) structure
The Transform Unit (TU) is the basic unit used for the transform and quantization processes. TU shape depends on PU partitioning mode. When PU shape is square, TU shape is also square and it may take a size from 4x4 up to 32x32 luma samples. When PU shape is non-square, TU shape shall also be non-square and it may take a size 32x8,8x32,16x4,4x16 luma samples. The use of non-square TU is applied not only to luma component but also to chroma component, while the use in chroma is limited only when the luma TU size is 32x8 or 8x32. Each CU may contain one or more TUs, where multiple TUs may be arranged in a quadtree structure, as illustrated in Figure 5‑4 below.
[image: image7.emf]
Figure 3‑4 – Example of Transform Unit structure

[Ed. Note: Needs expansion] (RQT encoding process should be described in section 6.10. What needs to be put here?
The maximum quadtree depth is adjustable and is specified in the slice header syntax. The values are set according to the test scenario as shown in Table 5‑1 below.

Table 5‑1 – Maximum quadtree depth according to test scenario and prediction modes

	Test scenario
	Maximum quadtree depth
(for inter block)
	Maximum quadtree depth
(for intra block)

	Intra Only High-Efficiency
	-
	3

	Random Access High-Efficiency
	3
	3

	Low Delay High-Efficiency
	3
	3

	Intra Only Low Complexity
	-
	3

	Random Access Low Complexity
	3
	3

	Low Delay Low Complexity
	3
	3

5.3 Intra Prediction

The unified intra prediction coding tool provides up to 35 directional prediction modes including DC and Planar modes for luma component of each PU. The total number of available prediction modes is dependent on the size of the corresponding PU, as shown in Table 5‑2 below.
Table 5‑2 – Number of supported intra modes according to PU size
	PU size
	Number of intra modes

	4
	17

	8
	35

	16
	35

	32
	35

	64
	35

The 33 possible intra prediction directions are illustrated in Figure 5‑5 below.

[image: image8.emf]0-5-10-15-20-25-30-30-25-20-15-10-505101520253051015202530

Figure 3‑5 – The 33 intra prediction directions
For PU sizes where less than the full set 35 total intra prediction modes are allowed, the first N directions according to the mapping between the intra prediction direction and the intra prediction mode number specified in Figure 5‑6 below are used.

[image: image9.emf]318101942011210221223524251362: DC mode2614277281529130163183217339

Figure 3‑6 – Mapping between intra prediction direction and intra prediction mode

For chroma component of intra PU, (need description on chroma intra prediction mode)

[Ed. Note: Needs expansion]
5.4 Inter Prediction

5.4.1 Prediction Modes
Each inter coded PU shall have a set of motion parameters consisting of motion vector, reference picture index, reference picture list usage flag to be used for inter prediction sample generation, in an explicit or implicit way of signaling. When a CU is coded with skip mode (i.e., PredMode == MODE_SKIP), the CU shall be represented as one PU that has no significant transform coefficients and motion vectors, reference picture index and reference picture list usage flag obtained by motion merge. The motion merge is to find neighbouring inter coded PU such that its motion parameters (motion vector, reference picture index, and reference picture list usage flag) can be inferred as the ones for the current PU. Encoder can select the best inferred motion parameters from multiple candidates formed by spatial neighbouring PUs and temporally neighbouring PUs, and transmits corresponding index indicating chosen candidate. Not only for skip mode, the Motion Merge can be applied to any inter coded PU (i.e., PredMode == MODE_INTER). In any inter coded PUs, encoder can have freedom to use motion merge or explicit transmission of motion parameters, where motion vector, corresponding reference picture index for each reference picture list and reference picture list usage flag are signalled explicitly per each PU. For inter coded PU, significant transform coefficients are sent to decoder. The details are presented in following sections.
5.4.1.1 Derivation of motion merge candidates

[image: image10.emf]Remove duplicated candidatesAdd combined bi-predictive candidatesAdd non-scaled bi-predictive candidatesAdd zero merge candidates

Final merge candidates (maximum number is equal to MaxNumMergeCand)

Spatial candidate positions (5)

Select 4 candidatesPartition redundancy removal

(e.g., avoid virtual 2Nx2N partition by merging 2 2NxN)

Temporal candidate refidxderivation

Temporal candidate positions (2)B-SlicesSelect 1 candidates

Figure 3‑7 – Derivation process for motion merge candidate
Figure 5‑7 summarizes derivation process for motion merge candidates. 2 types of merge candidates are considered in motion merge: spatial merge candidate and temporal merge candidate. For spatial merge candidate derivation, 4 merge candidates are selected among candidates that are located in 5 different positions. In the process of candidate selection, redundant partition shape is avoided in order not to emulate virtual 2Nx2N partition by merging two 2NxN or two Nx2N partitions. For temporal merge candidate derivation, 1 merge candidate is selected among 2 candidates. After a list of spatio-temporal candidates is made, duplicated candidates which have same motion parameters in the list are removed in order to have distinctive candidates only. Since constant number of candidates for each PU is assumed at decoder, additional candidates are generated when the number of candidates does not reach to maximum number of merge candidate (MaxNumMergeCand) which is signalled in slice header. For B-Slices, combined bi-predictive and non-scaled bi-predictive candidates are generated utilizing the candidates from list of spatio-temporal candidates. For both P- and B-slices, zero merge candidates are added at the end of the list. Between each generation step, derivation process is stopped if the number of candidates reaches to MaxNumMergeCand. In current common test condition, MaxNumMergeCand is set equal to 5. Since the number of candidates is constant, index of best motion merge candidate is encoded using truncated unary binarization (TU).

5.4.1.2 Spatial merge candidates

In the derivation of spatial merge candidates, maximum 4 merge candidates are selected among candidates that are located in positions as depicted in Figure 5‑8. The order of derivation is A1 (B1 (B0 (A0 ((B2). Position B2 is considered only when any PU of position A1 , B1 , B0 , A0 are unavailable or intra coded.
[image: image11.png]
Figure 3‑8 – Positions of spatial merge candidate
For the second PU of Nx2N, nLx2N and nRx2N partitions, position A1 is not considered as a candidate to prevent from 2Nx2N partition emulation. In these cases, the order of derivation is B1 (B0 (A0 (B2. Similarly, for the second PU of 2NxN, 2NxnU and 2NxnD partitions, position B1 is not used: A1 (B0 (A0 (B2. Figure 5‑9 depicts example of candidate positions for the second PU of Nx2N and 2NxN, respectively.

[image: image12.emf]A

0

B

0

B

2

A

1

current PU

A

0

B

0

B

2

current PU

B

1

(a) second PU of Nx2N(b)second PU of 2NxN

Figure 3‑9 – Positions for the second PU of Nx2N and 2NxN partitions

5.4.1.3 Temporal merge candidates
In the derivation of temporal merge candidate, scaled motion vector is derived based on co-located PU belongs to the picture which has the smallest POC difference with current picture within given reference picture list. The reference picture list to be used for derivation of co-located PU is signalled in slice header explicitly. Scaled motion vector for temporal merge candidate is obtained like dotted line in Figure 5‑10, which is scaled from motion vector of co-located PU using the POC distance, tb and td. tb is defined as POC difference between reference picture of current picture and current picture. td is defined as POC difference between reference picture of co-located picture and co-located picture. Reference picture index of temporal merge candidate is set as reference picture index of PU at position A1. If PU of position A1 is not available or intra coded, the reference picture index is set equal to 0. Practical realization of scaling process is described in WD [6]. For B-slice, two motion vectors, one is for reference picture list 0 and the other is for reference picture list 1, are obtained and combined to make bi-predictive motion merge candidate.

[image: image13.emf]curr_piccol_piccol_refcurr_reftdtbcurr_PUcol_PU

Figure 3‑10 – Illustration of motion vector scaling for temporal merge candidate

Position of co-located PU is selected between 2 candidate positions, C3 and H, as depicted in Figure 5‑11. If PU at position H is not available or intra coded, or outside of current LCU, position C3 is used. Otherwise, position H is used for the derivation of temporal merge candidate.
[image: image14.emf]HC3C0

LCU boundary

current PU

TLBR

Figure 3‑11 – Candidate positions for temporal merge candidate, C3 and H
5.4.1.4 Generated merge candidates
Besides spatio-temporal merge candidates, there are additional three types of merge candidates which are generated utilizing spatio-temporal merge candidates: combined bi-predictive merge candidate, non-scaled bi-predictive merge candidate and zero motion merge candidates. Combined bi-predictive merge candidate and non-scaled bi-predictive merge candidate are used for B-Slice only. The maximum number of each candidate is limited to 5, 1 and same with number of reference index, respectively. [Ed: Needs expansion]
5.4.2 Motion vector prediction

Motion vector prediction exploits spatio-temporal correlation of motion vector with neighbouring PUs, which is used for explicit transmission of motion parameters. It constructs motion vector candidate list by firstly checking availability of left, above temporally neighbouring PU positions, removing redundant candidates and adding zero vector to make the candidate list to be constant length as a normative process. Then, encoder can select the best predictor from the candidate list and transmits corresponding index indicating chosen candidate. Similarly with merge index signalling, index of the best motion vector candidate is encoded using truncated unary as maximum number is equal to 2. In the following sections, details about derivation process of motion vector prediction candidate are provided.

5.4.2.1 Derivation of motion vector prediction candidates
[image: image15.emf]Remove duplicated MV candidatesAdd zero MV candidatesRemove MV candidates whose index is larger than 1

Spatial candidate positions (5)

Select 2 candidates

1 candidate for left, 1 candidate for above

Temporal candidate positions (2)Select 1 candidateFor each reference picture list with refidxas an inputFinal motion vector candidates (2)

Figure 3‑12 – Overall processing flow of deblocking filter process
Figure 5‑12 summarizes derivation process for motion vector prediction candidate. In motion vector prediction, 2 types of motion vector candidates are considered: spatial motion vector candidate and temporal motion vector candidate. For spatial motion vector candidate derivation, 2 motion vector candidates are derived based on motion vectors of each PU located in 5 different positions. In the process of derivation, 1 motion vector candidate is selected utilizing PUs in the left side of current PU and 1 motion vector candidate is derived utilizing Pus in the above side of current PU. For temporal motion vector candidate derivation, 1 motion vector candidate is selected between 2 candidates, which are derived based on 2 different co-located positions. After the first list of spatio-temporal candidates is made, duplicated motion vector candidates in the list are removed. If the number of candidates is larger than 2, motion vector candidates whose index is larger than 1 are removed from the list. If the number of spatio-temporal motion vector candidates is smaller than 2, additional zero motion vector candidates is added to the list.
5.4.2.2 Spatial motion vector candidates

In the derivation of spatial motion vector candidates, maximum 2 candidates are considered among 5 candidates, which are derived from PUs located in positions as depicted in Figure 5‑8. The candidate positions of motion vector prediction are same with those of motion merge. The order of derivation for left side of current PU is set as A0 (A1 (scaled A0 (scaled A1. The order of derivation for above side of current PU is set as B0 (B1 (B2 (scaled B0 (scaled B1 (scaled B2. For each side, there are 4 cases which can be used for motion vector candidate. Despite 2 cases are not required to do spatial scaling, the other 2 cases are required to do spatial scaling. 4 different cases are summarized as follows.

· No spatial scaling
· (1) Same reference picture list, and same reference picture index (same POC)
· (2) Different reference picture list, but same reference picture (same POC)
· Spatial scaling
· (3) Same reference picture list, but different reference picture (different POC)
· (4) Different reference picture list, and different reference picture (different POC)
No spatial scaling cases are checked first and spatial scaling cases are checked sequentially. Spatial scaling is considered when POC is different between reference picture of neighbouring PU and that of current PU regardless of reference picture list. If all PUs of left candidates is not available or intra coded, scaling for above motion vector is allowed to help parallel derivation of left and above MV candidates. Otherwise, spatial scaling is not allowed for above motion vector.

