	[image: image6.png]

[image: image7.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
8th Meeting: San José, CA, USA, 1–10 February, 2012
	Document: JCTVC-H0253_r3

	Title:
	Improvement on parallelism for context derivation process of significant_coeff_flag

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Akira Minezawa
Kazuo Sugimoto
Shun-ichi Sekiguchi
Information Technology R&D Center
Mitsubishi Electric Corporation
5-1-1, Ofuna, Kamakura, JAPAN
	
Tel:
Email:
	
+81-467-41-2463
Minezawa.Akira@ds.MitsubishiElectric.co.jp

	Source:
	Mitsubishi Electric Corporation

Abstract

In this contribution, a modification on context derivation process of significant_coeff_flag is proposed. It is reported that the parallelism of the proposed context derivation process is as twice as that of current HM context derivation process. The proposed scheme achieves almost the same coding performance compared with HM-5.0.
1 Introduction

In HM-5.0, two types of the neighborhood-based context derivation method for the significance map coding are introduced for 16x16 and 32x32 TUs as illustrated in Figure 1[1] so that at least two context derivations can be done in parallel.
In this contribution, we introduce a minor modification to improve the parallelism of the context derivation for significant_coeff_flag coding.
[image: image1.emf]X

X

X

X

15 13 10 6

14 11 7 3

12 8 4 1

9 5 2 0

15 13 10 6

14 11 7 3

12 8 4 1

9 5 2 0

Reference types

A B

B A A A

A A A A

A A A B

A A A A

Region0: Fixed context

Region1: Use 5 neighbors

Region2: Use 5 neighbors

(Different context from)

Figure 1. Current neighborhood-based context derivation for significance map coding
2 Proposed scheme
We propose to modify the mask of reference coefficients used the neighborhood-based context derivation of the significance map coding as shown in Figure 2. In the proposed method, four context derivation processes can be performed in parallel.
[image: image2.emf]Reference types

0,4,5,6,8,

9,10,12,13

1,7,11,14 2 3 15

15 13 10 6

14 11 7 3

12 8 4 1

9 5 2 0

A B C D E

E A A A

B B B D

A A A B

A A C A

Figure 2. Proposed context derivation
3 Simulations & Results
The proposed scheme has been implemented on top of the HM-5.0, and the simulations have been conducted using the common test configurations [2]. Table 1 shows the results of the proposed scheme compared with HM-5.0 anchor.

Table 1. BD bitrate savings of the proposed scheme

[image: image4.png]AllIntra HE Alllntra LC All Intra HE-10
Y 1 v 1 v Y v v
Class A (8bi) | 0.14% 016% 024% 027% 033%
Class B 017% 030% 032% 038% 0.40%
Class C 007% 0.11% 0.10% 0.14% 0.15%
ClassD 007% 0.18% 0.10% 0.13% 0.08%
ClassE 022% 035% 0.45% 058% 053%
Overall 013% 022% 023% 028% 028%
0.13% 022% 024% 028% 028
Class F 005% 009% 013% 026% 0.00%
Enc Timel%] 0% 01%
Dec Time[%] 101% 100%
Random Access HE Random Access LC | Random Access HE-10
Y U v Y [N v Y u_ v
Class A (8bi) | 0.08% 022% 001% | 007% 024% 015% | 022% 048% 094%
Class B 0.11% 0.10% 0.19% | 010% 0.35% 0.27% [0.13% 0.15% 0.14%
Class C 004% 0.02% -007%| 004% 0.08% -0.08%
Class D 008% -0.18% 038% | 0.02% 050% 0.01%
ClassE
Overall 008% 002% 014% 030% 0.10% | 0.17% 0.30% 050%
008% 001% 0.13% 028% 008%|018% 028% 047"
Class F 001% 004% 010% | 004% 008% 022%
Enc Timel%] 01% 100% 1%
Dec Time[%] 100% 100% 99%
Tow defay B HE Tow delay BLC Tow defay B HE-10
Y 1 v Y 1 v Y u v
Class A
Class B 009% 020% 050% 025% 0.12%
Class C 007% -002% 032% 034% -0.18%
ClassD 0.13% -028% -0.25% 088% 030%
ClassE 008% 095% 0.39% 081% -055%
Overall 0.10% 0.16% 0.10% 025% 0.04%
009% 022% 0.14% 026% 007%
Class F 011% 030% 025% 045% 040%
Enc Timel%] 01% 00%
Dec Time[%] 101% 100%

4 Conclusions

This proposal describes parallel context derivation for significance map coding that helps hardware and SIMD implementations. It is reported that the coding performance of the proposed scheme is about 0.1% loss on average compared with HM-5.0 anchor. We propose the scheme to be adopted to HM-6.
5 References
[1] Joel Sole, “Non-CE11: Diagonal sub-block scan for HE residual coding”, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-G323, 7th Meeting: Geneva, CH, November, 2011.
[2] Frank Bossen, “Common test conditions and software reference configurations”, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, JCTVC-G1200, 7th Meeting: Geneva, CH, November, 2011.
6 Patent rights declaration(s)
Mitsubishi Electric Corporation may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Appendix: Normative descriptions to be reflected to WD text
A description of the proposed scheme is shown as follows.

