	[image: image2.png][image: image3.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
8th Meeting: San José, CA, USA, 1–10 February, 2012
	Document: JCTVC-H0227
m23102


	Title:
	Non-CE11: Sign Data Hiding without RDOQ

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Gordon CLARE (Orange Labs), 

Félix HENRY (Orange Labs) 

Joël JUNG (Orange Labs)
Stéphane PATEUX (Orange Labs)

	
Tel:
Email:
	
+33 2 99 12 45 58
gordon.clare@orange.com
felix.henry@orange.com
joelb.jung@orange.com
stephane.pateux@orange.com  


	Source:
	Orange Labs


_____________________________
Abstract

This contribution presents a non-RDOQ version of the “Sign Data Hiding” method initially proposed in JCTVC-G271 and JCTVC-H0224. “Sign Data hiding” is a method to embed sign information into the residue. The sign of the first non-nul coefficient of a residual block is not always explicitly written in the bitstream. Instead, at decoding time, the sign is inferred from the parity of the sum of quantized coefficients, using a predefined convention. At encoding time, if the sign of the first non-nul coefficient and the parity do not match, one of the quantized coefficients is changed in order to obtain the desired parity. The chosen coefficient is the one that is the closest to its nearest quantization interval frontier. In this non-RDOQ version, the decoder is similar to JCTVC-G271/H0224. The proposal yields an average BD-rate compression performance of -0.7% (I), -0.7% (RA), -0.8% (LDB) in Low Complexity configurations with an average encoder runtime of 106% (I), 101% (RA) and 101% (LDB) and decoder runtime of 102% (I), 101% (RA) and 102% (LDB) compared to HM5.0 anchors.

1 Introduction
Hiding one syntax element in another part of the signal is a known method of improving the compression performance. In JCTVC-A114 [1], it was proposed to use the parity of the sum of the quantized residual block to convey the information relative to the transform used during encoding (DCT of KLT). In [2], the Most Probable Mode index is hidden into the parity of the sum of the quantized residue. In JCTVC-E428 [3], the index of the transform (DCT or DST) is hidden, this time in the parity of the last non-zero coefficient of the residue.

The present proposal aims at conveying sign information in the parity of the sum of the quantized residual block. 

The present proposal is closely related to JCTVC-H0224 contribution in CE11 on Transform Coefficient Coding (the decoder is the same). This CE11 contribution was originally proposed in JCTVC-G271 [5].
The present proposal is crosschecked by RIM in JCTVC-H[TBD].

2 Proposed modification of the decoder 

In this proposal, the entropy decoding step of the sign of the first non-nul coefficient of the quantized residual block is modified. 

First, a decision step is performed in order to determine whether the sign is to be decoded the normal way (current Working Draft of HEVC) or the alternate way. The decision consists in comparing the number of coefficients between the first and last non-nul coefficients in their scanning order with a predefined threshold defined by a syntax element. If this number is lower than the predefined threshold, the sign is decoded the normal way, otherwise it is decoded the alternate way. 

Second, when it is decided to decode the sign the alternate way, the sign is inferred from the parity of the sum of the quantized coefficients, following a predefined convention (even corresponds to “+” and odd to “-“).

3 Essential modifications of the encoder

The entropy encoding of the sign of the first non-nul coefficient of the quantized residual block is modified. 

First, a decision step is performed in order to determine whether the sign is to be encoded the normal way (current Working Draft of HEVC) or the alternate way. The decision consists in comparing the number of coefficients between the first and last non-nul coefficients in their scanning order with a predefined threshold defined by a syntax element. If this number is lower than a predefined threshold, the sign is encoded the normal way, otherwise it is decoded the alternate way. Of course, this process is strictly identical to the one happening at decoding side, to avoid any mismatch.

Second, when it is decided to encode the sign the alternate way, the sign is not encoded using the entropy coder. Instead, the sign is compared to the sum of the quantized coefficients according to the convention. If they do not match, the quantized coefficients need to be modified so that the parity matches the sign. The way these coefficients are modified is left to the implementers of the encoder. A specific encoder is proposed in the next section.

4 Specific implementation of the encoder

In this section we describe a suggested way of implementing the encoder. This implementation is the one that has been used to produce the performance presented in this proposal. It is important to note that very different implementations can be designed, with different compression - complexity tradeoffs.