[image: image16.emf]curr_picneigh_refcurr_reftdtbcurr_PUneighbor_PU

Figure 3‑13 – Illustration of motion vector scaling for spatial motion vector candidate

In a spatial scaling process, motion vector of neighbouring PU is scaled as same manner of temporal scaling as depicted as Figure 5‑13. Main difference is that the reference picture list and index of current PU is given as input. Actual scaling process is same with that of temporal scaling.
5.4.2.3 Temporal motion vector candidates
Except reference picture index derivation, all process is same with the derivation of temporal merge candidate. The reference picture index is signalled to decoder.
5.4.3 Interpolation filter

For the luma interpolation filter, an 8-tap separable DCT-based interpolation filter is used, as shown in Table 5‑3.
Table 5‑3 – 8-tap
 DCT-IF coefficients for 1/4th luma interpolation

	Position
	Filter coefficients

	1/4
	{ -1, 4, -10, 57, 19, -7, 3, -1 }

	2/4
	{ -1, 4, -11, 40, 40, -11, 4, -1 }

	3/4
	{ -1, 3, -7, 19, 57, -10, 4, -1 }

Similarly, a 4-tap separable DCT-based interpolation filter is used for the chroma interpolation filter, as shown in Table 5‑4.
Table 5‑4 – 4-tap
 DCT-IF coefficients for 1/8th chroma interpolation

	Position
	Filter coefficients

	1/8
	{ -3, 60, 8, -1 }

	2/8
	{ -4, 54, 16, -2 }

	3/8
	{ -5, 46, 27, -4 }

	4/8
	{ -4, 36, 36, -4 }

	5/8
	{ -4, 27, 46, -5 }

	6/8
	{ -2, 16, 54, -4 }

	7/8
	{ -1, 8, 60, -3 }

For the bi-directional prediction, the bit-depth of the output of the interpolation filter is maintained to 14-bit accuracy, regardless of the source bit-depth, before the averaging of the two prediction signals. The actual averaging process is done implicitly with the bit-depth reduction process as:

predSamples[x, y] = (predSamplesL0[x, y] + predSamplesL1[x, y] + offset) >> shift

where

shift = (15 – BitDepth) and offset = 1 << (shift – 1)

[Ed. Note: Need to describe]
5.4.4 Weighted Prediction
[Ed. Note: Needs description. (However, note that the WP has not been enabled in the common test conditions)]
5.5 Transform and Quantization
Transforms of sizes 4x4 to 32x32 are supported. The transform coefficients dij (i, j=0..nS-1) are derived from the transform matrix cij (i, j=0..nS-1) of subclause 5.5.1and the residual samples rij (i, j=0..nS-1) as specified in the following ordered steps.

1. The intermediate sample values eij (i, j=0..nS-1) are derived as
eij
=
ci0*rj0 + ci1*rj1 + … + cinS-1*rjnS-1 with i,j = 0,..,nS-1
2. The intermediate sample values fij (i,j=0,..nS-1) are derived as
fij = (eij + 2nS-10+BitDepth) >> (nS + BitDepth – 9), with i,j = 0,...,nS-1

3. The unscaled transform coefficients gij (i, j=0..nS-1) are derived as
gij
=
ci0*fj0 + ci1*fj1 + … + cinS-1*fjnS-1 with i,j = 0,..,nS-1
4. The transform coefficients dij (i, j=0..nS-1) are derived as
dij = (gij + 2nS+5) >> (nS + 6), with i,j = 0,...,nS-1

5.5.1 Transform matrices

This subclause specifies transform matrices cij (i, j=0..nS-1) for nS = 4, 8, 16, and 32.

nS = 4

{64, 64, 64, 64}

{83, 36,-36,-83}

{64,-64,-64, 64}

{36,-83, 83,-36}

nS = 8

{64, 64, 64, 64, 64, 64, 64, 64}

{89, 75, 50, 18,-18,-50,-75,-89}

{83, 36,-36,-83,-83,-36, 36, 83}

{75,-18,-89,-50, 50, 89, 18,-75}

{64,-64,-64, 64, 64,-64,-64, 64}

{50,-89, 18, 75,-75,-18, 89,-50}

{36,-83, 83,-36,-36, 83,-83, 36}

{18,-50, 75,-89, 89,-75, 50,-18}

nS = 16

{64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64}

{90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-90}

{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89}

{87 57 9-43-80-90-70-25 25 70 90 80 43 -9-57-87}

{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83}

{80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80}

{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75}

{70-43-87 9 90 25-80-57 57 80-25-90 -9 87 43-70}

{64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64}

{57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57}

{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50}

{43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43}

{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36}

{25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25}

{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18}

{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9}

nS = 32

{64 64}

{90 90 88 85 82 78 73 67 61 54 46 38 31 22 13 4 -4-13-22-31-38-46-54-61-67-73-78-82-85-88-90-90}

{90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-90-90-87-80-70-57-43-25 -9 9 25 43 57 70 80 87 90}

{90 82 67 46 22 -4-31-54-73-85-90-88-78-61-38-13 13 38 61 78 88 90 85 73 54 31 4-22-46-67-82-90}

{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89 89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89}

{88 67 31-13-54-82-90-78-46 -4 38 73 90 85 61 22-22-61-85-90-73-38 4 46 78 90 82 54 13-31-67-88}

{87 57 9-43-80-90-70-25 25 70 90 80 43 -9-57-87-87-57 -9 43 80 90 70 25-25-70-90-80-43 9 57 87}

{85 46-13-67-90-73-22 38 82 88 54 -4-61-90-78-31 31 78 90 61 4-54-88-82-38 22 73 90 67 13-46-85}

{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83}

{82 22-54-90-61 13 78 85 31-46-90-67 4 73 88 38-38-88-73 -4 67 90 46-31-85-78-13 61 90 54-22-82}

{80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80-80 -9 70 87 25-57-90-43 43 90 57-25-87-70 9 80}

{78 -4-82-73 13 85 67-22-88-61 31 90 54-38-90-46 46 90 38-54-90-31 61 88 22-67-85-13 73 82 4-78}

{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75 75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75}

{73-31-90-22 78 67-38-90-13 82 61-46-88 -4 85 54-54-85 4 88 46-61-82 13 90 38-67-78 22 90 31-73}

{70-43-87 9 90 25-80-57 57 80-25-90 -9 87 43-70-70 43 87 -9-90-25 80 57-57-80 25 90 9-87-43 70}

{67-54-78 38 85-22-90 4 90 13-88-31 82 46-73-61 61 73-46-82 31 88-13-90 -4 90 22-85-38 78 54-67}

{64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64}

{61-73-46 82 31-88-13 90 -4-90 22 85-38-78 54 67-67-54 78 38-85-22 90 4-90 13 88-31-82 46 73-61}

{57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57-57 80 25-90 9 87-43-70 70 43-87 -9 90-25-80 57}

{54-85 -4 88-46-61 82 13-90 38 67-78-22 90-31-73 73 31-90 22 78-67-38 90-13-82 61 46-88 4 85-54}

{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50 50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50}

{46-90 38 54-90 31 61-88 22 67-85 13 73-82 4 78-78 -4 82-73-13 85-67-22 88-61-31 90-54-38 90-46}

{43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43-43 90-57-25 87-70 -9 80-80 9 70-87 25 57-90 43}

{38-88 73 -4-67 90-46-31 85-78 13 61-90 54 22-82 82-22-54 90-61-13 78-85 31 46-90 67 4-73 88-38}

{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36}

{31-78 90-61 4 54-88 82-38-22 73-90 67-13-46 85-85 46 13-67 90-73 22 38-82 88-54 -4 61-90 78-31}

{25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25-25 70-90 80-43 -9 57-87 87-57 9 43-80 90-70 25}

{22-61 85-90 73-38 -4 46-78 90-82 54-13-31 67-88 88-67 31 13-54 82-90 78-46 4 38-73 90-85 61-22}

{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18 18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18}

{13-38 61-78 88-90 85-73 54-31 4 22-46 67-82 90-90 82-67 46-22 -4 31-54 73-85 90-88 78-61 38-13}

{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9 -9 25-43 57-70 80-87 90-90 87-80 70-57 43-25 9}
{ 4-13 22-31 38-46 54-61 67-73 78-82 85-88 90-90 90-90 88-85 82-78 73-67 61-54 46-38 31-22 13 -4}

5.5.2 Scaling and quantization

 [Ed. note: The current description is non-RDOQ version. The text of section 6.7.2 should have alignment with this description.]

The quantized transform coefficients qij (i, j=0..nS-1) are derived from the transform coeficients dij (i, j=0..nS-1) as

qij = (dij * f[QP%6] + offset) >> (29 + QP/6 – nS – BitDepth), with i,j = 0,...,nS-1

where

f[x] = {26214,23302,20560,18396,16384,14564}, x=0,…,5

228+QP/6–nS-BitDepth < offset < 229+QP/6–nS-BitDepth
5.6 Entropy Coding

Two entropy coding schemes are supported in the HM5: Context Adaptive Binary Arithmetic Coding (CABAC) and Variable Length Coding (VLC). Especially, CABAC is utilized for transform coefficient coding.
[Ed. Note: Needs expansion]
5.7 Loop Filtering
5.7.1 Deblocking filter

Deblocking filter process is performed for each CU with the same order as decoding process. Vertical edge is filtered (horizontal filtering) at first, and horizontal edge is filtered (vertical filtering) next. All filtering is applied to 8x8 block boundaries which is determined to be filtered for both luma and chroma components. 4x4 block boundaries are not processed in order to reduce the complexity, which is different from H.264/AVC.

[image: image17.emf]boundary decisionBs calculation4x4 8x8filter on/off decisionstrong/weak filter selectionstrong filteringweak filteringβ, t

C

decision

Figure 3‑14 – Overall processing flow of deblocking filter process

Figure 5‑14 illustrates the overall processing flow of deblocking filter process. A boundary can have three filtering status: no filtering, weak filtering and strong filtering. Each filtering decision is based on boundary strength, Bs, and threshold values, β and tC.
5.7.1.1 Boundary decision
There could be three kinds of boundaries involving in the filtering: CU boundary, TU boundary and PU boundary. Union of theses boundaries are involved in the deblocking filter process. For example, CU boundaries, which are outer edges of CU, are always involved in the filtering since CU boundaries are always TU boundary or PU boundary. When PU shape is 2NxN (N > 4) and RQT depth is equal to 1, TU boundary at 8x8 block grid and PU boundary between each PU inside CU are involved in the filtering. (This doesn’t mean that all involved boundaries are filtered. Actual filtering decision is done in another process.) [Ed. Note: need to check following sentence] One except is that when PU boundary is inside TU, the boundary shall not be filtered.

5.7.1.2 Boundary strength calculation
Generally speaking, boundary strength (Bs) reflects how strong filtering is needed for the boundary. If Bs is large, strong filtering should be considered.

[image: image18.emf]P or Q is

intra

Bs = 2

YesNo

P & Q has

different ref?

Bs= 1

|MV_P

h

–MV_Q

h

| >=4 or|MV_P

v

–MV_Q

v

| >=4

Bs= 0

YesYesNoNo

P & Q has

different # of

MVs?

YesNo

P or Q has

non-0 coeff’s?

YesNo

Figure 3‑15 – Flow diagram for Bs calculation

Let’s define P and Q as blocks which are involved in the filtering. P represents the block located in left (vertical edge case) or above (horizontal edge case) side of the boundary. In a similar fashion, Q represents the block located in right (vertical edge case) or above (horizontal edge case) side of the boundary. Figure 5‑15 illustrates how Bs value is calculated based on the intra coding mode, existence of non-zero transform coefficients and motion information, e.g., reference picture, number of motion vectors and motion vector difference. At first, Bs is calculated in 4x4 block basis, but it is re-mapped to 8x8 grid. Specifically, among two Bs which are belong to 8 pixels consisting a line in 4x4 grid, maximum Bs is selected as Bs for boundaries in 8x8 grid.

[image: image19.emf]P0P1P2P3Q0Q1Q2Q3LCU boundary

Figure 3‑16 – Referred information for Bs calculation at LCU boundary.

In order to reduce line buffer memory requirement, only for LCU boundary, information in every second block (4x4 grid) in left or above side is re-used as depicted in Figure 5‑16.
5.7.1.3 β and tC decision

Threshold values β and tC which involving in filter on/off decision, strong and weak filter selection and weak filtering process are derived based on luma quantization parameter of P and Q blocks, QPP and QPQ, respectively. Q used to derive β and tC is calculated as follows.
Q = ((QPP + QPQ + 1) >> 1).

