	[image: image2.png]


[image: image3.png]


[image: image4.bmp]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
8th Meeting: San José, CA, USA, 1–10 February, 2012
	Document: JCTVC-H0448


	Title:
	AHG6: Deblocking of IPCM Blocks Containing Reconstructed Samples

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Geert Van der Auwera, Xianglin Wang, Marta Karczewicz
5775 Morehouse Drive
San Diego, CA 92121
	
Email:
	
geertv@qualcomm.com

	Source:
	Qualcomm Inc.


_____________________________
Abstract

This contribution addresses the deblocking of IPCM blocks containing reconstructed samples. The HM5 deblocking filter always assigns quantization parameter value 0 to IPCM blocks, independent of the value of the pcm_loop_filter_disable_flag (SPS), which results in inadequate QP values for deblocking parameter lookup. The proposal is to assign the reconstructed QP value (QPY) to the IPCM blocks in case deblocking is enabled on IPCM samples (pcm_loop_filter_disable_flag equals 0). In case deblocking is disabled on IPCM samples (pcm_loop_filter_disable_flag equals 1), deblocking filtering of non-IPCM samples is determined by the reconstructed QP value of the non-IPCM block that is neighboring the IPCM block, while the IPCM block is assigned QP value 0.
1 Introduction
The present HEVC version specified in Working Draft version 5 (WD5) [1] supports the IPCM intra mode, which allows the encoder to represent luma and chroma CU samples directly into the bitstream as uncompressed data. There are several possible usages for IPCM coding [2]:

· As a means for the encoder to ensure that the size in bits of a coded representation of a CU does not exceed the bits required to send the uncompressed CU data. In this case the encoder may code the CU data as IPCM.

· Another usage of IPCM is to avoid encoder pipeline stalls [2]. In this case, the encoder may decide to represent non-original samples, e.g., reconstructed samples, as IPCM.

The WD5 also specifies the signaling of the pcm_loop_filter_disable_flag in the SPS. This flag specifies whether the loop filter processes are disabled or enabled on samples of IPCM blocks. If the pcm_loop_filter_disable_flag value is equal to 1, then deblocking, SAO, and ALF processes are disabled on the samples of IPCM blocks; otherwise, if the pcm_loop_filter_disable_flag value is equal to 0, the loop filters are enabled.
Original uncompressed samples that are coded as IPCM samples are distortion free. Therefore, in-loop filtering, such as deblocking, can be skipped for these IPCM samples. Conversely, the encoder implementations that represent non-original reconstructed samples as IPCM may need to perform in-loop deblocking along both sides of the IPCM block boundaries. Figure 1 illustrates the deblocking filter behavior along IPCM block boundaries as a function of the pcm_loop_filter_disable_flag.
[image: image5.bmp]
[image: image1]
2 Problem Description

The deblocking filter processes certain TU and PU edges based on the result from the computation of boundary strength and deblocking decisions (on/off, weak/strong, weak filter strength) that are dependent on thresholds variables β and tC, which require the QPL value in order to lookup these thresholds in a table. In HM5, QPL equals the average QP (QPavg), which is computed as follows based on the QP values of the two blocks (P and Q) that have the current edge in common [1]:

QPavg = ( QPP + QPQ ) / 2

The problem is that WD5 specifies that QP always equals 0 for IPCM blocks (pcm_flag=true), which results in the values for QPavg enumerated in Table 1, independent of the value of the pcm_loop_filter_disable_flag.