The main specificity of the encoder resides in the way the quantized coefficients of the residue should be modified before encoding, so that the parity of their sum matches the sign of the first non-nul coefficient, when such a modification is needed (this will happen for about 50% of all CUs). In our specific implementation, we chose the following approach:

· We change one of the quantized coefficients by adding or removing 1

· We may only change those quantized coefficient that are located from the first non-nul quantized coefficient to the last non-nul one (inclusive)

· The change may not transform the first non-nul quantized coefficient into zero (there would be a decoder mismatch since the sign inferred from the parity would assigned to another coefficient)

· The change may not transform the last non-nul quantized coefficient into zero if this makes the number of coefficients between the first and last non-nul coefficients smaller than the decision threshold mentioned in previous sections (there would be a decoder mismatch since the decoder would attempt to entropy-decode the sign instead of inferring it from the parity)

Finally, in our implementation of the encoder, we choose the quantized coefficient modification that, among all modifiable coefficients, has its original value closest to its nearest quantization interval frontier. The corresponding quantized coefficient is shifted by one in the direction of its nearest interval frontier. 
5 Performance

5.1 Test conditions

We have integrated Sign Data Hiding in HM5.0.

We have tested our proposal with the following conditions:

•
Low Complexity
•
Intra, Random access, Low delay

•
JCTVC-G1200 [4] test conditions

Moreover, the thresholds used for decisions are the following (Table 2):

Table 2: Decision thresholds for  Sign Data Hiding

	CU type
	Intra
	Inter

	Luma
	5
	3

	Chroma
	5
	5


For instance, for a CU of Intra type containing luma data, the encoder will encode the sign of the first non-nul coefficient using Cabac if there are strictly less than 5 coefficients between the first non-nul quantized coefficient and the last one (inclusive), otherwise it will embed the sign information in the parity of the sum of the quantized residual coefficients. 

5.2 Results (base configuration)
Table 3 presents the performance of the proposed modification compared to anchors using the base configurations.
Table 3: performance results using base configurations
[image: image1.wmf]Y

U

V

Class A (8bit)

-0,61%

-1,20%

-1,29%

Class B

-0,76%

-0,89%

-0,88%

Class C

-0,79%

-0,96%

-1,00%

Class D

-0,89%

-1,11%

-1,05%

Class E

-0,45%

-1,44%

-1,28%

Overall

-0,73%

-1,08%

-1,05%

-0,73%

-1,08%

-1,05%

Class F

-1,06%

-0,91%

-0,98%

Enc Time[%]

Dec Time[%]

Y

U

V

Class A (8bit)

-0,56%

-0,60%

-1,07%

Class B

-0,67%

-0,61%

-0,77%

Class C

-0,68%

-0,64%

-0,72%

Class D

-0,71%

-0,51%

-1,03%

Class E

Overall

-0,67%

-0,59%

-0,87%

-0,67%

-0,60%

-0,90%

Class F

-0,91%

-0,71%

-0,65%

Enc Time[%]

Dec Time[%]

Y

U

V

Class A

Class B

-1,01%

-0,86%

-0,35%

Class C

-0,95%

-0,89%

-0,93%

Class D

-0,96%

-0,60%

-1,39%

Class E

-0,27%

-2,26%

-0,98%

Overall

-0,84%

-1,06%

-0,87%

-0,84%

-1,06%

-0,85%

Class F

-1,08%

-1,75%

-1,31%

Enc Time[%]

Dec Time[%]

All Intra LC

106%

102%

Random Access LC

101%

101%

Low delay B LC

101%

102%


6 Advantages

We assert that the proposed approach has several interesting characteristics:

· The gain is consistent across sequences (except sequences with very few residues like Class E)

· The gain is consistent across components (luma & chroma)

· The gain is quite homogenous across the compression range (slightly better at low QP)

· Different encoders can choose their own runtime/compression tradeoff

7 Conclusion

In the present proposal, a method to embed sign information in the parity of the sum of the quantized residual coefficients is presented and tested. The proposal yields an average BD-rate compression performance of -0.7% (I), -0.7% (RA), -0.8% (LD) with an average encoder runtime of 106% (I), 101% (RA) and 101% (LD) and decoder runtime of 102% (I), 101% (RA) and 102% (LDB) compared to the HM5.0 anchors. The method is proposed for adoption into HEVC working draft and reference software.