A variables β is specified as Table 5‑5 with Q as input. If Bs is greater than 1, the variable tC is specified as Table 5‑5 with Clip3(0, 55, Q + 2) as input. Otherwise (BS is equal or less than 1), the variable tC is specified as Table 5‑5 with Q as input.
Table 5‑5 – Derivation of threshold variables β and tC from input Q (same table with Table 8-15 in WD)
	Q
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	β
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	6
	7
	8

	tC
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	Q
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

	β
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	20
	22
	24
	26
	28
	30
	32
	34
	36

	tC
	1
	1
	1
	1
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3
	4
	4
	4

	Q
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	

	β
	38
	40
	42
	44
	46
	48
	50
	52
	54
	56
	58
	60
	62
	64
	64
	64
	64
	64
	

	tC
	5
	5
	6
	6
	7
	8
	9
	9
	10
	10
	11
	11
	12
	12
	13
	13
	14
	14
	

5.7.1.4 Filter on/off decision for 4 lines

Filter on/off decision is done for four lines as a unit. Figure 5‑17 illustrates the pixels involving in filter on/off decision. 6 pixels in the two red boxes for the first four lines are used to determine filter on/off for 4 lines. 6 pixels in two red boxes for the second 4 lines are used to determine filter on/off for the second four lines.

[image: image20.emf]p3

0

p2

0

p1

0

p0

0

q0

0

q1

0

q2

0

q3

0

p3

1

p2

1

p1

1

p0

1

q0

1

q1

1

q2

1

q3

1

p3

2

p2

2

p1

2

p0

2

q0

2

q1

2

q2

2

q3

2

p3

3

p2

3

p1

3

p0

3

q0

3

q1

3

q2

3

q3

3

p3

4

p2

4

p1

4

p0

4

q0

4

q1

4

q2

4

q3

4

p3

5

p2

5

p1

5

p0

5

q0

5

q1

5

q2

5

q3

5

p3

6

p2

6

p1

6

p0

6

q0

6

q1

6

q2

6

q3

6

p3

7

p2

7

p1

7

p0

7

q0

7

q1

7

q2

7

q3

7

first 4 linessecond 4 lines

Figure 3‑17 – Red boxes represent pixels involving in filter on/off decision and strong/weak filter selection.

If dp0+dq0+dp3+dq3 < β, filtering for the first four lines is turned on and strong/weak filter selection process is applied. Each variable is derived as follows.

dp0 = | p2,0 – 2*p1,0 + p0,0 |, dp3 = | p2,3 – 2*p1,3 + p0,3 |, dp4 = | p2,4 – 2*p1,4 + p0,4 |, dp7 = | p2,7 – 2*p1,7 + p0,7 |

dq0 = | q2,0 – 2*q1,0 + q0,0 |, dq3 = | q2,3 – 2*q1,3 + q0,3 |, dq4 = | q2,4 – 2*q1,4 + q0,4 |, dq7 = | q2,7 – 2*q1,7 + q0,7 |
If the condition is not met, no filtering is done for the first 4 lines. Additionally, if the condition is met, dE, dEp1 and dEp2 are derived for weak filtering process. The variable dE is set equal to 1. If dp0 + dp3 < (β + (β >> 1)) >> 3, the variable dEp1 is set equal to 1. If dq0 + dq3 < (β + (β >> 1)) >> 3, the variable dEq1 is set equal to 1.
For the second four lines, decision is made in a same fashion with above.
5.7.1.5 Strong/weak filter selection for 4 lines

After the first four lines are determined to filtering on in filter on/off decision, if following two conditions are met, strong filter is used for filtering of the first four lines. Otherwise, weak filter is used for filtering. Involving pixels are same with those used for filter on/off decision as depicted in Figure 5‑17.
1) 2*(dp0+dq0) < (β >> 2), | p30 – p00 | + | q00 – q30 | < (β >> 3) and | p00 – q00 | < (5* tC + 1) >> 1
2) 2*(dp3+dq3) < (β >> 2), | p33 – p03 | + | q03 – q33 | < (β >> 3) and | p03 – q03 | < (5* tC + 1) >> 1

As a same fashion, if following two conditions are met, strong filter is used for filtering of the second 4 lines. Otherwise, weak filter is used for filtering.
1) 2*(dp4+dq4) < (β >> 2), | p34 – p04 | + | q04 – q34 | < (β >> 3) and | p04 – q04 | < (5* tC + 1) >> 1

2) 2*(dp7+dq7) < (β >> 2), | p37 – p07 | + | q07 – q37 | < (β >> 3) and | p07 – q07 | < (5* tC + 1) >> 1
5.7.1.6 Strong filtering
For strong filtering, filtered pixel values are obtained by following equations. It is worth to note that three pixels are modified using four pixels as an input for each P and Q block, respectively.
p0’ = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3

q0’ = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3

p1’ = (p2 + p1 + p0 + q0 + 2) >> 2

q1’ = (p0 + q0 + q1 + q2 + 2) >> 2

p2’ = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3

q2’ = (p0 + q0 + q1 + 3*q2 + 2*q3 + 4) >> 3

5.7.1.7 Weak filtering
Let’s define (as follows.

(= (9 * (q0 – p0) – 3 * (q1 – p1) + 8) >> 4
When abs(() is less than tC *10,
(= Clip3(- tC , tC , ()

p0’ = Clip1Y(p0 + ()

q0’ = Clip1Y(q0 - ()

If dEp1 is equal to 1,
(p = Clip3(-(tC >> 1), tC >> 1, (((p2 + p0 + 1) >> 1) – p1 + () >>1)

p1’ = Clip1Y(p1 + (p)

If dEq1 is equal to 1,
(q = Clip3(-(tC >> 1), tC >> 1, (((q2 + q0 + 1) >> 1) – q1 – () >>1)

q1’ = Clip1Y(q1 + (q)
It is worth to note that maximum two pixels are modified using three pixels as an input for each P and Q block, respectively.
5.7.1.8 Chroma filtering
Bs of chroma filtering is inherited from luma. If Bs > 1 or if coded chroma coefficient existing case, chroma filtering is performed. No other filtering decision is there. And only one filter is applied for chroma. No filter selection process for chroma is used. The filtered sample values p0’ and q0’ are derived as follows.
(= Clip3(-tC, tC, ((((q0 – p0) << 2) + p1 – q1 + 4) >> 3))

p0’ = Clip1C(p0 + ()

q0’ = Clip1C(q0 - ()
5.7.2 Sample Adaptive Offset (SAO)

Sample adaptive offset is applied to the reconstruction signal after the deblocking filter by using the offset values given in the slice header. For luma samples, the encoder makes a decision on whether or not the SAO is applied for current slice. If SAO is enabled, the current picture allows recursive splitting into four sub-regions and each region can select one of six SAO types as shown in Table 5-5. SAO classifies reconstructed pixels into categories and reduces the distortion by adding an offset to pixels of each category in current region. Edge properties are used for pixel classification in SAO types 1-4, and pixel intensity is used for pixel classification in SAO types 5-6.
Table 5‑6 – Specification of SAO type
	SAO type
	sample adaptive offset type to be used
	Number of categories

	0
	None
	0

	1
	1-D 0-degree pattern edge offset
	4

	2
	1-D 90-degree pattern edge offset
	4

	3
	1-D 135-degree pattern edge offset
	4

	4
	1-D 45-degree pattern edge offset
	4

	5
	central bands band offset
	16

	6
	side bands band offset
	16

Band offset (BO) classifies all pixels of a region into multiple bands where each band contains pixels in the same intensity interval. The intensity range is equally divided into 32 intervals from zero to the maximum intensity value (e.g. 255 for 8-bit pixels), and each interval has an offset. Next, the 32 bands are divided into two groups. One group consists of the central 16 bands, while the other group consists of the rest 16 bands. Only offsets in one group are transmitted. Regarding the pixel classification operation in BO, the five most significant bits of each pixel can be directly used as the band index.

Edge offset (EO) uses four 1-D 3-pixel patterns for pixel classification with consideration of edge directional information, as shown in Figure 5‑18. Each region of a picture can select one pattern to classify pixels into multiple categories by comparing each pixel with its two neighboring pixels. The selection will be sent in bit-stream as side information. Table 5-6 shows the pixel classification rule for EO.
	
	　
	　
	
	　
	　
	　
	
	　
	　
	　
	
	　
	　
	　

	　
	C
	　
	
	　
	C
	　
	
	　
	C
	　
	
	　
	C
	　

	　
	　
	　
	
	　
	　
	　
	
	　
	　
	　
	
	　
	　
	　

Figure 3‑18 – Four 1-D 3-pixel patterns for the pixel classification in EO; from left to right: 0-degree, 90-degree, 135-degree, 45-degree
Table 5‑7 – Pixel classification rule for EO
	Category
	Condition

	1
	c < 2 neighbors

	2
	c < 1 neighbor && c == 1 neighbor

	3
	c > 1 neighbor && c == 1 neighbor

	4
	c > 2 neighbors

	0
	None of the above

It is desirable that the SAO on the decoder side can be operated LCU-independently so that the line buffers can be saved. In order to achieve this, pixels of the top and bottom rows in each LCU are not SAO processed when the 90-degree, 135-degree, and 45-degree classification patterns are chosen; pixels of the leftmost and rightmost columns in each LCU are not SAO processed when the 0-degree, 135-degree, and 45-degree patterns are chosen.
[Ed. Note: needs expansion]
5.7.3 Adaptive loop filter (ALF)
5.7.3.1 Overview
An adaptive loop filter is applied to the reconstruction signal after the SAO process or deblocking filter process by using the filter coefficients given in adaptive parameter set (APS). For luma samples in each CU, the encoder makes a decision on whether or not the adaptive loop filter is applied and the appropriate signaling flag is included in the slice header. For chroma samples, the decision to apply the filter is done based on the picture-level rather than CU-level. Same filter shapes with luma are considered and optimal filter is selected for chroma samples and no pixel classification scheme is applied. Overall encoder decision process is illustrated in Figure 5‑19.
[image: image21.emf]Decision on pixel classification (RA or BA), filter shape (snowflake(0)

or cross(1)) and initial filters for luma (joint optimization)

Decision on filtering control map, filtering on/off and optimal filters

for luma (joint optimization, 12 re-designs)

Decision on filter shape and optimal filter for chromaFiltering luma and chroma picture bufferDecision of ALF on/offinput picture bufferoutput picture buffer

Figure 3‑19 – Flow-graph of encoder decision for ALF

5.7.3.2 Filter shapes
The filtering process uses two 2D shape filters (snowflake and cross shapes) for both luma and chroma samples. The filter coefficient for each pixel is selected from multiple filters by computing the variance measure (block-based classification) or position (region-based classification) of it. Filter size of each filter shapes are different, 5x5 for snowflake shape and 9x9 for cross shape as depicted in Figure 5‑20. Due to symmetric property of the filters, only 9 coefficients are needed to represent a filter.
[image: image22.emf]C

4

C

5

C

6

C

7

C

8

C

7

C

6

C

5

C

4

C

3

C

2

C

1

C

2

C

3

C

1

C

0

C

0

C

0

C

1

C

2

C

3

C

4

C

5

C

6

C

8

C

6

C

5

C

4

C

3

C

5

C

1

C

0

C

7

C

7

shape 0 (snowflake)shape 1 (cross)

Figure 3‑20 – Filter shapes for both luma and chroma samples
5.7.3.3 Luma pixel classification

There are two different pixel classification methods in ALF. One is block-based (BA) classification, and the other is region-based (RA) classification. The former is to classify 4x4 blocks of one picture into 16 categories based on the block activity and direction, and the latter is to divide one picture into 16 regions. Each region and category can be merged each other for further optimization. One filter is assigned for each region or category.
[Ed. Note: needs expansion]
5.7.3.4 Filtering control map
After decision on pixel classification, filter shape and initial filter coefficients, filtering control map and on/off decisions are made. Filtering control map is based on CU boundary determined in encoding process. For example, if the depth of filtering control map is equal to 0, on/off flags are sent for each LCU. If the depth is equal to 1, filtering on/off is determined based on LCU and the region which cover the region of CU depth is equal to 1. Graphical illustration is given in Figure 5‑21. For each depth, filter re-design process is performed 3 times using filtering on regions.
[image: image23.png]
Figure 3‑21 – Illustration of filtering control map derivation

5.8

·
5.9 Wavefront parallel processing
[Ed. Note: Needs description]
6 Description of encoding methods
6.1 Cost Functions

[Ed. note: Definitions of all cost functions used in the HM software and remaining sections should refer to relevant section number below that specifies cost function to be used]
Various cost functions are used in the HM software encoder to perform non-normative mode/parameter decisions. In this section, the cost functions actually used in the encoding process of the HM software are specified for reference in the remaining sections of this document.