Table 1 QPL values for different combinations of P and Q block pcm_flag values, independent of the values of pcm_loop_filter_disable_flag
	P block is IPCM?
	Q block is IPCM?
	QPL

	No
	Yes
	QPP / 2

	Yes
	No
	QPQ / 2

	Yes
	Yes
	0


It is obvious that these QPL values are inadequate for deblocking the common edge between P and Q. Therefore, this contribution proposes a solution to correctly support the deblocking process for IPCM blocks containing reconstructed samples.
3 Proposal
Table 2 illustrates the desired values for QPL as a function of the pcm_loop_filter_disable_flag and the pcm_flag of the P and Q blocks.
Table 2 Proposed QPL values for IPCM deblocking
	pcm_loop_filter_disable_flag
	P block is IPCM?
	Q block is IPCM?
	QPL

	true (deblocking is disabled on IPCM samples)
	No
	Yes
	QPP

	
	Yes
	No
	QPQ

	
	Yes
	Yes
	0

	false (deblocking is enabled on IPCM samples)
	No
	Yes
	QPavg

	
	Yes
	No
	

	
	Yes
	Yes
	


The QP value of the IPCM block equals the reconstructed QPY that is defined in WD5 [1] as follows (simplification with QpBdOffsetY = 0):
QPY = QPY,PREV + cu_qp_delta,
where QPY,PREV is the luma quantization parameter, QPY, of the left neighbor quantization group of coding units in the current slice. If the left neighbor quantization group in the current slice is not available, QPY,PREV is the luma quantization parameter, of the previous quantization group in decoding order that is available in the current slice. cu_qp_delta can change the value of QPY for a quantization group of coding units; cu_qp_delta shall be inferred to be equal to 0 when it is not present. This QPY value can directly be accessed for IPCM blocks in the HM5 software by calling the function “getQP”.
4 Source Code Change
The macro “DBF_IPCM” in the following HM5 source code excerpt (xEdgeFilterLuma and similar for xEdgeFilterChroma function) illustrates the minor changes to the deblocking filter code to implement the proposed IPCM deblocking filter behaviour:
      if(pcCU->getIPCMFlag(uiPartQIdx)) 

      {

#if DBF_IPCM


  if (bPCMFilter) {iQP_Q = 0; iQP_P <<= 1;}

#else

        iQP_Q = 0; 

#endif

      }

      if(pcCUP->getIPCMFlag(uiPartPIdx)) 

      {

#if DBF_IPCM


  if (bPCMFilter) {iQP_P = 0; iQP_Q <<= 1;}

#else

        iQP_P = 0; 

#endif

      }

      iQP = QpUV((iQP_P + iQP_Q + 1) >> 1);
5 Conclusion

This contribution proposed to correct the behavior of the deblocking filter in case of IPCM type blocks containing non-original reconstructed samples as a function of the pcm_loop_filter_disable_flag.
6 Working Draft

The following working draft text changes are based on [1].

“8.6.1.4.1 Decision process for luma block edge

Inputs of this process are:

–
a luma location ( xC, yC ) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a luma location ( xB, yB ) specifying the top-left luma sample of the current block relative to the top left luma sample of the current coding unit,

–
a variable verticalEdgeFlag,

–
a variable bS specifying the boundary filtering strength,

Output of this process is:

–
variables dE, dEp1 and dEq1 containing decisions,

–
one-dimensional array of size (8), dS containing decisions.

Let s’ represent the luma sample array recPictureL of the current picture.
The sample value q0,0 is derived as follows:


q0,0 = s’[ xC + xB, yC + yB ]
If verticalEdgeFlag is equal to 1, the sample value p0,0 is derived as follows:


p0,0 = s’[ xC + xB – 1, yC + yB ]
Otherwise (verticalEdgeFlag is equal to 0),


p0,0 = s’[ xC + xB, yC + yB – 1]
The variables QPQ and QPP are derived as follows:

· QPQ is specified by the QPY value of the coding unit containing the sample q0,0
· QPP is specified by the QPY value of the coding unit containing the sample p0,0
If pcm_loop_filter_disable_flag is equal to 1, the variables QPQ and QPP are modified as follows:

–
If pcm_flag of the coding unit containing the sample q0,0 is equal to 1, QPQ is set equal to 0 and QPP is multiplied by 2.
· If pcm_flag of the coding unit containing the sample p0,0 is equal to 1, QPP is set equal to 0 and QPQ is multiplied by 2.
A variable qPL is derived as follows:


qPL = ( ( QPQ + QPP + 1 ) >> 1 ) 

A variable qPL is derived as follows:


qPL = ( ( QPY + QPP + 1 ) >> 1 ) 


where QPP is specified by the QPY value of the coding unit containing the sample p0,0.
.....”
“8.6.1.4.2 Filtering process for luma block edge

.....

