	[image: image1.png]

[image: image2.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
8th Meeting: San José, CA, USA, 1–10 February, 2012
	Document: JCTVC-H0066

	Title:
	CE8.a.2: ALF with LCU-based syntax

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	A. Fuldseth, Cisco Systems

G. Bjøntegaard, Cisco Systems

	Tel:
Email:

Tel:
Email:
	+47 92414082
arild.fuldseth@cisco.com

gbjonteg@cisco.com

	Source:
	Cisco Systems

Abstract

The contribution proposes an ALF technique with LCU-based syntax. The proposed syntax allows for signaling new ALF parameters for every LCU. The ALF syntax elements are located at the LCU level enabling immediate insertion of ALF information into the bit-stream once encoding of an LCU is completed. It is asserted that the proposed ALF syntax is friendlier to single-pass low delay encoder implementations compared to HM5.0-ALF. No subdivision of an LCU into smaller block sizes is needed as all ALF parameters are the same for the entire LCU. In particular, no variance calculations at 4x4 block level and CU-level on/off decisions are needed. The proposed ALF method uses two filter shapes (5x5 snowflake and 9x9 cross shape) which can be chosen on the LCU level. To improve compression efficiency, filter coefficients from a previously transmitted LCU can also be used. Furthermore, to achieve a good balance between PSNR improvement and bit usage, QP-dependent quantization of the filter coefficients is used. Finally, for each LCU, ALF can be enabled/disabled independently for luma and chroma. Simulation results corresponding to single-pass encoding with sub-frame encoding delay and without look-ahead below the current LCU row are provided. Using HM5.0 as anchor and with high efficiency settings (i.e. including HM5.0-ALF), BDR losses between 0.0% and 1.0% are observed. Compared to the anchor, simulation times of 71%-94% and 88%-96% are reported for the encoder and decoder respectively.
1 Introduction
ALF as implemented in HM5.0 is frame oriented. This implies that most of the ALF syntax elements (e.g. filter coefficients) are shared by one frame (or a region of a frame) and are located in the APS. The remaining syntax elements (e.g. CU-level on/off flags) are located in the slice header. Furthermore the HM5.0 encoder estimates all ALF parameters for one frame as a separate pass once deblocking and SAO is complete. This means that there is an encoding delay of one frame associated with the performance of HM5.0-ALF. It is not known how HM5.0-ALF would perform with tighter constraint on the encoding delay, e.g. by using filter coefficients estimated from the previous frame. This makes HM5.0-ALF less attractive for low delay real time applications like video conferencing where encoding delay less than one frame period is desired.
The proposed ALF method is friendlier towards single-pass encoders with sub-frame encoding delay. By doing both filter coefficient estimation and ALF parameter signaling at the LCU level, ALF information can be transmitted instantly and there is no additional encoding delay associated with the ALF process.

Compared to the HM5.0, the proposed method also has some computational advantages:

· No variance calculations and filter classification at the 4x4 block level.

· No ALF on/off signaling at the CU level.

· Same ALF parameters for the entire LCU

These properties represent a major implementation advantage, at least in software, since smaller blocks tend to break regularity and program flow.
An initial version of the proposed ALF method was first proposed in [1] and later refined in [2] and [3]. Compared to the ALF version described in [3], this document describes an improved version with the following additions:

· ALF for chroma is added.
· The 9x3 cross shape is replaced with 9x9 cross shape.
· Line buffer removal according to JCTVC-G212 is implemented.
· Somewhat optimized CABAC contexts for ALF coefficients.
2 Description

In this section, the proposed ALF method is described in more detail.
2.1 ALF parsing process

The ALF parsing process for each LCU can be summarized by the following pseudo-code.
ALFenableflag // ALF on/off for LCU
if (ALFenableFlag)

{
 ALFchromaFlag // ALF on/off for chroma
 filterShapeFlag // Indicate 5x5 snowflake or 9x9 cross shape
 copyFlag // Use coefficients from previous LCU or transmit new coefficients.
 if (copyFlag)

 {
 copyID // Choose between a maximum of 8 previous ALF coefficients
 }
 else

 {
 parse_ALF_coefficients()
 }
}
2.2 Determining the ALF coefficients
Calculation of covariance data and solving for optimal coefficients are performed in a similar way as HM 5.0, but for each LCU separately. When simulating single-pass low delay encoding mode, the 4 bottom rows of each LCU are not used for the estimation process, as these have not been deblocked and processed by SAO yet.
2.3 Enabling/disabling ALF on the LCU level

One flag is signaled for each LCU to enable/disable ALF.
2.4 Enabling/disabling chroma ALF on the LCU level
If ALF is enabled for an LCU, one flag is signaled to enable/disable ALF for chroma. All other ALF parameters are shared between luma and choma.
2.5 Filter shapes
Two different filter shapes can be used:
- 5x5 snowflake shape

- 9x9 cross shape

The two pixel masks are shown below.