6.1.1 Sum of Square Error (SSE)
The difference between two blocks with the same block size is produced using

Diff(i,j) = BlockA(i,j) - BlockB(i,j)

(6‑1)

SEE is computed using the following equation:

[image: image24.wmf]å

=

j

i

j

i

Diff

SSE

,

2

)

,

(

(6‑2)

6.1.2 Sum of Absolute Difference (SAD)
SAD is computed using the following equation:

[image: image25.wmf]å

=

j

i

j

i

Diff

SAD

,

)

,

(

(6‑3)

6.1.3 Hadamard transformed SAD (SATD)
Since the transformed coefficients are coded, an improved estimation of the cost of each mode can be obtained by estimating DCT with the Hadamard transform.

SATD is computed using:

[image: image26.wmf]2

/

)

)

,

(

(

,

å

=

j

i

j

i

DiffT

SATD

(6‑4)

The Hadamard transform flag can be turned on or off. SA(T)D refers to either SAD or SATD depending on the status of the Hadamard transform flag.

SAD is used when computing full-pel motion estimation while SA(T)D is used for sub-pel motion estimation.
6.1.4 RD cost functions

6.1.4.1 Lagrangian constant values

In the HM encoder, lambda values that are used for cost computation are defined as

[image: image27.wmf])

0

.

3

/

)

12

((

mode

2

*

*

-

=

QP

k

W

a

l

(6‑5)

[image: image28.wmf]l

pred
[image: image29.wmf]e

mod

l

=

(6‑6)

[image: image30.wmf]î

í

ì

-

=

0

.

1

)

_

_

_

*

05

.

0

,

5

.

0

,

0

.

0

(

3

0

.

1

frames

B

of

number

Clip

a

(6‑7)

[image: image31.wmf]k

W

represents weighting factor dependent to encoding configuration and QP offset hierarchy level of current picture within a GOP, as specified in Table 6‑1. Note that the value of
[image: image32.wmf]k

W

derived from Table 6‑1 is further modified by multiplying 0.95 when SATD based motion estimation is used.
Table 4‑1 – Derivation of
[image: image33.wmf]k

W

	k
	QP offset hierarchy level
	Slice type
	Referenced
	
[image: image34.wmf]k

W

	0
	0
	I
	-
	0.57

	1
	0
	GPB
	1
	RA: 0.442

LD: 0.578

	2
	1, 2
	B or GPB
	1
	RA: 0.3536 * Clip3(2.0, 4.0, (QP-12)/6.0)
LD: 0.4624 * Clip3(2.0, 4.0, (QP-12)/6.0)

	4
	3
	B
	0
	RA: 0.68 * Clip3(2.0, 4.0, (QP-12)/6.0)

6.1.4.2 Weighting factor for chroma component
The following weighting parameter wchroma is used to derive lambda value
[image: image35.wmf]chroma

l

to be used for chroma-specific decisions in RDOQ, SAO and ALF process.

[image: image36.wmf](

)

3

/

QP

QP

chroma

chroma

2

-

=

w

(6‑8)
With this parameter,
[image: image37.wmf]chroma

l

is obtained by

[image: image38.wmf]chroma

mode

/

w

chroma

l

l

=

(6‑9)
Note that the parameter wchroma is also used to define cost function to be used for mode decision in order to weight chroma part of SSE.
6.1.4.3 SAD based cost function for prediction parameter decision
The cost for prediction parameter decision Jpred,SAD is specified by the following formula.

Jpred,SAD =SAD + λpred * Bpred,

(6‑10)
where Bpred specifies bit cost to be considered for making decision, which depends on each decision case. λpred and SAD are defined in the section 6.1.4.1 and 6.1.2, respectively.
6.1.4.4 SATD based cost function for prediction parameter decision
The cost for motion parameter decision Jpred,SATD is specified by the following formula.

Jpred,SATD =SATD + λpred * Bpred,

(6‑11)
where Bpred specifies bit cost to be considered for making decision, which depends on each decision case. λpred and SATD are defined in the section 6.1.4.1 and 6.1.3, respectively.
6.1.4.5 Cost function for mode decision
The cost for mode decision Jmode is specified by the following formula.

Jmode =(SSEluma+ wchroma *SSEchroma)+ λmode * Bmode,

(6‑12)
where Bmode specifies bit cost to be considered for mode decision, which depends on each decision case. λmode and SSE are defined in the section 6.1.4.1 and 6.1.1, respectively.
6.2 Encoder configurations

6.2.1 Overview of Encoder Configurations

The HM encoder works with two sets of encoder configurations, designated High Efficiency (HE) and Low Complexity (LC), as defined in the JVC-VC test condition document [7].

6.2.2 High Efficiency (HE) coding

Coding tools for HE coding configuration are chosen to obtain high compression performance as its primary target. It supports a bit depth increase up to 10 bit, full capability of loop-filtering process including ALF and CABAC as entropy coder.
6.2.3 Low Complexity (LC) coding

Coding tools for LC coding configuration are chosen to obtain reasonably high compression performance while keeping codec complexity to be low. Compared with HE coding tools, main differences are no bit depth increase, no support of ALF and the use of CAVLC as its entropy coding.
6.3 Temporal Prediction Structure
The HM encoder works with three kinds of temporal prediction structures depending on experimental conditions, as defined in the JVC-VC test condition document [7]. Reference picture list management should depend on each temporal configuration.

6.3.1 Intra-only configuration

In the test case for Intra-only coding, each picture in a video sequence shall be encoded as IDR picture. No temporal reference pictures shall be used. It is not allowed to change QP during a sequence within a picture. Figure 6‑1 gives graphical presentation of Intra-only configuration. The number associated with each picture represents encoding order.

[image: image39.emf]

QPI

time

0135

7

2 64 8

IDR Picture

QPI

・・・・・

Figure 4‑1 Graphical presentation of Intra-only configuration

6.3.2 Low-delay configurations
Two kinds of low-delay coding configurations have been defined for testing coding performance in low-delay mode. For these low-delay coding conditions, only the first picture in a video sequence shall be encoded as IDR picture. In mandatory low-delay test condition, the other successive pictures shall be encoded as Generalized P and B-picture (GPB). The GPB shall be able to use only the reference pictures, each of whose POC is smaller than the current picture (i.e., all reference pictures in RefPicList0 and RefPicList1 shall be temporally previous in display order relative to the current picture). The contents of RefPicList0 and RefPicList1 shall be identical, and they shall be updated with sliding-window management process. Reference picture list combination is used for management and entropy coding of reference picture index. Figure 6‑2 shows graphical presentation of Low-delay configuration that is mandatory for performance evaluation in any CEs. The number associated with each picture represents encoding order. QP of each inter coded picture shall be derived by adding offset to QP of Intra coded picture depending on temporal layer. In the additional non-normative low-delay condition, all inter pictures shall be coded as P-picture, where only the content of RefPicList0 is used for inter prediction.

[image: image40.emf]

QPI

QPB

L1

=QPI+1QPB

L1

=QPI+1

QPB

L2

=QPI+2

QPB

L3

=QPI+3

time

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L2

=QPI+2

0

1357

2

4

6

8

IDR or Intra

Picture

GPB(GeneralizedP

and B) Picture

Figure 4‑2 Graphical presentation of Low-delay configuration
6.3.3 Random-access configuration

For the random-access test condition, hierarchical B structure shall be used for coding. Figure 6‑3 shows graphical presentation of Random-access configuration. The number associated with each picture represents encoding order. Intra picture shall be inserted cyclically per about one second. The first intra picture of a video sequence shall be encoded as IDR picture and the other intra pictures shall be encoded as non-IDR intra pictures (“Open GOP”). The pictures located between successive intra pictures in display order shall be encoded as B-pictures. The GPB picture shall be used as the lowest temporal layer that can refer to I or GPB picture for inter prediction. The second and third temporal layers consists of referenced B pictures, and the highest temporal layer contains non-referenced B picture only. QP of each inter coded picture shall be derived by adding offset to QP of Intra coded picture depending on temporal layer. Reference picture list combination is used for management and entropy coding of reference picture index.

[image: image41.emf]

QPI

QPB

L1

=QPI+1

QPB

L2

=QPI+2

QPB

L3

=QPI+3

QPB

L4

=QPI+4

GPB(GeneralizedP

and B) Picture

time

Referenced B

Picture

Non-referenced B

Picture

0

5678

3 4

2

1

IDR or Intra

Picture

Referenced B

Picture

Figure 4‑3 Graphical presentation of Random-access configuration

6.4 Input bit depth modification

When the Main configuration is used for a 10-bit source, each 10-bit source sample x is converted prior to encoding to an 8-bit value (x+2) / 4 clipped to the [0,255] range. Similarly when the HE10 configuration is used for an 8-bit source, each 8-bit source sample x is converted prior to encoding to a 10-bit value 4*x. This behaviour is built into the reference encoder and no external conversion program is required [8].
6.5 Slice partitioning operation

The HM encoder can configure the depth in an LCU at which slices may begin and end, provided that CUs at the given depth are of size 16x16 or larger. For 64x64 LCUs, this means that the maximum allowed depth is 2 since that gives a CU of 16x16 which is the smallest allowed.

The HM encoder has two ways of determining slice size. One is to specify the maximum number of CUs at the determined depth in a slice. The other is to specify the number of bytes in a slice.

The HM encoder has also an option to enable entropy slice coding. In this case, the size of a slice can be specified as the maximum number of CUs in a slice, or by the number of bytes (CAVLC case) or bins (CABAC case) in a slice.

6.6 Tile partitioning operation

[Ed. note: need description on what kind of tile partitioning operation is available in HM5 encoder.]
6.7 Wavefront parallel encoding

[Ed. note: need description.]
6.8 Derivation process for Slice-level coding parameters

6.8.1 Sample Adaptive Offset (SAO) parameters

In the HM encoder, the following process is performed to determine the SAO parameters:
1. Decide the maximum partitioning level-L according to picture size.
2. Divide a picture into multiple regions with LCU-aligned boundaries according to partitioning rules.
3. Collect the statistical information of all SAO types in each region.
4. Derive the SAO parameters of all SAO types in each region at level-k.

5. Select the SAO type with the lowest rate-distortion (RD) cost for current region at level-k.

6. Combine the statistical data of child regions at level-k into one parent region at level-(k-1).
7. Decide whether the child regions are merged into parent region according the RD-cost.

8. Run step 4, 5, 6, and 7 form level-L to level-0 (level-0 represent that a picture is a sigle partition).
9. Update luma DPB when the offsets of Luma component are added.

First, the the maximum partitioning level L is determinated. Second, the encoder divides a picture into regions according to the region partition rules as follows:

Divide the current region into four regions, upper-left, upper-right, down-left, and down-right with following parameters.
(a) Wp is the number of LCUs in parent region width.
(b) Hp is the number of LCUs in parent region height.
(c) Wul is width of the upper-left region which contains floor(Wp/2) LCUs.
(d) Hul is height of the upper-left region which contains floor(Hp/2) LCUs.
(e) Wur is width of the upper-right region which contains (Wp-floor(Hp/2)) LCUs.
(f) Hur height of the upper-right region which contains floor(Hp/2) LCUs.
(g) Wdl is width of the down-left region c which contains floor(Wp/2) LCUs.
(h) Hdl height of the down-left region which contains (Hp- floor(Hp/2)) LCUs.
(i) Wdr is width of the down-left region which contains (Wp- floor(Wp/2)) LCUs.
(j) Hdr is height of the down-left region which contains (Hp- floor(Hp/2)) LCU.
Further divide each region into four regions according to the previous rule until the maxmun level-L is reached.

According the result of region partitioning, the statistical information can be collected and the estimated distortion reduction can be obtained by using the statistical information. The variables N, O, and E are described as follows. Nl,i,t,c represents the number of pixels in level-l, region i, type t, and category c. Ol,i,t,c represents the corresponding offset value to be added for the categoried pixels. El,i,t,c represents sum of difference between original signal and reconstructed signal. Rl,i,t represents the estimated bits of corresponding offset.The estimated distortion reduction
[image: image42.wmf]t

i

l

D

,

,

 for level-l, region-i and type-t can be calculated by the following equation

[image: image43.wmf](

)

å

Î

-

=

t

c

c

t

i

l

c

t

i

l

c

t

i

l

c

t

i

l

t

i

l

E

O

O

N

D

,

,

,

,

,

,

,

,

,

2

,

,

,

,

,

2

,

(6-14)
where c is the number of categories in SAO type-t. After the estimated distortion reduction is obtained, we can calculate the estimated RD-cost by using equation (6-14), where
[image: image44.wmf]l

 is the Lagrange multiplier.