8 Bibliography

[1] JCTVC-A114, “Video coding technology proposal by France Telecom, NTT, NTT DoCoMo, Panasonic and Technicolor”, I. Amonou et AL, 1st JCTVC meeting, Dresden, April 2010

[2]
J-M. Thiesse, J. Jung, and M. Antonini, “Data hiding of Intra prediction information in chroma samples for video compression,” Proc. IEEE International Conference on Image Processing, ICIP 2010, pp. 2861-2864, Hong Kong, September 2010.
[3] JCTVC-E428, “Low Complexity Embedding of Information in Transform Coefficients”, R. Cohen, S. Rane, A. Vetro, H. Sun, 5th JCTVC meeting, Geneva, March 2011 


[4] JCTVC-G1200, “Common test conditions and software reference configurations” F. Bossen, 7th JCTVC meeting, Geneva, November 2011


[5] JCTVC-G271, “Sign Data Hiding”, G. Clare, F. Henry, J. Jung, 7th JCTVC meeting, Geneva, November 2011
9 Patent rights declaration(s)
Orange Labs may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
ANNEX: WD Text modifications 
Note: this WD change is strictly similar to the one proposed in JCTVC-H224 since the decoder is identical in both proposals.
Picture parameter set RBSP syntax

	pic_parameter_set_rbsp( ) {
	Descriptor

	
pic_parameter_set_id
	ue(v)

	
seq_parameter_set_id
	ue(v)

	
entropy_coding_synchro
	u(v)

	
sign_data_hiding_flag
	u(1)

	
if ( sign_data_hiding ) {
	

	

tsig_intra_luma
	u(3)

	

tsig_intra_chroma
	u(3)

	

tsig_inter_luma
	u(3)

	

tsig_inter_chroma
	u(3)

	
}
	

	
cabac_istate_reset_flag
	u(1)

	
if( entropy_coding_synchro ) 
	

	

num_substreams_minus1
	ue(v)

	
num_temporal_layer_switching_point_flags
	ue(v)

	
for( i = 0; i < num_temporal_layer_switching_point_flags; i++ )
	

	

temporal_layer_switching_point_flag[ i ]
	u(1)

	
num_ref_idx_l0_default_active_minus1
	ue(v)

	
num_ref_idx_l1_default_active_minus1
	ue(v)

	
pic_init_qp_minus26  /* relative to 26 */
	se(v)

	[Ed. (BB): not present in HM software, signaled in slice header as absolute value slice_qp, should be implemented to be used for slice_qp_delta]
	

	
constrained_intra_pred_flag
	u(1)

	
slice_granularity
	u(2)

	
max_cu_qp_delta_depth
	ue(v)

	[Ed. (BB): not present in HM software, should be implemented ]
	

	
weighted_pred_flag
	u(1)

	
weighted_bipred_idc
	u(2)

	
tile_info_present_flag
	u(1)

	
if( tile_info_present_flag = = 1 ) {
	

	

num_tile_columns_minus1
	ue(v)

	

num_tile_rows_minus1
	ue(v)

	

if( num_tile_columns_minus1 != 0 | | num_tile_rows_minus1 != 0 ) {
	

	


tile_boundary_independence_flag
	u(1)

	


uniform_spacing_flag
	u(1)

	


if( !uniform_spacing_flag ) {
	

	



for( i = 0; i < num_tile_columns_minus1; i++ )
	

	




column_width[i]
	ue(v)

	



for( i = 0; i < num_tile_rows_minus1; i++ )
	

	




row_height[i]
	ue(v)

	


}
	

	

} 
	

	
}
	

	
rbsp_trailing_bits( )
	

	}
	


Residual coding syntax

	residual_coding_cabac( x0, y0, log2TrafoWidth, log2TrafoHeight, scanIdx, cIdx ) {
	Descriptor

	
last_significant_coeff_x_prefix
	ae(v)

	
last_significant_coeff_y_prefix
	ae(v)

	
if ( last_significant_coeff_x_prefix > 3 )
	

	

last_significant_coeff_x_suffix
	ae(v)

	
if ( last_significant_coeff_y_prefix > 3 )
	

	

last_significant_coeff_y_suffix
	ae(v)

	
numCoeff = 0
	

	
do {
	

	

xC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ numCoeff ][ 0 ] 
	