 5x5 snowflake 9x9 cross shape
 0
 1
 0 1 2 2
 3 4 5 3
 6 7 8 7 6 4 5 6 7 8 7 6 5 4
 5 4 3 3
 2 1 0 2
 1
 0
Figure 1. Two filter shapes

The choice between the two filer shapes is signaled for each LCU when ALF is enabled
2.6 Adaptive codebook

For each shape, an "adaptive codebook" of size 8 is used to store previous quantized ALF coefficients in the same slice. The adaptive codebook is populated incrementally using the sliding window principle, starting with an empty codebook at the beginning of each slice. At each LCU, the encoder can choose between using ALF coefficients from the adaptive codebook or to quantize/transmit a new set of filter coefficients. The choice between the using the adaptive codebook and signaling a new set of filter coefficients is signaled for each LCU when ALF is enabled. If the adaptive codebook is chosen, Ceil(log2(N)) bits are used to choose among the filter coefficients in the codebook.

2.7 Quantization of ALF coefficients

The ALF coefficients are quantized more coarsely than in HM 5.0. This is mainly in order to save bits since coefficients are sent for every LCU. For both pixel masks, 9 ALF coefficients are calculated. Coefficients 0-7 are quantized and transmitted to the decoder while coefficient 8 (the center position) is derived from the other coefficients to provide a final DC response equal to 1.

2.8 Other considerations

Line buffer removal

For line buffer removal, the method of [4] is implemented and included in all simulation results below.

Slice- and tile boundary processing
For slice- and tile boundary processing it is proposed to use the same mechanisms as HM5.0-ALF.

Wavefront processing

For wavefront processing, it is proposed to reset the adaptive codebook at the start of each LCU row. The effects on compression performance from this constraint are included in the next section as supplementary results.
Chroma filtering

The proposed method uses the same filter coefficients/filter shape for luma and chroma samples within an LCU. Alternatively, one could send separate filter coefficients/filter shapes for luma and chroma. Results for this approach are included in the next section as supplementary results.
3 Simulation results

BD-rate results for the proposed method are shown in the tables below. For all experiments, a strict sub-frame encoding delay constraint is imposed on the ALF filter estimation process, implying that the bottom four pixel of each LCU are not used to determine the ALF parameters.
In Table 1, BD-rate results for the proposed ALF method using one slice per frame are shown. Common coding conditions [5] are used. The anchor is HM5.0 with HM5.0-ALF enabled.
In Table 2, BD-rate results for the proposed ALF method using multiple slices per frame are shown. To enable independent slice decoding, the adaptive codebook of the proposed ALF method is reset at the beginning of each slice. Common coding conditions [5] are used, except for using multiple slices per frame and disabling ALF in the anchor. As described in [6], the numbers of LCUs per slice are 64, 104, 28, 60, and 96 for 1920x1080, 832x480, 416x240, 1280x720, and 1024x768 resolutions, respectively. The anchor is HM5.0 with multi-slice patches of revisions #1703, #1704, #1705, and #1706, multiple slices per frame and with ALF disabled [6].
In Table 3, BD-rate results for the proposed method using one slice per frame and resetting the adaptive codebook at the beginning of each LCU row are shown. Although wavefront processing is not enabled, the results provide an indication of the additional loss expected with wavefront processing. Common coding conditions [5] are used. The anchor is HM5.0 with HM5.0-ALF enabled.
Table 1. BD-rate results for the proposed ALF method, single-slice configuration.
Anchor: HM5.0 with ALF enabled.
	