[image: image45.wmf]t

i

l

t

i

l

t

i

l

R

D

J

,

,

,

,

,

,

l

+

=

(6-15)
The encoder will choose one SAO type with the lowest estimated RD-cost (6-15) in level-l and region-i according to equation (6-17), where T is a set of SAO type which can be selected for current region. Note that the estimated RD-cost should be less than zero because the D means delta distortion; otherwise, the current region will disable SAO processing.

[image: image46.wmf])

(

min

,

,

,

t

i

l

t

i

l

J

J

T

Î

=

(6-16)

[image: image47.wmf])

(

min

arg

,

,

,

t

i

l

t

i

l

J

t

T

Î

=

(6-17)
After the best SAO type with the minimum cost for each region is obtained, the encoder will try to merge four sub-regions into one merged region according to equation (6-18) and (6-19), where
[image: image48.wmf]i

l

J

,

'

 and
[image: image49.wmf]i

l

t

,

'

 represent the updated RD-cost and the updated SAO type after merging. Note that
[image: image50.wmf]i

l

,

W

 represents a set of sub-regions in level-l and region-i.

[image: image51.wmf])

,

(

min

'

,

,

1

,

,

i

l

k

k

l

i

l

J

J

J

i

l

å

W

Î

+

=

(6-18)

[image: image52.wmf])

,

(

min

arg

'

,

,

1

,

,

i

l

k

k

l

t

i

l

J

J

t

i

l

å

W

Î

+

Î

=

T

(6-19)
According the merge result of each region, the spilt flag of each region is determined by (6-20).

[image: image53.wmf]ï

î

ï

í

ì

<

=

å

+

W

Î

+

otherwise

,

0

if

,

1

,

,

1

,

,

1

i

l

k

k

l

i

l

J

J

s

i

l

,

(6-20)
where sl,i equals to 1 represent that current region will be spiltted into sub-regions, otherwise the current region will be a leaf region without splitting. After all regions in current level are processed, the encoder will process merge in each level for level-L to level-0. Accoding to the split flags, the encoder can decide that current is a leaf region or not. Finally, the SAO parameters of all leaf regions can be obtained and the corresponding offset values can be added to the reconstructed signal to update Luma DPB.
6.8.2 Adaptive Loop Filter (ALF) parameters

[Ed. Note: Need to describe

· Encoding of ALF parameters that refers to CU split status

· For LC test, this process shall not be invoked and the syntax element for ALF does not exist in coded bitstream.]
[Ed. Note: Need to align expression of cost functions used in ALF encoding process with the one defined in section 6.1.]

In the HM encoder, the ALF parameters for luma component can be determined by 16 or 1 filtering passes through the encoder configuration. The following process is performed to determine ALF parameters for luma componenet if 16-pass encoding scheme is configured:

1. Derive luma pixel classifications of the BA and the RA modes according to section 6.5.2.1.

2. Derive filter coefficients for the BA and the RA modes and apply the filters respectively according to section 6.5.2.2.

3. Decide the luma pixel classification mode according to the filtering RD cost.

4. Encode filter coefficients according to section 6.5.2.3.

5. Decide an ALF control map including the depth of CU splitting for the designed filter according to section 6.5.2.4.

6. Decide the number of taps for luma filters by 3 re-design filter processes according to section 6.5.2.2.

7. Update luma DPB by filtered or not-filtered blocks based on the ALF control map.

The following process is performed to determine ALF parameters for luma component if 1-pass encoding scheme is configured:

1. Derive luma pixel classifications of the BA and the RA modes according to section 6.5.2.1.

2. Decide the luma pixel classification mode and the filter coefficients by estimating filtering RD cost according to section 6.5.2.5.

3. Encode filter coefficients according to section 6.5.2.3.

4. Decide an ALF control map including the depth of CU splitting for the designed filter according to section 6.5.2.4.

5. Update luma DPB by filtered or not-filtered blocks based on the ALF control map.

After the ALF parameters for luma component are derived and if ALF is decided to be applied, the following process is performed to determine ALF parameters for chroma components:

1. Derive filter coefficients for Chroma (Cb and/or Cr) using all chroma blocks in a slice according to section 6.5.2.2.

2. Decide which compoment(s) is (are) filtered according to section 6.5.2.6.

3. Update chroma DPB when the chroma component(s) is (are) filtered.

6.8.2.1 Derivation of luma pixel classifications
There are two different filter adaptation modes in ALF. One is block-based adaptation (BA), and the other is region-based adaptation (RA). The former is to classify 4x4 blocks of one picture into 16 categories based on the block activity and direction, and the latter is to divide one picture into 16 regions according to the 4x4 block position. The category derivations in two filter adaptation modes are introduced in the following, respectively.

 The category derivation in the BA mode for one 4x4 block with the top-left pixel position [xC, yC]:

1. The variables varTemp1[x][y], varTempH[x][y], and varTempV [x][y] with x, y = -1..4 are derived as

varTempH[x][y] = | (s’[xC+x, yC+y] << 1) – s’[xC+x-1, yC+y] – s’[xC+x+1, yC+y] |

varTempV[x][y] = | (s’[xC+x, yC+y] << 1) – s’[xC+x, yC+y-1] – s’[xC+x, yC+y+1] |

varTemp1[x][y] = varTempH[x][y] + varTempV[x][y]

 where s’[x, y] is the pixel value in the reconstructed picture.

2. The variable varTemp2[x, y] with x, y = 0..3 is derived as

varTemp2[x][y] = (i(j varTemp1[x + i][y + j] with i, j = -1..1

3. The variables varTemp3, varTempH1, and varTempV1 are derived as

varTemp3 = ((i(j varTemp2[i][j]) >> 4 with i, j = 0..3

varTempH1 = (i(j varTempH[i][j] with i, j = 0..3

varTempV1 = (i(j varTempV[i][j] with i, j = 0..3

4. The filter index fIdx[xC, yC] for this 4x4 block is derived as

avg_var = Clip3(0, 15, (varTemp3 * 114)>> (3 + BitDepthY))

fIdx[x][y] = Clip3(0, 4, var_tab[avg_var]) + 5 * direction

where

var_tab[16] = {0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4}

direction = 0

if (varTempV1 > (varTempH1<< 1))

 direction = 1

else if (varTempH1 > (varTempV1 << 1))

 direction = 2

The category derivation in the RA mode for one 4x4 block with the top-left pixel position [xC, yC]:

fIdx[xC][yC] = region_tab[(y_idx << 2) + x_idx]

where

region_tab[16] = {0, 1, 4, 5, 15, 2, 3, 6, 14, 11, 10, 7, 13, 12, 9, 8}

x_interval = ((((PicWidthInSamplesL + (1<<Log2MaxCUSize) – 1)) >> Log2MaxCUSize) + 1) >> 2)

y_interval = ((((PicHeightInSamplesL + (1<<Log2MaxCUSize) – 1)) >> Log2MaxCUSize) + 1) >> 2)

x_idx = min (3, Floor((xC) / (x_interval<< Log2MaxCUSize)))

y_idx = min (3, Floor((yC) / (y_interval<< Log2MaxCUSize)))

where PicWidthInSamplesL and PicHeightInSamplesL are picture width and height in Luma, respectively, and 1<<Log2MaxCUSize is the max size of the coding unit.
6.8.2.2 Derivation of filter coefficients and applying the filter
Filter coefficients for each class are derived based on Wiener-based filter design. A cross-correlation matrix
[image: image54.wmf]0

,

j

C

 between the original pixels and the reconstructed pixels and an auto-correlation matrix
[image: image55.wmf]j

i

A

,

 of the reconstructed pixels are created for each class for the range of tap length of the filter. All pixels in a slice or pixels that are marked as filtered (by alf_cu_flag) during the re-design process of filter coefficients are used to calculate the correlation matrix.

 Based on the correlation matrix, filter coefficients for each class are derived by solving the following simultaneous equations:

[image: image56.wmf]0

,

1

0

,

j

N

i

j

i

i

C

A

w

=

å

-

=

 for j = 0 .. N-1

(6‑13)
where N is the number of filter coefficients,
[image: image57.wmf]i

w

 is the filter coefficients to be derived.

Estimated distortion is calculated for each class according to the following equation:

[image: image58.wmf]å

å

å

-

=

i

i

i

i

j

j

i

j

i

C

w

A

w

w

D

0

,

,

2

(6‑14)
When deriving luma filter coefficients, class merging is performed by deriving filter coefficients and estimating the distortion (for all pixels in a slice or pixels that are marked as filtered).

When the filter coefficients are designed, a 2-D FIR filtering is performed on all pixels in a slice, and the real rate-distortion cost can be calculated. The filter coefficients are encoded according to section 6.5.2.3.
6.8.2.3 Encoding of filter coefficients
Filter coefficients for luma are encoded directly or predictively. Coefficients of the first filter are encoded directly by exponential golomb code. When the number of filters is more than one, encoding of coefficients of the other filters is decided according to the number of bits to signal the coefficients directly or predictively by exponential golomb code.

Filter coefficients for chroma are encoded directly by exponential golomb code.

6.8.2.4 Derivation of ALF control map
An ALF control map that controls filter adaptation is decided. The control map consists of filter adaptation flags for multiple of blocks, where the blocks are synchronized with CU except that the depth of splitting from TB is restricted by alf_cu_control_max_depth.

For depth from 0 to the maximum depth of TB splitting, the following two SSEs of each block are calculated:

SSErecon = (org(i,j) – recon(i,j))2

SSEalf = (org(i,j) – filt(i,j))2
where org(i,j), recon(i,j) and filt(i,j) correspond to the original pixels, the reconsructed pixels and the filtered pixels. If SSEalf is smaller than SSErecon, the block is marked as filtered (i.e. alf_cu_flag for the block is set to 1). Otherwise, the block is marked as not-filtered (i.e. alf_cu_flag for the block is set to 0). The distortion for the depth is calculated for all blocks in the slice based on above block based SSE values (i.e., adding min(SSErecon, SSEalf) over all blocks). The best depth is decided according to the following RD decision:

RDCost = SSEalf_total + λRmap

where Rmap is the number of bits to signal alf_cu_flag for a slice. In this derivation process, the number of re-design process of filter coefficients is based on the number of filtering passess setting in encoder configuration. For 16-pass encoding scheme, 3 iterations of re-design filter process in each depth (total 4 possible depths of TB splitting) are applied; that is, there are total 12 filtering passes in this stage. As for 1-pass encoding scheme, there is no re-design filter process in this stage.
6.8.2.5 Decision of luma pixel classification and filter coefficients by estimating filtering RD cost in 1-pass encoding
The following process is performed to determine the filter coefficients for BA or RA mode:

1. Initialize the ALF control map. For I slice, all blocks are marked as filtered; otherwise, the ALF control map may be initialized by the filter derived for previous slice according to section 6.5.2.5.1.

2. Derive 3 filters with alfTap = {5, 7, 9} according to 6.5.2.2.

3. Decide the best filter from 3 candidates in stage 2 by estimating their RD costs according to 6.5.2.5.2.

4. Store the best filter into filter buffer if there is no filter buffer update in stage 1.
During the above process, the estimated cost (in stage 3) is derived for those blocks marked as filtered. For those blocks marked as not-filtered, the distortion can be obtained by calculating SSErecon. Let the estimated RD cost of filtered blocks and the distortion of non-filtered blocks be denoted as Jest(m) and Dnon-filtered(m) respectively, where m is BA or RA mode. Therefore, the estimated RD cost of luma pixel classification mode m is Jest(m)+Dnon-filtered(m). The decision of luma pixel classification can be made by the following equation:

[image: image59.wmf])}

(

)

(

min{

arg

}

,

{

*

m

D

m

J

m

filtered

non

est

RA

BA

m

-

=

+

=

, (6-14)
,where m*is the best luma pixel classification mode.