	

yC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ numCoeff ][ 1 ]
	

	

numCoeff++
	

	
} while( ( xC  !=  LastSignificantCoeffX ) || ( yC  !=  LastSignificantCoeffY ) )
	

	
numLastSubset = (numCoeff − 1) >> 4
	

	
for( i = numLastSubset; i >= 0; i− − ) {
	

	

offset = i << 4
	

	

if( max( log2TrafoWidth, log2TrafoHeight ) > 3) {
	

	


xCG = ScanOrder[ log2TrafoWidth – 2 ][ log2TrafoHeight – 2 ][ scanIdx ][ i ][ 0 ]
	

	


yCG = ScanOrder[ log2TrafoWidth – 2 ][ log2TrafoHeight – 2 ][ scanIdx ][ i ][ 1 ]
	

	


rightCGFlag = (xCG = = (1<< (log2TrafoWidth – 2)) − 1) ? 0 : 









significant_coeff_group_flag[ xCG + 1 ][ yCG ]
	

	


bottomCGFlag = (yCG = = (1 << (log2TrafoHeight – 2)) − 1) ? 0 : 









significant_coeff_group_flag[ xCG ][ yCG + 1 ]
	

	


if( (i = = numLastSubset)  | |  (rightCGFlag + bottomCGFlag = = 2)  | |  (i = = 0) )
	

	



significant_coeff_group_flag[ xCG ][ yCG ] = 1
	

	


else
	

	



significant_coeff_group_flag[ xCG ][ yCG ]
	ae(v)

	


for( n = 15; n >= 0; n− − ) {
	

	



xC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ n + offset ][ 0 ]
	

	



yC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ n + offset ][ 1 ]
	

	



if ( (n + offset) < (numCoeff − 1)  &&  significant_coeff_group_flag[ xCG ][ yCG ] ) {
	

	




numNZInCG = (i = = numLastSubset) ? 1 : 0
	

	




if ( (n > 0)  | |  (rightCGFlag + bottomCGFlag = = 2)  | |  (i = = 0)  | |  (numNZInCG > 0) ) {
	

	





significant_coeff_flag[ xC ][ yC ]
	ae(v)

	





numNZInCG += significant_coeff_flag[ xC ][ yC ]
	

	




else
	

	





significant_coeff_flag[ xC ][ yC ] = 1
	

	




if (sign_data_hiding && significant_coeff_flag[xC][yC]) {
	

	





dhFirstX = xC
	

	





dhFirstY = yC
	

	





dhFirstIdx = n+offset
	

	




}
	

	



}
	

	


}
	

	

} else {
	

	


for( n = 15; n >= 0; n− − ) {
	

	



xC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ n + offset ][ 0 ]
	

	



yC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ n + offset ][ 1 ]
	

	



if( (n + offset) < (numCoeff − 1) )
	

	




significant_coeff_flag[ xC ][ yC ]
	ae(v)

	



if (sign_data_hiding && significant_coeff_flag[xC][yC]) {
	

	




dhFirstX = xC
	

	




dhFirstY = yC
	

	




dhFirstIdx = n+offset
	

	



}
	

	


}
	

	

}
	

	

for( n = 15; n >= 0; n− − ) {
	

	


xC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ n + offset ][ 0 ]
	

	


yC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ n + offset ][ 1 ]
	

	


if( significant_coeff_flag[ xC ][ yC ] )
	

	



coeff_abs_level_greater1_flag[ n ]
	ae(v)

	

}
	

	

for( n = 15; n >= 0; n− − ) {
	

	


if( coeff_abs_level_greater1_flag[ n ] )
	

	



coeff_abs_level_greater2_flag[ n ]
	ae(v)

	

}
	

	

for( n = 15; n >= 0; n− − ) {
	

	


xC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ n + offset ][ 0 ]
	

	


yC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ n + offset ][ 1 ]
	

	


if( significant_coeff_flag[ xC ][ yC ] ) {
	

	



coeff_sign_flag[ n ]
	ae(v)

	

}
	

	

for( n = 15; n >= 0; n− − ) {
	

	


if( coeff_abs_level_greater2_flag[ n ] )
	

	



coeff_abs_level_minus3[ n ]
	ae(v)

	


xC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ n + offset ][ 0 ]
	

	


yC = ScanOrder[ log2TrafoWidth ][ log2TrafoHeight ][ scanIdx ][ n + offset ][ 1 ]
	