	All Intra HE

	
	Y
	U
	V

	Class A (8bit)
	0,8 %
	0,2 %
	0,5 %

	Class B
	0,2 %
	0,7 %
	0,5 %

	Class C
	0,0 %
	1,6 %
	1,6 %

	Class D
	0,2 %
	1,6 %
	1,9 %

	Class E
	0,4 %
	4,0 %
	4,4 %

	Overall
	0,3 %
	1,6 %
	1,7 %

	
	0,3 %
	1,6 %
	1,7 %

	Class F
	0,1 %
	0,8 %
	0,8 %

	Enc Time[%]
	71 %

	Dec Time[%]
	96 %

	
	
	
	

	
	Random Access HE

	
	Y
	U
	V

	Class A (8bit)
	1,2 %
	-0,7 %
	-0,7 %

	Class B
	0,5 %
	-0,1 %
	-0,8 %

	Class C
	0,3 %
	-0,2 %
	0,0 %

	Class D
	0,7 %
	0,2 %
	0,4 %

	Class E
	
	
	

	Overall
	0,6 %
	-0,1 %
	-0,2 %

	
	0,6 %
	-0,1 %
	-0,2 %

	Class F
	0,2 %
	0,4 %
	0,2 %

	Enc Time[%]
	92 %

	Dec Time[%]
	95 %

	
	
	
	

	
	Low delay B HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	0,1 %
	-0,7 %
	-1,0 %

	Class C
	0,0 %
	-0,4 %
	-0,4 %

	Class D
	0,7 %
	1,0 %
	1,4 %

	Class E
	-0,2 %
	0,3 %
	-2,8 %

	Overall
	0,2 %
	0,0 %
	-0,6 %

	
	0,2 %
	-0,1 %
	-0,6 %

	Class F
	0,1 %
	-0,2 %
	-0,5 %

	Enc Time[%]
	94 %

	Dec Time[%]
	97 %

	
	
	
	

	
	Low delay P HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	0,0 %
	-1,5 %
	-1,8 %

	Class C
	-0,1 %
	-0,6 %
	-1,0 %

	Class D
	0,2 %
	0,6 %
	0,5 %

	Class E
	-0,1 %
	1,2 %
	-3,3 %

	Overall
	0,0 %
	-0,3 %
	-1,3 %

	
	0,0 %
	-0,3 %
	-1,3 %

	Class F
	0,2 %
	0,1 %
	-0,5 %

	Enc Time[%]
	92 %

	Dec Time[%]
	96 %

	
	
	
	

	
	Random Access HE

	
	Y
	U
	V

	Class A (8bit)
	1,4 %
	6,0 %
	5,9 %

	Class B
	0,7 %
	1,6 %
	0,8 %

	Class C
	
	
	

	Class D
	
	
	

	Class E
	
	
	

	Overall
	1,0 %
	3,5 %
	3,1 %

	
	1,0 %
	3,4 %
	3,1 %

	Class F
	
	
	

	Enc Time[%]
	91 %

	Dec Time[%]
	91 %

Table 2. BD-rate results for the proposed ALF method, multi-slice configuration.
Anchor: HM5.0 with multiple slices per frame and HM5.0-ALF disabled.
	
	Low delay B HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	-2,2 %
	-0,7 %
	-0,6 %

	Class C
	-2,6 %
	-0,9 %
	-1,4 %

	Class D
	-1,6 %
	0,4 %
	-0,5 %

	Class E
	-2,6 %
	1,3 %
	0,3 %

	Overall
	-2,2 %
	-0,1 %
	-0,6 %

	
	-2,2 %
	-0,2 %
	-0,6 %

	Class F
	-1,9 %
	-0,1 %
	-0,8 %

	Enc Time[%]
	101 %

	Dec Time[%]
	111 %

	
	
	
	

	
	Low delay P HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	-5,2 %
	-2,2 %
	-1,9 %

	Class C
	-2,6 %
	-1,1 %
	-1,6 %

	Class D
	-0,9 %
	-0,3 %
	-0,8 %

	Class E
	-6,0 %
	-0,3 %
	-1,4 %

	Overall
	-3,6 %
	-1,1 %
	-1,5 %

	
	-3,6 %
	-1,1 %
	-1,4 %

	Class F
	-1,7 %
	-0,8 %
	-0,9 %

	Enc Time[%]
	101 %

	Dec Time[%]
	115 %

Table 3. BD-rate results with reset of the adaptive codebook at each LCU row.
Anchor: HM5.0 with ALF enabled.
	
