	[image: image6.png]

[image: image7.png]

[image: image8.png]Co

Cs [Cs

Cs[Cr

Cs[Cr

Ci|Cs

Cy

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, 21-30, CH Nov, 2011
	Document: JCTVC-G998
WG11 Number: m22747

	Title:
	Combined Result of JCTVC-G610 and JCTVC-G774

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Jie Zhao1
Andrew Segall1
Marta Karczewicz2
In Suk Chong2
	Email:
	asegall@sharplabs.com
martak@qualcomm.com
ichong@qualcomm.com

	Source:
	SHARP1 , Qualcomm2

Abstract
JCTVC-G610 proposes modifications to the ALF process consisting of (i) selectively sending DC coefficients, (ii) harmonization of center coefficient signaling between luma and chroma, and (iii) reduced signaling of the k values used to transmit ALF coefficients. It is asserted that these modifications simplify ALF and also provide coding efficient improvement. JCTVC-G774 also proposes modifications to the ALF process consisting of reducing the bit-depth of DC coefficient values. It is also asserted that this modification simplifies ALF and provides coding efficiency improvement.

In this proposal, the combination of JCTVC-G610 and JCTVC-G774 is reported. The proposal reports that the combined solution provides additional coding efficiency gains. Moreover, it is asserted that the simplifications of each proposal are maintained and additive.
1 Combination of JCTVC-G610 and JCTVC-G774

[image: image1] [image: image2.emf]C

1

C

0

C

6

C

7

C

6

C

0

C

1

C

2

C

5

C

3

C

5

C

4

C

4

C

3

C

2

Fig 1(a) Star shape ALF filter
Fig 1(b) Cross shape ALF filter

An Adaptive Loop Filter (ALF) is used in the HEVC high efficiency coding configurations to filter the reconstructed image after deblocking and SAO. In the 6th JCT-VC meeting in July 2011, two filter shapes -- Star and Cross as shown in Fig. 1 were adopted [1]. Star shape filter has 10 coefficients. It includes the C0 to C8 as shown in Fig. 1(a) and a DC coefficient; Cross shape filter has 9 coefficients. It includes C0 to C7 as shown in Fig 1(b) and a DC coefficient.
The majority of signaling of the ALF parameters are sent in to Adaptive Parameter Set (Adaptive parameter set) [3] . The syntax of ALF parameters are as shown in the Table 1 below.

 Table 1. ALF parameter in HM4.0

	alf_non_entropy_coded_param() {
	C
	Descriptor

	
alf_region_adaptation_flag
	2
	u(1)

	
alf_length_luma_minus_5_div2
	2
	ue(v)

	
alf_no_filters_minus1
	2
	ue(v)

	
if (alf_no_filters_minus1 == 1)
	
	

	

alf_start_second_filter
	2
	ue(v)

	
else if (alf_no_filters_minus1 > 1) {
	
	

	

for (i=1; i< 16; i++)
	
	

	

alf_filter_pattern[i]
	2
	u(1)

	
}
	
	

	
if (AlfNumFilters > 1)
	
	

	

alf_pred_method
	2
	u(1)

	
alf_min_kstart_minus1
	2
	ue(v)

	
for (i=0; i < AlfMaxDepth; i++)
	
	

	

alf_golomb_index_bit[i]
	2
	u(1)

	 byte_align();
	
	

	
for (i=0; i< AlfNumFilters; i++)
	
	

	

for (j=0; j< AlfCodedLengthLuma; j++)
	
	

	

alf_coeff_luma[i][j]
	
	ge(v)

	
alf_chroma_idc
	2
	ue(v)

	
if (alf_chroma_idc) {
	
	

	

alf_length_chroma_minus_5_div2
	2
	ue(v)

	

for(i = 0; i< AlfCodedLengthChroma; i++)
	
	

	

alf_coeff_chroma[i]
	
	se(v)

	
}
	
	

	}
	
	

1.1 Option of not Sending ALF DC coefficient
As mentioned before, Star shape filter has 10 coefficients, including a DC coefficient, and Cross shape filter has 9 coefficients including a DC coefficient. We observed that DC values have wide variations, and have little correlation among filters. It takes many bits to code, while the gain from DC coefficient is small on most frames, especially on low quality inter frames. Therefore we propose to have an option to not have the DC coefficient. This is equivalent to efficiently signaling that the DC coefficient is zero.