Let s’ represent the luma sample array recPictureL of the current picture.

Depending on pcm_flag, a variable β is specified as follows:

–
If pcm_flag is equal to 1, the variables β is specified as Table 8-11 with luma quantization parameter 0 as input.

–
Otherwise, the variables β is specified as Table 8-11 with luma quantization parameter qPL as input.

The variable β is specified as Table 8-11 with luma quantization parameter qPL as input 
A variable tC is specified as follows:

–
If bS is greater than 0, the variable tC is specified as Table 8-11 with luma quantization parameter Clip3( 0, 55, qPL + 2*(Bs – 1) + ( tc_offset_div2 << 1 ) ) as input.

.....”

“8.6.1.4.3 Filtering process for chroma block edge

....

Let s’ be a variable specifying chroma sample array which is derived as follows.

–
If cIdx is equal to 1, s’ represents the chroma sample array recPictureCb of the current picture.

–
Otherwise (cIdx is equal to 2), s’ represents the chroma sample array recPictureCr of the current picture.

The sample value q0,0 is derived as follows:


q0,0 = s’[ xC + xB, yC + yB ]
If verticalEdgeFlag is equal to 1, the sample value p0,0 is derived as follows:


p0,0 = s’[ xC + xB – 1, yC + yB ]
Otherwise (verticalEdgeFlag is equal to 0),


p0,0 = s’[ xC + xB, yC + yB – 1]
The variables QPQ and QPP are derived as follows:

· QPQ is specified by the QPY value of the coding unit containing the sample q0,0
· QPP is specified by the QPY value of the coding unit containing the sample p0,0
If pcm_loop_filter_disable_flag is equal to 1, the variables QPQ and QPP are modified as follows:

–
If pcm_flag of the coding unit containing the sample q0,0 is equal to 1, QPQ is set equal to 0 and QPP is multiplied by 2.
· If pcm_flag of the coding unit containing the sample p0,0 is equal to 1, QPP is set equal to 0 and QPQ is multiplied by 2.
A variable qPL is derived as follows:


qPL = QPUV( ( QPQ + QPP + 1 ) >> 1 ) 

A variable qPL is derived as follows:


qPL = ( ( QPY + QPP + 1 ) >> 1 ) 


where QPP is specified by the QPY value of the coding unit containing the sample p0,0.
.....”
7 References
[1] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, T. Wiegand, “WD5: Working Draft 5 of High-Efficiency Video Coding,” 7th JCT-VC Meeting, Geneva, CH, Nov. 2011, Doc. JCT-VC G1103_d6
[2] K. Chono, H. Aoki (NEC), V. Wahadaniah, C. Lim (Panasonic), “Proposal of enhanced PCM coding in HEVC,” 5th JCT-VC Meeting, Geneva, Switzerland, March 2011, Doc. JCTVC-E192
8 Patent rights declaration

Qualcomm Inc. may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Figure � SEQ Figure \* ARABIC �1� Illustration of deblocking filter behavior as a function of pcm_loop_filter_disable_flag. The block in the center is of the IPCM type. The striped areas along the IPCM block edge represent the samples that are modified by the deblocking filter.








pcm_loop_filter_disable_flag = false (deblocking is ON for IPCM samples)








IPCM











pcm_loop_filter_disable_flag = true (deblocking is OFF for IPCM samples)








IPCM


































































Page: 3
Date Saved: 2012-01-19