	All Intra HE

	
	Y
	U
	V

	Class A (8bit)
	
	
	

	Class B
	
	
	

	Class C
	
	
	

	Class D
	
	
	

	Class E
	
	
	

	Overall
	
	
	

	
	
	
	

	Class F
	
	
	

	Enc Time[%]
	

	Dec Time[%]
	

	
	
	
	

	
	Random Access HE

	
	Y
	U
	V

	Class A (8bit)
	
	
	

	Class B
	
	
	

	Class C
	
	
	

	Class D
	
	
	

	Class E
	
	
	

	Overall
	
	
	

	
	
	
	

	Class F
	
	
	

	Enc Time[%]
	

	Dec Time[%]
	

	
	
	
	

	
	Low delay B HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	
	
	

	Class C
	
	
	

	Class D
	
	
	

	Class E
	
	
	

	Overall
	
	
	

	
	
	
	

	Class F
	
	
	

	Enc Time[%]
	

	Dec Time[%]
	

	
	
	
	

	
	Low delay P HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	
	
	

	Class C
	
	
	

	Class D
	
	
	

	Class E
	
	
	

	Overall
	
	
	

	
	
	
	

	Class F
	
	
	

	Enc Time[%]
	

	Dec Time[%]
	

	
	
	
	

	
	

	
	
	
	

	Class A (8bit)
	
	
	

	Class B
	
	
	

	Class C
	
	
	

	Class D
	
	
	

	Class E
	
	
	

	Overall
	
	
	

	
	
	
	

	Class F
	
	
	

	Enc Time[%]
	

	Dec Time[%]
	

4 Conclusions

Results have been presented for an ALF method with LCU-based syntax. The method is particularly useful for single-pass encoder implementations with sub-frame encoding delay. When comparing with the HM5.0 anchor, significant reduction in encoder and decoder simulation times and small BD-rate losses are observed. The method is proposed adopted into the HM/WD.

5 References
[1] A. Fuldseth and G. Bjøntegaard, “ALF with low latency and reduced complexity for HEVC,” JCTVC-F542, Torino, July, 2011.

[2] A. Fuldseth and G. Bjøntegaard, “ALF with low latency and reduced complexity for HEVC,” JCTVC-G498, Geneva, November, 2011.

[3] A. Fuldseth and G. Bjøntegaard, “Improved ALF with low latency and reduced complexity for HEVC,” JCTVC-G499, Geneva, November, 2011.
[4] C.-Y. Chen, C.-M. Fu, C.-Y. Tsai, Y.-W. Huang, S. Lei (MediaTek), S. Esenlik, M. Narroschke, T. Wedi (Panasonic), I. S. Chong, M. Karczewicz (Qualcomm), "Single-source SAO and ALF virtual boundary processing with cross9x9," JCTVC-G212, Geneva, November, 2011.
[5] F. Bossen, "Common HM test conditions and software reference configurations," JCTVC-G1200, Geneva, November, 2011.

[6] T. Yamakage, I. S. Chong, M. Narroschke, Y.-W. Huang, "Description of Core Experiment 8 (CE8): Non-deblocking loop filtering," JCTVC-G1208, Geneva, November, 2011.
6 Patent rights declaration(s)
Cisco Systems may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Appendix A
This appendix contains suggested WD text for the proposed method. The text below is proposed to replace the relevant sections of the existing WD.
Syntax
	alf_parameters() {
	Descriptor

	
alf_enabled_flag
	ae(v)

	
if(alf_enabled_flag) {
	

	 alf_chroma_enabled_flag
	ae(v)

	

alf_filter_shape_id
	ae(v)

	

alf_copy_flag
	ae(v)

	

if(alf_copy_flag)
	

	

alf_copy_id
	ae(v)

	

else
	

	

 for (i=0; i<8; i++)
	

	

 c[i]
	 ae(v)

	
}
	

	}
	

Semantics

alf_enabled_flag equal to 1 specifies that the adaptive loop filter process is applied to the luma samples of the current LCU. alf_enabled_flag equal to 0 specifies that that the adaptive loop filter process is not enabled for the luma samples of the current LCU.
alf_chroma_enabled_flag equal to 1 specifies that the adaptive loop filter process is applied to the chroma samples of the current LCU. alf_chroma_enabled_flag equal to 0 specifies that that the adaptive loop filter process is not enabled for the chroma samples of the current LCU. When not present, alf_chroma_enabled_flag shall be inferred to be equal to 0.
alf_filter_shape_id equal to 0 specifies that the 5x5 snowflake filter shape shall be used in the adaptive loop filter process. alf_filter_shape_id equal to 1 specifies that the 9x9 cross filter shape shall be used in the adaptive loop filter process.

alf copy_flag equal to 1 specifies that filter coefficients, from one of the previously decoded LCUs of the current slice shall be used. alf copy_flag equal to 0 specifies that the syntax elements c[i], i=0..7 are present for the current LCU.
alf copy_id when present, specifies which of the previously decoded sets of filter coefficients shall be used to define the current set of filter coefficients, f[i], i=0..8.
c[i] is used to determine the value of filter coefficient f[i], i=0..7.