6.8.2.5.1 Initialization of ALF control map by the filter derived for previous slice in 1-pass encoding
The filter coefficients derived for previous slices were stored in filter buffers. 2 filters are chosen from the filter buffers and applied to the picture respectively. From these 2 filtered results, the one with the minimum RD cost is selected and its ALF control map is derived according to 6.5.2.4. Based on the ALF control map, a new filter with alfTap = 9 is derived from those blocks marked as not-filtered, and then stored into filter buffer.
6.8.2.5.2 Estimation of filtering RD cost for the filtered blocks in 1-pass encoding

Following the same notation in (6-13), the estimated filtering RD cost is calculated by

[image: image60.wmf]f

j

i

i

i

i

i

j

j

i

j

i

est

R

j

i

org

C

w

A

w

w

J

l

+

+

-

=

å

å

å

å

Î

K

)

,

(

2

0

,

,

)

,

(

2

,

(6-15)
,where org(i, j) corresponds to original pixels, K is the set of pixel positions that marked as filtered, and Rf is the coding bitrate of ALF parameters.
6.8.2.6 Decision of chroma component(s) to be filtered
It is decided which chroma component (U and/or V) may be filtered according to the distortion of the filtered pixels. Filter adaptation to the chroma component(s) is (are) decided according to RD decision, where the rate is the number of bits to signal filter coefficients for chroma.
· Ask proponents of ALF related adoptions to provide update

6.8.3 Rounding control

[Editor’s note: Text of C253 should be summarized here.]
6.9 Derivation process for CU-level and PU-level coding parameters

6.9.1 Intra prediction mode and parameters

The unified intra coding tool provides up to 34 angular and planar prediction modes for luma component of different PUs. With the PU size of 4x4, 8x8, 16x16, 32x32 and 64x64, there are 17, 34, 34, 34 and 34 angular prediction modes available respectively for luma. The best intra prediction mode for luma component of each PU is derived as follows. Firstly, a rough mode decision process is performed. Prediction cost Jpred,SATD specified in the section 6.1.4.4 is computed for all possible prediction modes and pre-determined number of intermediate candidates are found per each PU size (8 for 4x4-8x8 PU, 3 for other PU sizes) resulting in least prediction costs. In this rough decision process, number of coded bits for intra prediction mode is set to Bpred. Then, RD optimization using the coding cost Jmode specified in the section 6.1.4.5, is applied to the candidate modes selected by the rough mode decision and MostProbableMode. During this RD decision, prediction parameters and coefficients for luma component of the PU are accumulated into Bmode. Concerning chroma mode decision, all possible intra chroma prediction modes are evaluated through RD decision process, where coded bits for intra chroma prediction mode and chroma coefficient are used as Bmode.

6.9.2 Inter prediction mode and parameters

6.9.2.1 Derivation of motion parameters

In the HM encoder, an inter-coded CU can be segmented into multiple inter PUs, each of which has a set of motion parameters consisting of more than one motion vectors (per each RefPicListX), corresponding reference picture indices(ref_idx_lX) and prediction direction index (inter_pred_flag). Note that the current common test conditions those includes inter prediction coding are adopting reference picture list combination process, which is the case “X=c”. An inter-coded CU can be encoded with one of the following coding modes (“PredMode”): MODE_SKIP, MODE_INTER. For MODE_SKIP case, any sub-partitioning to smaller PUs is not allowed and its motion parameters are assigned to the CU itself, where the PU size is PART_2Nx2N. On the contrary, up to eight types of further partitioning to smaller PUs can be allowed for a CU coded with MODE_INTER. The PredMode and the CU partitioning shape (“PartMode”) are signaled by a CU level syntax element “part_type” as specified in Table 7-10 of the WD. For a MODE_INTER CU other than those having maximum depth, seven PU partitioning patterns (PART_2Nx2N, PART_2NxN, PART_Nx2N, PART_2NxnU, PART_2NxnD, PART_nLx2N and PART_nRx2N) can be selected. PART_NxN can only be chosen at maximum CU depth level but permission to set N to 4 is controlled by a specific flag in SPS(“inter_4x4_enabled_flag”). For each PU, PU-based Motion Merging (merge mode) or normal inter prediction with actually estimated motion parameters (inter mode) can be used. This section describes how luma motion parameters are obtained for each PU. It is noted that chroma motion vector shall be derived from luma motion vector of corresponding PU according to the normative process specified in section 8.4.2.1.10 of the WD, and the same reference picture index and prediction direction index as luma’s one shall be used in chroma components.
6.9.2.1.1 Motion Vector Prediction

For each PU, the best motion vector predictor is computed with the process specified as follows. Firstly, a set of motion vector predictor candidates for RefPicListX shall be derived with normative process specified in section 8.4.2.1.7 of the WD, by referring to motion parameters of neighbouring PUs. Then, the best one from the candidate set is determined by a criterion that selects a motion vector predictor candidate that minimizes the cost Jpred,SAD specified in the section 6.1.4.3, with setting the bits for an index specifying each motion vector predictor candidate to Bpred. The index corresponding to the selected best candidate is assigned to the mvp_idx_lX.

6.9.2.1.2 CU coding with MODE_SKIP
In the case of skip mode (i.e., PredMode == “MODE_SKIP”), motion parameters for the current CU(i.e., PART_2Nx2N PU) are derived by using merge mode. In this case, the motion parameters are determined by checking all possible merge candidates derived by the normative process specified in section 8.4.2.1.1 to 8.4.2.1.5 of the WD, and selecting the best set of motion parameters that minimizes the cost Jmode specified in the section 6.1.4.5. In this case, Bmode includes coded bits for skip_flag and merge_idx that signals position of the PU having the best motion parameters to be used for the current PU. Since prediction residual is not transmitted for skip mode, SSE is obtained by inter prediction samples.

6.9.2.1.3 CU coding with MODE_INTER
When a CU is coded with MODE_INTER, motion parameter decision for each PU is performed first based on the ME cost Jpred,SATD specified in the section 6.1.4.4.

For merge mode case, the motion parameter decision starts with checking availabilities of all neighbouring PUs to form merge candidates according to the normative process specified in the section 8.4.2.1.1 to 8.4.2.1.5 of the WD. If there is no available merge candidate, the HM encoder simply skips cost computation for merge mode and does not choose merge mode for the current PU. Otherwise(i.e., if there is at least one merge candidate), the ME cost Jpred,SATD specified in the section 6.1.4.4 is computed for all possible PUs as merge candidate and the best one is selected as the best motion parameters for the PU predicted with merge mode. SATD between source and prediction samples is used as distortion factor, and bits for merge_idx is set to Bpred.
For inter mode case, the best motion parameters are derived by invoking motion estimation process specified in the section 6.9.2.2. During the motion estimation process, the best motion parameters are obtained based on the cost function Jpred,SATD specified in the section 6.1.4.4, which is comparable with the cost of motion parameter derivation for merge mode. SATD between source and prediction samples is used as distortion factor, and bits for inter_pred_flag, ref_idx_lX, mvd_lX and mvp_idx_lX are set to Bpred.

After both of the best motion parameters are obtained, the best motion parameters are determined by comparing them and taking the better one that results in lower cost.
6.9.2.2 Motion estimation
6.9.2.3 In order to get motion vector for each PU, block matching algorithm (BMA) is performed at encoder. Motion vector accuracy supported in HEVC is quarter-pel. To generate half-pel and quarter-pel accuracy samples, interpolation filtering is performed for reference picture samples. Instead of searching all the positions for quarter-pel accuracy motion, integer-pel accuracy motion vector is obtained at first. For half-pel search, only 8 sample points around the motion vector which has the minimum cost are searched. Similarly, for quarter-pel search, 8 sample points around the motion which has the minimum cost so far are searched. The motion vector which has the minimum cost is selected as the motion vector of the PU. To get the cost, SAD is used for integer-pel motion search and SA(T)D is used for half-pel and quarter-pel motion search.
6.9.2.4 The rate for motion vector is obtained by utilizing pre-calculated rate table. In the following sub-sections, algorithms for integer-pel motion search is provided in detail.

6.9.2.5 Integer-pel accuracy motion search

6.9.2.6
6.9.2.7 To reduce search points for integer-pel motion, 3 step motion search strategy is used. Figure 4‑4 illustrates 3 step approach for integer-pel accuracy motion search.

[image: image61.wmf]Start position selection

First search

Refinement search

Best motion vector

Figure 4‑4 Three step motion search strategy for integer-pel accuracy

At first, start position of the search is selected. As a default, motion vector predictor (PMV) obtained by motion vector predictor derivation process is used. Optionally, motion vectors of neighbouring positions (A, B, and C), and zero motion can be checked. In the common test condition, only PMV is used as the start position of integer-pel search.
[image: image62.wmf]Examining

PMV

Adjacent MVs?

Examining adjacent MVs

(A, B, C)

Zero MV ?

Examining zero MV

Best start position

Figure 4‑5 Start position selection

As a second step, the first search is done using diamond search pattern or square search pattern. Currently, diamond search pattern is default, and square search pattern is used by changing input configuration. Additional raster search is performed when the difference between obtained motion vector and start position is too big. Currently, search range is set by 64 in integer-pel accuracy. Figure 4‑6 illustrates 3 search patterns used for the first search. Red circles represent current position and coloured squares represent candidate search positions for each pattern. Same colour means positions having same distance from the start position.
[image: image63.wmf]Diamond

Square

Raster

Figure 4‑6 Search patterns for the first search

Last step is refinement search. In this step, refinement search is performed by changing the start position to the best position from the second step. Also, diamond or square search is utilized, and refinement is stopped when 2 rounds are passed after best match.
Bi-predictive search strategy

In principle, bi-predictive motion search means to search two motion vectors which produce minimum error between original block (O) and predicted block with two prediction (P=P0+P1). In HM, practical strategy is implemented by utilizing iterative uni-predictive search. Bi-predictive search steps are as follows.
1) Search P1 which produces minimum error with (2O - P0), where O represents original block and P0 means predictor produced by the first motion vector. P0 is fixed in this step. To get motion vector for P1, uni-predictive motion search is utilized after setting (2O - P0) as reference samples.
2)
3)
4) Search P0 which produces minimum error with (2O – P1), where O represents original block and P1 means predictor produced by the second motion vector. P1 is the predictor obtained in step 1) and fixed in this step. To get P0, uni-predictive search is utilized after setting (2O – P1) as reference samples.
5)
6)
7) Iterate 1) and 2) until maximum number of iterations is reached. The maximum number of iteration is set by 4 unless the fast search option is enabled.
Fast search options
There are two options to accelerate motion estimation. The first one is using sub-sampled SAD for integer motion search. This option is only used for blocks which have larger number of rows than 8. In this method, only samples in odd-number rows are involved for SAD calculations. The second option is reducing number of iterations for bi-predictive motion search. The number of iteration is set by 4 unless the fast search option is enabled.

6.9.2.8 Decision process on AMP mode evaluation procedure
For encoder speed up, additional conditions are checked before doing motion estimation for AMP. If the certain conditions are met, additional motion estimation for AMP can be skipped. Conditions of mode skipping are based on the two values: the best partition mode (PartMode) before AMP modes are evaluated and the PartMode and prediction mode (PredMode) at lower level in CU quad-tree, so called, parent CU, which contains current PU. Conditions and actions are specified in Table 4-2. Related contribution is [10].
Table 4‑2 – Conditions and actions for fast AMP mode evaluation
	Conditions
	Actions

	The best PartMode is SIZE_2NxN
	Try SIZE_2NxnU and SIZE_2NxnD

	The best PartMode is SIZE_Nx2N
	Try SIZE_nLx2N and SIZE_nRx2N

	The best PartMode is 2Nx2N &&
!merge mode && ! skip mode
	Try all AMP modes

	PartMode of parent CU is AMP mode
	Try merge mode only for all AMP modes

	PartMode of parent CU is PART_2Nx2N && parent CU is not skipped
	Try merge mode only for all AMP modes

	PredMode of parent CU is intra && the best PartMode is SIZE_2NxN
	Try merge mode only for SIZE_2NxnU and SIZE_2NxnD

	PredMode of parent CU is intra && the best PartMode is SIZE_Nx2N
	Try merge mode only for SIZE_nLx2N and SIZE_nRx2N

	Size of current CU is 64x64
	No AMP modes are evaluated

6.9.3 Intra/Inter/PCM mode decision

For inter coded CUs, the following mode decision process is conducted in the HM encoder. Its schematic is also shown in Figure 4‑4. Please refer to contributions about early termination for Early_CU condition, CBF_Fast condition, and Early_SKIP condition [11]

 REF _Ref322607041 \n \h
[12]

 REF _Ref322607042 \n \h
[13].
1. Coding costs (Jmode) for MODE_INTER with PART_2Nx2N is computed and Jmode is set to minimum CU coding cost J.
2. Check if motion vector difference of MODE_INTER with PART_2Nx2N is equal to (0, 0) and MODE_INTER with PART_2Nx2N contains no non-zero transform coefficients (Early_SKIP condition). If both are true, proceed to 17 with setting the best interim coding mode as MODE_SKIP. Otherwise, proceed to 3.
3. Check if MODE_INTER with PART_2Nx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2Nx2N. Otherwise, proceed to 4.
4. Jmode for MODE_SKIP is evaluated and J is set equal to Jmode if Jmode < J.
5. Check if the current CU depth is maximum and the current CU size is not 8x8 when inter_4x4_enabled_flag is zero. If the conditions are true, proceed to 6. Otherwise, proceed to 7.