Here, we propose that the presence of the DC coefficient is signaled and applied to both luma and chroma filter. The signaling is decided by the encoder; however, we have found that the DC coefficient is important for high quality inter frames, but not so for the lower quality inter frames as well as intra.

For slices without ALF DC coefficients, the complexity of ALF process is slightly reduced with one less coefficient to apply (and design at the encoder). Moreover, we observe bit-rate reduction from not signaling the DC coefficient values.

alf_dc_present_flag specifies if DC coefficient is present in the filter coefficients. If alf_dc_present_flag equals 1, DC coefficient is present, if alf_dc_present_flag equals 0, no DC coefficient is present.

	alf_non_entropy_coded_param() {
	C
	Descriptor

	
alf_region_adaptation_flag
	2
	u(1)

	
alf_length_luma_minus_5_div2
	2
	ue(v)

	
alf_dc_present_flag
	2
	u(1)

	 ……
	
	

Alternatively, the presence of the DC coefficient may be signaled for every filter. If alf_dc_present_flag equals 0, no DC coefficient is present, AlfCodedLengthLuma and or AlfCodedLengthChroma should be reduced by 1, i.e. 9 coefficients for star shape, and 8 coefficients for cross shape. If alf_dc_present_flag equals 1, the DC coefficient is present. Here, we send the DC_coefficient-1 in the bitstream since we know the DC coefficient is not 0.

	
 …..
	
	

	for (i=0; i< AlfNumFilters; i++)
	
	

	
 alf_dc_present_flag
	2
	u(1)

	

for (j=0; j< AlfCodedLengthLuma; j++)
	
	

	

alf_coeff_luma[i][j]
	
	ge(v)

	
alf_chroma_idc
	2
	ue(v)

	
if (alf_chroma_idc) {
	
	

	

alf_length_chroma_minus_5_div2
	2
	ue(v)

	
 alf_dc_present_flag
	2
	u(1)

	

for(i = 0; i< AlfCodedLengthChroma; i++)
	
	

	

alf_coeff_chroma[i]
	
	se(v)

	
}
	
	

Note that we prefer that all filters in a slice have the ALF DC coefficients either signaled or not.

1.2 Bit-depth reduction of transmitted DC coefficients

In the current HM4.0 ALF design, AC and DC coefficients of ALF uses the same bitdepth (i.e., 9 bits). But we found that DC coefficients requires less bitdepth than AC coeffieints. We propose to use less bit-depth for DC coefficients. This is also presented in JCTVC-G774.
1.2.1 Changes in Working Draft Text

8.6.3.2 Derivation process for filter coefficients

Outputs of this process are filter coefficients cL for the luma samples and filter coefficients cC for the chroma samples.
The luma filter coefficients cL with elements cL[i][j], i = 0..AlfNumFilters – 1, j = 0..AlfCodedLengthLuma – 1 is derived as follows:

· If alf_pred_method is equal to 0 or the value of i is equal to 0,

cL[i][j] = alf_coeff_luma[i][j]

(8‑464)

· Otherwise (alf_pred_method is equal to 1 and the value of i is greater than 1),

cL[i][j] = alf_coeff_luma[i][j] + cL[i – 1][j]

(8‑465)

Considering the symmetry of the filter, the luma filter coefficients cL with elements cL[i][j], i = 0..AlfNumFilters – 1 is derived as follows:

cL[i][AlfLengthLuma – 1] = (cL[i][AlfCodedLengthLuma – 1]
 << 7)(8‑466)

cL[i][AlfLengthLuma – 2 – j] = cL[i][j] for j = 0..AlfCodedLengthLuma – 2
(8‑467)

1.3 Predicting Center Luma Coefficient

For a slice, there may be one or more ALF filter transmitted for the luma channel. In the current system these luma coefficients may be predicted from other luma filters in the same slice. We refer to this as “inter filter prediction”, and it is enbabled by the flag alf_pred_method. When disabled, the ALF luma coefficients are transmitted without prediction.