Decoding process

Derivation process for filter coefficients
This process is invoked when adaptive_loop_filter_enabled_flag, adaptive_loop_filter_flag, and alf_enabled_flag are all equal to 1.

Outputs of this process are filter coefficients f to be used in the adaptive loop filter process.

The filter coefficients f with elements f[j], j = 0..7 are derived as follows.

If alf_copy_flag is equal to 1,

f[j] = prevCoeff[alf_filter_shape_id][alf_copy_id][j], j = 0..8
Otherwise (alf_copy_flag is not equal to 1),

If alf_filter_shape_id is equal to 0,

if (j==4 | | j==7)

d[j] = ((c[i]&1) ? ((c[j]+1)>>1) : -(c[j]>>1)) + alf_offset

else

d[j] = (c[i]&1) ? -((c[j]+1)>>1) : c[j]>>1

where alf_offset is determined from Table 1.

Otherwise (ALF_mask_id is not equal to 0),

if (j==3 | | j==7)

d[j] = (c[i]&1) ? ((c[j]+1)>>1) : -(c[j]>>1)

else

d[j] = (c[i]&1) ? -((c[j]+1)>>1) : c[j]>>1

Next, derive alf_shift as follows

alf_shift = 16 – Min(7,Max(4,(37-QPY)/5 + 4))

Next, determine the filter coefficients f[j], j..7 as

f[j] = d[j]<<alf_shift, j = 0..7

f[8] = (1<<alf_shift) – 2*(f[0] + … + f[7])

Finally, the prevCoeffArray is updated as follows.

for (i=7; i>=1; i--){

prevCoeff[alf_filter_shape_id][i][j] = prevCoeff[filter_shape_id][i-1][j], j=0..7
 }

 prevCoeff[alf_filter_shape_id][0][j] = f[j], j=0..7
Table 1. Determination of alf_offset
	
	alf_shift=4
	alf_shift=5
	alf_shift=6
	alf_shift=7

	pic_height_in_luma_samples < 300
	0
	0
	0
	0

	300 <= pic_height_in_luma_samples < 600
	3
	2
	2
	1

	600 <= pic_height_in_luma_samples < 900
	18
	12
	6
	3

	900 <= pic_height_in_luma_samples
	12
	7
	4
	2

Filtering process for reconstructed samples
If alf_filter_shap_id is equal to 0, the samples of the reconstructed luma and chroma picture are derived as follows:

recFiltPictureL[xC+x][yC+y] =

f[0] * (s''[xC+x-2][yC+y-2] + s''[xC+x+2][yC+y+2]) +

f[1] * (s''[xC+x+0][yC+y+2] + s''[xC+x+0][yC+y-2]) +

f[2] * (s''[xC+x+2][yC+y-2] + s''[xC+x-2][yC+y+2]) +

f[3] * (s''[xC+x+1][yC+y+1] + s''[xC+x-1][yC+y-1]) +

f[4] * (s''[xC+x+0][yC+y+1] + s''[xC+x+0][yC+y-1]) +

f[5] * (s''[xC+x-1][yC+y+1] + s''[xC+x+1][yC+y-1]) +

f[6] * (s''[xC+x-2][yC+y+0] + s''[xC+x+2][yC+y+0]) +

f[7] * (s''[xC+x-1][yC+y+0] + s''[xC+x+1][yC+y+0]) +

f[8] * s''[xC+x+0][yC+y+0]

Otherwise (alf_filter_shape_id is not equal to 0), the samples of the reconstructed luma and chroma picture are derived as follows:

recFiltPictureL[xC+x][yC+y] =

f[0] * (s''[xC+x+0][yC+y-1] + s''[xC+x+0][yC+y+1]) +

f[1] * (s''[xC+x-4][yC+y+0] + s''[xC+x+4][yC+y+0]) +

f[2] * (s''[xC+x-3][yC+y+0] + s''[xC+x+3][yC+y+0]) +

f[3] * (s''[xC+x-2][yC+y+0] + s''[xC+x+2][yC+y+0]) +

f[4] * (s''[xC+x-1][yC+y+0] + s''[xC+x+1][yC+y+0]) +

f[5] * s''[xC+x+0][yC+y+0]

Page: 6
Date Saved: 2012-01-25

