	[image: image1.png]

[image: image2.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
8th Meeting: San José, CA, USA, 1–10 February, 2012
	Document: JCTVC-H0164
WG11 number: m23036

	Title:
	Non CE9: Removing non-scaled bi-predictive merging candidates

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Yih Han Tan
Chuohao Yeo

Hui Li Tan

Zhengguo Li

1 Fusionopolis Way
#21-01 Connexis (South Tower)
Singapore 138632
	
Tel:
Email:
	
+65 6408 2000
yhtan@i2r.a-star.edu.sg

	Source:
	Institute for Infocomm Research

Abstract

This contribution proposes to remove the non-scaled bi-predictive merge candidates that are created from the uni-directional motion vectors during the second round of merge candidate addition. Removing the non-scaled bi-predictive merge candidates reportedly results in a 0.1% coding performance drop in the RA-LC and RAHE-10 configurations and has no coding performance impact in other configurations.
1 Introduction
During the second round of merge candidate addition, one possible candidate is a set of ‘non-scaled bi-predictive’ motion vectors created from a uni-direction motion vector already in the candidate list. In this contribution, experimental results on the impact of removing the possibility of using such candidates are presented.
2 Experimental results

We have implemented the proposed method in HM 5.0. The proposed method is evaluated on all the HEVC sequences as mandated by the common test conditions [1]. Experiments were done on the RAHE, RAHE10, RALC, LDHE and LDLC configurations.
The table below shows the results for RAHE, RAHE10, RALC configurations:
	
	Random Access HE
	Random Access LC
	Random Access HE-10

	
	Y
	U
	V
	Y
	U
	V
	Y
	U
	V

	Class A (8bit)
	0.0%
	0.1%
	0.0%
	0.0%
	0.1%
	0.1%
	0.1%
	0.1%
	0.2%

	Class B
	0.0%
	0.0%
	0.1%
	0.1%
	0.1%
	0.1%
	0.1%
	0.1%
	0.1%

	Class C
	0.0%
	0.1%
	0.1%
	0.1%
	0.1%
	0.1%
	
	
	

	Class D
	0.1%
	-0.1%
	0.0%
	0.1%
	0.1%
	0.2%
	
	
	

	Class E
	
	
	
	
	
	
	
	
	

	Overall
	0.0%
	0.0%
	0.1%
	0.1%
	0.1%
	0.1%
	0.1%
	0.1%
	0.1%

	
	0.0%
	0.0%
	0.1%
	0.1%
	0.1%
	0.1%
	0.1%
	0.1%
	0.1%

	Class F
	0.0%
	0.0%
	0.0%
	0.1%
	0.1%
	0.1%
	
	
	

	Enc Time[%]
	100%
	98%
	99%

	Dec Time[%]
	101%
	98%
	98%

The table below shows the results for LDHE and LDLC configurations:
	
	Low delay B HE
	Low delay B LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	
	
	
	
	
	

	Class B
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Class C
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Class D
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Class E
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Overall
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Class F
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Enc Time[%]
	100%
	100%

	Dec Time[%]
	100%
	100%

3 Conclusion
Removing the non-scaled bi-predictive merge candidates results in a 0.1% coding performance drop in RA-LC and RAHE-10 configurations and has no coding performance impact in other configurations. We recommend adopting this modification in the next HEVC test model.

4 References
[1] F. Bossen, “Common conditions and software reference configurations,” in JCTVC-G1200, Geneva, Switzerland, Nov. 2011.
5 Patent rights declaration(s)
Institute for Infocomm Research may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
6 Appendix – Proposed Text

8.4.2.1.4 Derivation process for non-scaled bi-predictive merging candidates

Inputs of this process are

· a merging candidate list mergeCandList,

· reference indices refIdxL0N and refIdxL1N of every candidate N being in mergeCandList,

· prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N being in mergeCandList,

· motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList,

· the number of elements numMergeCand within mergeCandList,
· the number of elements numOrigMergeCand within the mergeCandList after the spatial and temporal merge candidate derivation process,
Outputs of this process are

· the merging candidate list mergeCandList,
· the number of elements numMergeCand within mergeCandList.
· reference indices refIdxL0nscaleCandl and refIdxL10nscaleCandl of every new candidate nscaleCandl being added in mergeCandList during the invokation of this process,

· prediction list utilization flags predFlagL0nscaleCandl and predFlagL10nscaleCandl of every new candidate nscaleCandl being added in mergeCandList during the invokation of this process,

· motion vectors mvL0nscaleCandl and mvL10nscaleCandl of every new candidate nscaleCandl being added in mergeCandList during the invokation of this process,

The function RefPicOrderCnt(refidx, LX) specifies the value of PicOrderCnt of the picture that is the reference picture RefPicListX[refidx] of the current picture with X being 0 or 1. PicOrderCnt of the reference picture shall be maintained until the picture is marked as “non-existing”. The variable PicOrderCnt specifies the PicOrderCnt of the current picture.

[Ed. (BB): PicOrderCnt(.) needs to be defined. Currently the Decoding process for picture order count is not described]
When numOrigMergeCand is greater than 0 and numMergeCand is less than MaxNumMergeCand, the variable numInputMergeCand is set to numMergeCand, the variables origIdx and nscaleCnt are set to 0, the variable nscaleStop is set to false and the following steps are repeated until nscaleStop is equal to true.

1. The following assignments are made with origCand being the candidate at position origIdx in the merging candidate list mergeCandList (origCand = mergeCandList[origIdx]).

2. The following is applied one time with X being 0 and Y being 1. When nscaleCnt is less than 1 and numMergeCand is less than MaxNumMergeCand, it is applied a second time with X being 1 and Y being 0.

· When all of the following conditions are true,

· refIdxLXorigCand >= 0

· RefPicOrderCnt(refIdxLXorigCand, LX) != RefPicOrderCnt(refIdxLXorigCand, LY)
· abs(PicOrderCnt − RefPicOrderCnt(refIdxLXorigCand, LX)) = =
abs(PicOrderCnt − RefPicOrderCnt(refIdxLXorigCand, LY))
· refIdxLXorigCand < num_ref_idx_lY_active_minus1 + 1

the following applies.

· The candidate nscaleCandl with l equal to (numMergeCand − numInputMergeCand)is added at the end of mergeCandList (mergeCandList[numMergeCand] = nscaleCandl) and the reference indices, the prediction list utilization flags and the motion vectors of nscaleCandl are dervied as follows and numMergeCand is incremented by 1.

refIdxL0nscaleCandl = refIdxLXorigCand

(8‑92)

refIdxL1nscaleCandl = refIdxLXorigCand

(8‑93)

predFlagL0nscaleCandl = 1

(8‑94)

predFlagL1nscaleCandl = 1

(8‑95)

mvL0nscaleCandl[0] = mvLXorigCand[0]

(8‑96)

mvL0nscaleCandl[1] = mvLXorigCand[1]

(8‑97)

mvL1nscaleCandl[0] = − mvLXorigCand[0]

(8‑98)

mvL1nscaleCandl[1] = − mvLXorigCand[1]

(8‑99)

numMergeCand = numMergeCand + 1
(8‑100)
· The variable nscaleCnt is incremented by 1.

3. The variable origIdx is incremented by 1.
4. When origIdx is equal to numOrigMergeCand or numMergeCand is equal to MaxNumMergeCand or nscaleCnt is equal to 1, nscaleStop is set to true.

Page: 2
Date Saved: 2012-01-18