As described in HEVC Working draft 4 (WD4) [2] section 8.6.3.2

“ The luma filter coefficients cL with elements cL[i][j], i = 0..AlfNumFilters – 1, j = 0..AlfCodedLengthLuma – 1 is derived as follows:
· If alf_pred_method is equal to 0 or the value of i is equal to 0,

cL[i][j] = alf_coeff_luma[i][j] (8‑464)

· Otherwise (alf_pred_method is equal to 1 and the value of i is greater than 1),

cL[i][j] = alf_coeff_luma[i][j] + cL[i – 1][j]

(8‑465)
“
By contrast, for chroma, there is only one filter per slice. The center coefficient of this filter is predicted from other coefficients, and the difference is coded. We refer to this as “intra filter prediction”, and it is also described in WD4 section 8.6.3.2.

“ The chroma filter coefficients cC with elements cC[i], i = 0..AlfCodedLengthChroma – 1 is derived as follows:

· If i is equal to AlfCodedLengthChroma – 1, the coefficient cC[i] is derived as

cC[i] = 255 – sum – alf_coeff_chroma[i]

(8‑468)

where
sum = alf_coeff_chroma[AlfCodedLengthChroma – 2] + (j(alf_coeff_chroma[j] << 1)
(8‑469)

with j = 0..AlfCodedLengthChroma – 3

· Otherwise (i is less than AlfCodedLengthChroma – 1),

cC[i] = alf_coeff_chroma[i]

(8‑470)

We observe that ALF luma coefficients are sent by kth order Golomb codes, and that the center coefficient is typically a large value. Inter filter prediction typically reduces the absolute value of the center coefficient. However, for the first filter and the filters when inter filter prediction is not chosen, the center coefficient will remain to be large. Therefore, center coefficients of the predicted and the non-predicted filters will have a large variation. This affects the bit rate since all the center coefficients of a picture share the same k value.

The center coefficient prediction used by chroma reduces the absolute values of a center coefficient and therefore reduces the bitrate. This can be extended into luma coefficients when inter filter prediction is not used. Therefore we propose that for luma filter, when alf_pred_method is equal to 0 or it is the first luma filter (i.e. i is equal to 0), to use the same type of center coefficient prediction method for luma and chroma filters. This makes ALF coefficient prediction of luma and chroma more consistent.

The proposal is given as:

The luma filter coefficients cL with elements cL[i][j], i = 0..AlfNumFilters – 1, j = 0..AlfCodedLengthLuma – 1 is derived as follows:
· If alf_pred_method is equal to 0 or the value of i is equal to 0,

· If j is equal to AlfCodedLengthLuma – 1, the coefficient cL[i][j] is derived as

cL [i] = 255 – sum – alf_coeff_luma[i][j]

where
sum = alf_coeff_luma[AlfCodedLengthLuma – 2] + (j(alf_coeff_luma[i][j] << 1)

with j = 0..AlfCodedLengthLuma – 3

· Otherwise (j is less than AlfCodedLengthLuma – 1),

cL[i][j] = alf_coeff_luma[i][j]

· Otherwise (alf_pred_method is equal to 1 and the value of i is greater than 1),

cL[i][j] = alf_coeff_luma[i][j] + cL[i – 1][j]

1.4 Simplification to ALF parameters

In this section, we identify two simplifications of the coding of ALF coefficient values. We propose some bug fixes to the signaling of the alf_golomb_index_bit flag.