9.2.3.1.1.5 Derivation process of ctxIdxInc for the syntax element significant_coeff_flag

Inputs to this process are the color component index cIdx, the current coefficient scan position (xC , yC), the transform block width log2TrafoWidth and the transform block height log2TrafoHeight.

Output of this process is ctxIdxInc.

The variable sigCtx depends on the current position (xC, yC), the color component index cIdx, the transform block size and previsously decoded bins of the syntax element significant_coeff_flag. For the derivation of sigCtx, the following applies.

· If log2TrafoWidth is equal to log2TrafoHeight and log2TrafoWidth is equal to 2, sigCtx is derived using ctxIdxMap4x4[] specified in Table 9‑39 as follows..
sigCtx = ctxIdxMap4x4[((cIdx > 0) ? 15 : 0) + (yC << 2) + xC]
(9‑55)
· Otherwise if log2TrafoWidth is equal to log2TrafoHeight and log2TrafoWidth is equal to 3, sigCtx is derived using ctxIdxMap8x8[] specified in Table 9‑40 as follows.

sigCtx = ((xC + yC) = = 0) ? 10 : ctxIdxMap8x8[((yC >> 1) << 2) + (xC >> 1)]
(9‑56)
sigCtx += (cIdx > 0) ? 6: 9

(9‑56)
· Otherwise if xC + yC is equal to 0, sigCtx is derived as follows.

sigCtx = (cIdx > 0) ? 17: 20

(9‑57)
· Otherwise (xC + yC is greater than 0), sigCtx is derived using previously decoded bins of the syntax element significant_coeff_flag as follows.

· The variable sigCtx is initialized as follows.

sigCtx = 0

(9‑58)
· When xC is less than (1 << log2TrafoWidth) − 1, the following applies.
· When all of the following conditions are true,

· xC is less than (1 << log2TrafoWidth) − 1,

· xC % 4 is not equal to 0 or yC % 4 is not equal to 0,

· xC % 4 is not equal to 2 or yC % 4 is not equal to 3,

the following applies.
sigCtx = sigCtx + significant_coeff_flag[xC + 1][yC]
(9‑59)
· When xC is less than (1 << log2TrafoWidth) − 1 and yC is less than (1 << log2TrafoHeight) − 1, the following applies.

sigCtx = sigCtx + significant_coeff_flag[xC + 1][yC + 1]
(9‑60)

· When xC is less than (1 << log2Width) − 2, the following applies.

sigCtx = sigCtx + significant_coeff_flag[xC + 2][yC]
(9‑61)

· When all of the following conditions are true,

· yC is less than (1 << log2TrafoHeight) − 1,
· xC % 4 is not equal to 0 or yC % 4 is not equal to 0,
· xC % 4 is not equal to 3 or yC % 4 is not equal to 2,

· yC % 4 is not equal to 1,

the following applies.

sigCtx = sigCtx + significant_coeff_flag[xC][yC + 1]
(9‑62)

· When yC is less than (1 << log2TrafoHeight) − 2 and sigCtx is less than 4, the following applies.
· When all of the following conditions are true,

· yC is less than (1 << log2TrafoHeight) − 2,

· xC % 4 is not equal to 0 or yC % 4 is not equal to 0,
· xC % 4 is not equal to 3 or yC % 4 is not equal to 1,
the following applies.
sigCtx = sigCtx + significant_coeff_flag[xC][yC + 2]
(9‑63)

· The variable sigCtx is modified as follows.
· If cIdx is equal to 0 and xC + yC are greater than (1 << (max(log2TrafoWidth, log2TrafoHeight) − 2)) − 1, the following applies.

sigCtx = ((sigCtx + 1) >> 1) + 24

(9‑63)

· Otherwise, the following applies.

sigCtx = ((sigCtx + 1) >> 1) + ((cIdx > 0) ? 18 : 21)
(9‑63)

The context index increment ctxIdxInc is derived using the color component index cIdx and sigCtx as follows.

· If cIdx is equal to 0, ctxIdxInc is derived as follows.

ctxIdxInc = sigCtx

(9‑64)

· Otherwise (cIdx is greater than 0), ctxIdxInc is derived as follows.

ctxIdxInc = 27 + sigCtx

(9‑65)

Table 9‑40 – Specifcation of ctxIdxMap4x4[i]
	i
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14

	ctxIdxMap4x4[i]
	0
	1
	4
	5
	2
	3
	4
	5
	6
	6
	8
	8
	7
	7
	8

	i
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29

	ctxIdxMap4x4[i]
	0
	1
	2
	4
	1
	1
	2
	4
	3
	3
	5
	5
	4
	4
	5

Table 9‑41 – Specifcation of ctxIdxMap8x8[i]
	i
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	ctxIdxMap8x8[i]
	0
	1
	2
	3
	4
	5
	6
	3
	8
	6
	6
	7
	9
	9
	7
	7

 [Ed. (BB): The context derivation assumes maximum transform sizes less than or equal to 32x32 for luma and 16x16 for chroma and minimum transform sizes greater than or equal to 4x4.]

Page: 1
Date Saved: 2012-02-03