	


if( significant_coeff_flag[ xC ][ yC ] ) {
	

	



transCoeffLevel[ x0 ][ y0 ][ cIdx ][ xC ][ yC ] = 





( coeff_abs_level_minus3[ n ] + 3 ) * ( 1 − 2 * coeff_sign_flag[ n ] )
	

	



if (sign_data_hiding)
	

	




sumAbs += coeff_abs_level_minus3[n]+3
	

	


} else
	

	



transCoeffLevel[ x0 ][ y0 ][ cIdx ][ xC ][ yC ] = 0
	

	

}
	

	
}
	

	
if (sign_data_hiding) 
	

	

signHidden = numCoeff-dhFirstIdx+1 >= tsig
	

	
for( n = numCoeff − 1; n >= 0; n− − ) {
	

	

xC = ScanOrder[ log2TrafoSize − 2 ][ log2TrafoSize − 2 ][ scanIdx ][ n ][ 0 ]
	

	

yC = ScanOrder[ log2TrafoSize − 2 ][ log2TrafoSize − 2 ][ scanIdx ][ n ][ 1 ]
	

	

if( significant_coeff_flag[ xC ][ yC ] ) {
	

	


if (!sign_data_hiding || !signHidden || xC != dhFirstX || yC != dhFirstY)
	

	



coeff_sign_flag[ n ]
	

	


else
	

	



coeff_sign_flag[n] = sumAbs%2
	

	


if( coeff_sign_flag[n] )
	

	



transCoeffLevel[x0][y0][trafoDepth][cIdx][dhFirstIdx] *= -1
	

	
}
	

	}
	


Picture parameter set RBSP semantics

sign_data_hiding_flag identifies whether sign data hiding is used or not in the current frame. If the value of sign_data_hiding_flag is zero, the sign of the first non-zero coefficient of a residual block should be decoded. If the value of sign_data_hiding_flag is one, the sign may or may not be decoded, depending on the value of the data hiding decision threshold tsig.

The column position dhFirstX and the row position dhFirstY and the scan order position dhFirstIdx of the last non-zero coefficent in scanning order are derived as follows.

dhFirstX
=  LastSignificantCoeffX
dhFirstY
=  LastSignificantCoeffY
dhFirstIdx
=  numCoeff
The data hiding decision threshold tsig is derived as follows.

tsig = cIdx== 0? 

(PredMode == MODE_INTRA ? tsig_intra_luma : tsig_inter_luma) LastSignificantCoeffX

: (PredMode == MODE_INTRA ? tsig_intra_chroma : tsig_inter_chroma)

tsig_intra_luma specifies the number of non-zero coefficients that should be present in a luma intra residual block for sign data hiding to be performed. If tsig_intra_luma is zero or if the number of non-zero coefficient is strictly smaller than tsig_intra_luma , the sign of the first non-zero coefficient of the residual block should be decoded, otherwise it should not be decoded. The value of tsig_intra_luma shall be in the range of 0 to 7, inclusive.

tsig_intra_chroma specifies the number of non-zero coefficients that should be present in a chroma intra residual block for sign data hiding to be performed. If tsig_intra_chroma is zero or if the number of non-zero coefficient is strictly smaller than tsig_intra_chroma, the sign of the first non-zero coefficient of the residual block should be decoded, otherwise it should not be decoded. The value of tsig_intra_chroma shall be in the range of 0 to 7, inclusive.

tsig_inter_luma specifies the number of non-zero coefficients that should be present in a luma inter residual block for sign data hiding to be performed. If tsig_inter_luma is zero or if the number of non-zero coefficient is strictly smaller than tsig_inter_luma , the sign of the first non-zero coefficient of the residual block should be decoded, otherwise it should not be decoded. The value of tsig_inter_luma shall be in the range of 0 to 7, inclusive.

tsig_inter_chroma specifies the number of non-zero coefficients that should be present in a chroma inter residual block for sign data hiding to be perfomed. If tsig_inter_chroma is zero or if the number of non-zero coefficient is strictly smaller than tsig_inter_chroma, the sign of the first non-zero coefficient of the residual block should be decoded, otherwise it should not be decoded. The value of tsig_inter_chroma shall be in the range of 0 to 7, inclusive.


Page: 9
Date Saved: 2012-01-26