6. Jmode for MODE_INTER with PART_NxN is evaluated and J is set equal to Jmode if Jmode < J. After that, check if MODE_INTER with PART_NxN contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_NxN. Otherwise, proceed to 7.
7. Jmode for MODE_INTER with PART_Nx2N is evaluated and J is set equal to Jmode if Jmode < J. After that, check if MODE_INTER with PART_Nx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_Nx2N. Otherwise, proceed to 8.
8. Jmode for MODE_INTER with PART_2NxN is evaluated and J is set equal to Jmode if Jmode < J. After that, check if MODE_INTER with PART_2NxN contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2NxN. Otherwise, proceed to 9.
9. Invoke a process to determine AMP mode evaluation procedure specified in 6.9.2.3. Output of this process is assigned to TestAMP_Hor and TestAMP_Ver. TestAMP_Hor specifies whether horizontal AMP modes are tested with specific ME or tested with merge mode or not tested. TestAMP_Ver specifies whether vertical AMP modes are tested with specific ME or tested with merge mode or not tested.

10. If TestAMP_Hor indicates that horizontal AMP modes are tested, MODE_INTER with PART_2NxnU is evaluated with procedure suggested by TestAMP_Hor and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_2NxnU contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2NxnU. Otherwise, MODE_INTER with PART_2NxnD is evaluated with procedure suggested by TestAMP_Hor and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_2NxnD contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_2NxnD. Otherwise, proceed to 11.
11. If TestAMP_Ver indicates that vertical AMP modes are tested, MODE_INTER with PART_nLx2N is evaluated with procedure suggested by TestAMP_Ver and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_nLx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_nLx2N. Otherwise, MODE_INTER with PART_nRx2N is evaluated with procedure suggested by TestAMP_Ver and J is set equal to the resulting coding cost Jmode if Jmode < J. After that, check if MODE_INTER with PART_nRx2N contains no non-zero transform coefficients (CBF_Fast condition). If the condition is true, proceed to 17 with setting the best interim coding mode as MODE_INTER with PART_nRx2N. Otherwise, proceed to 12.
12. MODE_INTRA with PART_2Nx2N is evaluated by invoking the process specified in 6.9.1, only when at least one or more non-zero transform coefficients can be found by using the best interim coding mode. J is set equal to the resulting coding cost Jmode if Jmode < J.

13. Check if the current CU depth is maximum, If the condition is true, proceed to 14. Otherwise, proceed to 15.
14. MODE_INTRA with PART_NxN is evaluated by invoking the process specified in 6.9.1, only when the current CU size is larger than minimum TU size. The resulting coding cost Jmode is set to J if Jmode < J.

15. Check if the current CU size is greater than or equal to the minimum PCM mode size specified by the log2_min_pcm_coding_block_size_minus3 value of SPS parameter. If the condition is true, proceed to 16. Otherwise, proceed to 17.
16. Check if any of the following conditions are true. If the condition is true, PCM mode is evaluated and J is set equal to the resulting coding cost Jmode if Jmode < J.

· Bit cost of J is greater than that of the PCM sample data of the input image block.
· J is greater than bit cost of the PCM sample data of the input image block multiplied by λmode.
17. Update bit cost Bmode by adding bits for CU split flag and re-compute minimum coding cost J.
18. Check if the best interim coding mode is MODE_SKIP (Early_CU condition). If the condition is true, do not proceed to the recursive mode decision at next CU level. Otherwise, go to next CU level of recursive mode decision if the current CU depth is not maximum.

[image: image65.emf]INTER_2Nx2N

Early_SKIP

SKIP

INTRA_2Nx2NINTRA_NxN

TestAMP_Ver

TestAMP_Hor

No

Yes

No

Yes

No

PCM

xCompressCUxCompressCUxCompressCUxCompressCU

Early_CU

No

END

Yes

Yes

START

Recursive call

INTER_Nx2NINTER_2NxN

INTER_2NxnUINTER_2NxnD

INTER_NxN

INTER_nLx2NINTER_nRx2N

CBF_Fast

YesNo

Refer 6,7,8,10,11

Refer 5,14

19. Figure 4‑5 The schematic of Intra/Inter/PCM mode decision
For the computation of Jmode except for PCM mode, residual signal is obtained by subtracting intra or inter prediction samples from source samples and is coded with transform and quantization with quad-tree TU partitioning as specified in the section 4.10. Bits for side information (skip_flag, merge_flag, merge_idx, pred_type, pcm_flag, inter_pred_flag, reference picture indices, motion vector(s), mvp_idx, intra prediction mode signaling) and residual coded data are considered as Bmode. SSEluma and SSEchroma are obtained by using local decoded samples, except for MODE_SKIP case where prediction sample is used as local decoded samples.

For the computation of Jmode for PCM mode, bits for side information (skip_flag, pred_type, pcm_flag, pcm_alignment_zero_bit) and PCM sample data are considered as Bmode. SSEluma and SSEchroma are set to 0. (Note that in current test conditions, the PCM mode decision processes in (15) and (16) are skipped since the minimum PCM mode size is 128.)
This CU level mode decision is recursively performed for each CU depth and final distribution of CU coding modes is determined at LCU level.

6.10 Derivation process for TU-level coding parameters

6.10.1 Residual Quad-tree partitioning

[Editor’s note: Non-normative description of C311 & C319 should be summarized here.]

6.10.2 Rate-Distortion Optimized Quantization

[Editor’s note: This section described RDOQ applied to PIPE. Additional description for RDOQ applied to VLC may be considered. Similarly this section does not describe RDOQ applied to chroma.]
[Editor’s note: PIPE related description needs to be removed. Does the current description fit to software implementation for other aspects?]
The basic idea behind trellis-based rate distortion optimized quantization (RDOQ) is to perform a soft decision quantization for a given coefficient given both its impact on the bitrate and quality. In the HM, RDOQ is applied to PIPE in a similar manner as it was applied to CABAC in H264/AVC.

To estimate the number of bits required to code a coefficients, we use the tabularized values of entropy of the probabilities corresponding to states in PIPE coding engine. But, the PIPE algorithm uses the context modeling (PIPE context model is currently the same as in CABAC). That is, the coding of current coefficient in a block is related to the state of previous coded coefficients.

The RDO-Q is closely related to the context modeling for residual coding. Residual coding by PIPE includes two parts, i.e., coding a so-called significance map and coding non-zero coefficients. Given a zigzag ordered sequence of transform coefficients, its significance map is a binary sequence which indicates the occurrence and location of the non-zero coefficients. The context modeling for coding the significance map is associated with the zig-zag order, and is easy to be included in RDO-Q. The context modeling for coding non-zero coefficients, however, is complicated. For a given sequence, there are in total 10 contexts for coding non-zero coefficients, with 5 of them for coding the first bit of a binary representation and the other 5 dedicated to coding the second to 14th bits. Briefly, contexts are selected as follows,

1. Scan the sequence in the inverse order to initiate two parameters as NumLg1 and NumEq1. NumLg1 is the number of coefficients that are greater than 1 while NumEq1 accords to those equal to one.

2. The context for the first bit is determined by

[image: image66.png] (12)

3. The context for the 2-14th bits is selected by

[image: image67.png] (13)

There is also a bypass mode with a fixed distribution. Other bits in the binary representation use the bypass mode.

[image: image68.png]
Figure 4‑6 – Graph structure for RDO quantization based on CABAC in H.264/AVC
In order to solve the minimization problem, a graph-based algorithm is used to address the computation of the rate function R(.) of PIPE. As shown in Figure 6‑443, the graph is constructed based on coding features of PIPE. Basically, states are defined based on the context model selection. Thus, states are named by values of NumEq1and NumLg1, as of NumEq1_NumLg1 , e.g., 2_0 accords to NumEq1 = 2 and NumLg1 = 0. When NumLg1 > 0, the context is irrelevant to NumEq1. Thus, there are three states as X_1, X_2, and X_3. The context is fixed for allNumLg1 ≥4. Accordingly, one state X_X is defined. For a 4×4 luma block, there are 16 columns, each of them corresponding to one coefficient. In each column there are up to 8 states. Transitions are established between states according to the increase of NumEq1 and NumLg1 , e.g., the state 1_0 is connected to 1_0, 2_0 and X_1according to a quantization output of 0, 1, or greater than 1, respectively. In case that the quantization output is greater than 1, parallel transitions are established so that each accords to a unique value. In practice, because the distortion is a quadratic function with respect to the quantization output, it is sufficient to investigate only a few parallel transitions. Thus the complexity is greatly reduced without sacrificing the optimality. Finally, a graph structure as shown in Figure 6‑443 is obtained.

The optimal RDO quantization design now becomes a problem to search for a path in the graph for the minimal RD cost. It is not hard to see that the above graph design allows an element-wise additive computation of the RD cost. The Viterbi algorithm is then used to do the search, which leads to the solution of the minimization problem.

To avoid searching within a full graph, a simplified RD optimized quantization (RDO-Q) scheme is applied:

In RDO-Q, assuming the transform coefficients before quantization are
[image: image69.wmf]i

c

, (i=0,…,M-1), then the quantized coefficients/levels
[image: image70.wmf]i

l

 (i=0,…,M-1) are calculated as follows:
For a given coefficient position k, k=M-1,…,0, assume that coefficient
[image: image71.wmf]k

c

 is the last significant coefficient in the block:

For each coefficient
[image: image72.wmf]i

c

, i=k-1,…,0, calculate its Lagrangian cost when the quantized value
[image: image73.wmf]i

l

 is equal to 0,
[image: image74.wmf]floor

l

 and
[image: image75.wmf]ceil

l

. The Lagrangian cost
[image: image76.wmf](

)

i

i

k

l

J

,

,

l

 when coefficient
[image: image77.wmf]i

c

 is quantized to
[image: image78.wmf]i

l

 is calculated as:

[image: image79.wmf](

)

(

)

(

)

i

i

i

i

i

k

l

bits

l

c

err

l

J

×

+

=

l

l

,

,

,

where
[image: image80.wmf](

)

i

i

l

c

err

,

 is the quantization error if the coefficient
[image: image81.wmf]i

c

 is quantized to value
[image: image82.wmf]i

l

 and
[image: image83.wmf](

)

i

l

bits

 is the number of bits needed to code
[image: image84.wmf]i

l

. The value of
[image: image85.wmf]floor

l

 and
[image: image86.wmf]ceil

l

are defined as (4x4 block as an example):

[image: image87.wmf](

)

)

2

/

,

6

%

|

(|

6

/

15

QP

i

floor

i

QP

Q

c

floor

l

+

×

=

[image: image88.wmf].

1

+

=

floor

ceil

l

l

Let the final quantized level
[image: image89.wmf](

)

i

i

k

l

opt

i

l

J

l

i

,

min

arg

,

,

l

=

 and update Lagrangian cost
[image: image90.wmf](

)

l

k

J

 using
[image: image91.wmf](

)

opt

i

i

k

l

J

,

,

,

l

.
The final quantized vector of quantized coefficients
[image: image92.wmf])

(

min

arg

l

k

k

opt

J

=

l

.

[image: image93.png]
Figure 4‑7 – Possible quantized values in RDO-Q
To speed up the algorithm the following simplifications are made:

For each coefficient
[image: image94.wmf]ij

c

 at most 3 possible values of level
[image: image95.wmf]ij

l

 are tested: 0,
[image: image96.wmf]floor

ij

l

 and
[image: image97.wmf]ceil

ij

l

. For 4x4 block values
[image: image98.wmf]floor

ij

l

and
[image: image99.wmf]ceil

ij

l

 are calculated as follows:

[image: image100.wmf](

)

,

2

/

,

,

6

%

|

|

6

/

15

QP

ij

float

ij

j

i

QP

c

l

+

×

=

Q

[image: image101.wmf](

)

,

float

ij

floor

ij

l

floor

l

=

[image: image102.wmf].

1

+

=

floor

ij

ceil

ij

l

l

To reduce complexity if coefficient
[image: image103.wmf]ij

c

 is closer (as measured by for example absolute distance between
[image: image104.wmf]float

ij

l

 and
[image: image105.wmf]floor

ij

l

or
[image: image106.wmf]ceil

ij

l

) to
[image: image107.wmf]floor

ij

l

 than to
[image: image108.wmf]ceil

ij

l

 only value
[image: image109.wmf]floor

ij

l

 is considered. If
[image: image110.wmf]ij

c

 is closer to level 0 than 1 it is assigned level 0 without any further analysis.

Let us assume that the coefficients in a given block are ordered using zigzag scanning, resulting in a one-dimensional ordered coefficient vector. We will denote the ordered coefficients as
[image: image111.wmf]i

c

, where i=0,...,M .

The quantized coefficients
[image: image112.wmf]i

l

are obtained in two passes. In the first pass it is determined which coefficient should be the last non-zero coefficient; this coefficient will be denoted as
[image: image113.wmf]k

c

. In the second pass we find final values of quantized coefficients assuming that coefficient
[image: image114.wmf]k

c

 is the last nonzero coefficient in the block.
Only coefficients
[image: image115.wmf]0

i

c

,…,
[image: image116.wmf]1

i

c

 are considered in the first pass, where

[image: image117.wmf]1

i

 is the largest value of i for which
[image: image118.wmf]5

.

0

>

float

i

l

.

[image: image119.wmf]0

i

 is the largest value of i for which
[image: image120.wmf]1

>

float

i

l

. If such index does not exist
[image: image121.wmf].

0

0

=

i

To reduce complexity value of
[image: image122.wmf]sum

J

 is pre-calculated as sum of quantization errors
[image: image123.wmf](

)

i

i

l

c

err

,

 when coefficients
[image: image124.wmf]i

c

,
[image: image125.wmf]1

0

,...,

i

i

i

=

, are quantized to
[image: image126.wmf]0

=

i

l

:

[image: image127.wmf](

)

å

=

=

1

0

0

,

i

i

i

i

sum

c

err

J

.

The first pass consists of following steps:

If for coefficient
[image: image128.wmf]0

i

c

,
[image: image129.wmf]5

.

1

0

>

float

i

l

:
Update value of
[image: image130.wmf]sum

J

:

[image: image131.wmf](

)

0

,

0

i

sum

sum

c

err

J

J

-

=

.

The approximation of RD Cost
[image: image132.wmf](

)

l

0

i

J

 of the block when
[image: image133.wmf]0

i

c

is the last nonzero coefficient is calculated as:

[image: image134.wmf](

)

(

)

0

1

0

=

=

-

×

+

=

last

last

sum

i

bits

bits

J

J

l

l

.

[image: image135.wmf]1

=

last

bits

 is the approximate number of bits required to indicate that
[image: image136.wmf]0

i

c

 is the last non-zero coefficient (i.e., number of bits to encode last_significant_coeff_flag equal to 1).
[image: image137.wmf]0

=

last

bits

 is approximate the number of bits required to indicate that
[image: image138.wmf]0

i

c

 is not the last non-zero coefficient (i.e., number of bits to encode last_significant_coeff_flag equal to 0).

The starting index
[image: image139.wmf]0

i

 is updated to
[image: image140.wmf]1

0

0

+

=

i

i

.

For coefficients
[image: image141.wmf]i

c

where
[image: image142.wmf]1

0

,...,

i

i

i

=

:

Update value of
[image: image143.wmf]sum

J

:

[image: image144.wmf](

)

0

,

i

sum

sum

c

err

J

J

-

=

.

Find RD Cost
[image: image145.wmf](

)

0

,

,

i

c

J

l

 when
[image: image146.wmf]i

c

 is quantized to 0.

If coefficients
[image: image147.wmf]i

c

is closer to 1 than to 0 calculate two additional values of RD Cost:

[image: image148.wmf](

)

1

,

,

0

i

last

c

J

l

=

 -
[image: image149.wmf]i

c

 is quantized to 1 and is not the last nonzero coefficient,

[image: image150.wmf](

)

1

,

,

1

i

last

c

J

l

=

 -
[image: image151.wmf]i

c

is quantized to 1 and is the last nonzero coefficient.

The approximation of RD Cost
[image: image152.wmf](

)

l

i

J

 when
[image: image153.wmf]i

c

 is the last nonzero coefficient is:

[image: image154.wmf](

)

(

)

1

,

,

1

i

last

sum

i

c

J

J

J

l

l

=

+

=

When calculating bits needed to code value of equal to 1 we fix context for greater_than_1 symbol to be one of the 5 possible values for all coefficients.
Update value of
[image: image155.wmf]sum

J

:

[image: image156.wmf](

)

(

)

(

)

1

,

,

,

0

,

,

min

0

i

last

i

sum

sum

c

J

c

J

J

J

l

l

=

+

=

The coefficient
[image: image157.wmf]k

c

 with the smallest corresponding value of
[image: image158.wmf](

)

l

k

J

 is assumed to be the last nonzero coefficient in the block.

In the second pass we find final values of quantized coefficients assuming that coefficient ck selected in the first pass is the last nonzero coefficient in the block. For each coefficient ci, i=k,…,0 we find value of level li for which RD Cost J(λ, ci, li) is minimized. As described previously at most 3 different values of level li are considered: 0,
[image: image159.wmf]floor

i

l

 and
[image: image160.wmf]ceil

i

l

. To calculate context when encoding value of level li , already selected values for levels lj, j=k,…,i-1 are used.
7 References

[1] JCT-VC, “Encoder-side description of Test Model under Consideration”, JCTVC-B204, JCT-VC Meeting, Geneva, July 2010

[2] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 1 (HM 1) Encoder Description”, JCTVC-C402, October 2010
[3] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 2 (HM 2) Encoder Description”, JCTVC-D502, January 2011
[4] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 3 (HM 3) Encoder Description”, JCTVC-E602, March 2011
[5] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 4 (HM 4) Encoder Description”, JCTVC-F802, July 2011
[6] JCT-VC, “High Efficiency Video Coding (HEVC) Test Model 5 (HM 5) Encoder Description”, JCTVC-G1102, November 2011
[7] JCT-VC, “High Efficiency Video Coding (HEVC) text specification draft 6”, JCTVC-H1003, February 2012
[8] JCT-VC, “Common test conditions”, JCTVC-H1100, February 2012
[9] ITU-T Recommendation H.264 / ISO/IEC 14496-10: "Information technology - Coding of audio-visual objects- Part 10: Advanced Video Coding"
[10] JCT-VC, “CE2: Test result of asymmetric motion partition (AMP)”, JCTVC-F379, July 2011
[11] JCT-VC, "Early Termination of CU Encoding to Reduce HEVC Complexity", JCTVC-F045, July 2011
[12] JCT-VC, "Coding tree pruning based CU early termination", JCTVC-F092, July 2011
[13] JCT-VC," Early skip detection for HEVC ", JCTVC-G543, November 2011
, for non-referenced pictures

, for referenced pictures

�Need to check these numbers.

�Need to revise to 7-tap spec.

�Should this remain the same?

_1269865976.unknown

_1269866607.unknown

_1367076123.doc
[image: image1.emf]QPI

QPB

L1

=QPI+1QPB

L1

=QPI+1

QPB

L2

=QPI+2

QPB

L3

=QPI+3

time

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L3

=QPI+3

QPB

L2

=QPI+2

0

1357

2

4

6

8

IDR or Intra

Picture

GPB(GeneralizedP

and B) Picture

_1367258892.unknown

_1387626746.unknown

_1387627818.unknown

_1387627873.unknown

_1395509430.vsd
�

�

�

�

INTER_2Nx2N�

Early_SKIP�

SKIP�

INTER_2NxN�

INTER_Nx2N�

INTER_NxN�

INTRA_2Nx2N�

INTER_2NxnU�

INTER_2NxnD�

INTER_nLx2N�

INTER_nRx2N�

INTRA_NxN�

TestAMP_Ver�

TestAMP_Hor�

No�

Yes�

No�

Yes�

No�

PCM�

xCompressCU�

xCompressCU�

xCompressCU�

xCompressCU�

Early_CU�

No�

END�

Yes�

Yes�

START�

Recursive call�

CBF_Fast�

Yes�

No�

�

�

Refer 6,7,8,10,11

Refer 5,14

_1387627856.unknown

_1387626795.unknown

_1377437532.unknown

_1377437541.unknown

_1367384167.unknown

_1367385040.unknown

_1367258920.unknown

_1367257265.unknown

_1367257984.unknown

_1367258472.unknown

_1367258841.unknown

_1367257994.unknown

_1367257271.unknown

_1367255761.unknown

_1367255789.unknown

_1367252736.unknown

_1367253098.unknown

_1367076147.doc
[image: image1.emf]QPI

QPB

L1

=QPI+1

QPB

L2

=QPI+2

QPB

L3

=QPI+3

QPB

L4

=QPI+4

GPB(GeneralizedP

and B) Picture

time

Referenced B

Picture

Non-referenced B

Picture

0

5678

3 4

2

1

IDR or Intra

Picture

Referenced B

Picture

_1269866723.unknown

_1269866913.unknown

_1360761454.unknown

_1360761701.unknown

_1360765781.unknown

_1367074138.doc
[image: image1.emf]QPI

time

0135

7

2 64 8

IDR Picture

QPI

・・・・・

_1360765809.unknown

_1360765743.unknown

_1360765767.unknown

_1360763383.unknown

_1360761464.unknown

_1353835799.unknown

_1360761329.unknown

_1269866873.unknown

_1269866875.unknown

_1269866876.unknown

_1269866874.unknown

_1269866740.unknown

_1269866743.unknown

_1269866872.unknown

_1269866735.unknown

_1269866702.unknown

_1269866712.unknown

_1269866721.unknown

_1269866709.unknown

_1269866698.unknown

_1269866700.unknown

_1269866701.unknown

_1269866699.unknown

_1269866696.unknown

_1269866697.unknown

_1269866695.unknown

_1269866691.unknown

_1269866415.unknown

_1269866454.unknown

_1269866603.unknown

_1269866605.unknown

_1269866606.unknown

_1269866604.unknown

_1269866559.unknown

_1269866602.unknown

_1269866601.unknown

_1269866557.unknown

_1269866558.unknown

_1269866556.unknown

_1269866437.unknown

_1269866447.unknown

_1269866425.unknown

_1269866431.unknown

_1269865980.unknown

_1269866169.unknown

_1269866413.unknown

_1269866414.unknown

_1269866411.unknown

_1269866412.unknown

_1269866410.unknown

_1269866167.unknown

_1269866168.unknown

_1269866166.unknown

_1269865978.unknown

_1269865979.unknown

_1269865977.unknown

_1261295351.unknown

_1269258605.unknown

_1269262896.unknown

_1269428783.unknown

_1269865975.unknown

_1269865973.unknown

_1269865974.unknown

_1269865972.unknown

_1269428602.unknown

_1269258765.unknown

_1269262852.unknown

_1269262841.unknown

_1269258612.unknown

_1269258756.unknown

_1261300767.unknown

_1261300777.unknown

_1261301062.unknown

_1261300776.unknown

_1261297529.unknown

_1261300660.unknown

_1261297673.unknown

_1261297528.unknown

_1261297432.unknown

_1261292745.unknown

_1261292781.unknown

_1261295350.unknown

_1261292749.unknown

_1261292764.unknown

_1261292725.unknown

_1261292732.unknown

_998298813.unknown

_1261123882.unknown

_1261127776.unknown

_1261123759.unknown

_998298812.unknown