For background, current ALF parameters are listed in Table 1 in introduction section. The two syntaxes we want to address are:

“ alf_filter_pattern[i] specifies the filter index array corresponding to i-th variance index of luma samples, …”

“ alf_golomb_index_bit specifies the difference in order k of k-th order exponential golomb code for the different groups of the luma filter coefficients. Note that there are several groups of the luma filter coefficients where each group may have different order k. “

In WD 4 [3], ALF luma coefficients are sent by k-th order Golomb codes. The k values are stored and sent as alf_golomb_index_bit, or “k table”. AlfMaxDepth is not defined in WD, but we infer that that it means the number of k values to be received. Note that several filter coefficients share the same k, and there is a fixed mapping from the filter coefficients position to the k table. In HM4.0, this mapping is defined by the following arrays for star and cross shape filters respectively, where the array index corresponds to the filter coefficients position as shown in Fig. 1, and the array value corresponds to the index in k table. Coefficients has the same index to the k table share the same k value, and this value can only increase by 0 or 1 from it previous entry.

	// Shape0 : star

	// Shape1: cross

	Int depthIntShape0Sym[10] =

{

 1, 3, 1,

 3, 4, 3,

 3, 4, 5, 5

};

	Int depthIntShape1Sym[9] =

{

 9,

 10,

 6, 7, 8, 9,10,11,11

};

Figure 2

In HM4.0, AlfMaxDepth is assigned as the max value in the above arrays. For star shape, the AlfMaxDepth is 5. So 5 bits are spent to send alf_golomb_index_bit. For cross shape, AlfMaxDepth is 11, so 11 bits are spent to send alf_golomb_index_bit for cross shape filter.
1.4.1 Removing Several Unnecessary Bits
As just mentioned above, in HM4.0, for cross shape AlfMaxDepth is set to 11. Actually for cross shape, there is no need to send the k values from entries 0 to 5 in alf_golomb_index_bit, as they are not used in the decoding of the coefficients in the slice. This issue can be corrected by specifying the minimum index in the k table. Additionally, we recommend to change AlfMaxDepth to a meaningful name, for example, as the syntax below:

	
for (i=AlfMinKPos; i < AlfMinKPos ; i++)
	
	

	

alf_golomb_index_bit[i]
	2
	u(1)

AlfMinKPos specifies the start position in the alf_golomb_index_bit table where its entry needs to be sent.
AlfMaxKPos specifies the end position in the alf_golomb_index_bit table where its entry needs to be sent.

Please note that we believe this to be equivalent to re-defining the array index in Figure 2 above to those shown in Figure 3.

	// Shape0 : star

	// Shape1: cross

	Int depthIntShape0Sym[10] =

{

 1, 3, 1,

 3, 4, 3,

 3, 4, 5, 5

};

	Int depthIntShape1Sym[9] =

{

 4,

 5,

 1, 2, 3, 4,5,6,6

};

 Figure 3

Another modification to the ALF parameter syntax is for alf_filter_pattern. Depending on the alf_region_adaptation_flag, one less bit may be sent. The proposed change is shown in the table below. If alf_region_adaptation_flag equals 1, i.e. Region Adaptive (RA) mode, numClasses = 16; If alf_region_adaptation_flag equals 0, i.e. Block Adaptive (BA) mode, numClasses = 15 according to current HEVC work draft 4 [2].

	for (i=1; i< numClasses; i++)
	
	

	

alf_filter_pattern[i]
	2
	u(1)

2 Results

We implemented the proposed combination of JCTVC-G610 and JCTVC-G774 and tested using common test condition.
2.1 Combined ALF DC technology
This section shows the result of combined DC technology, i.e. combining technologies presented in section 1.1 (i.e. optionally not sending ALF DC as in JCTVC-G610) and section 1.2 (i.e. reduced bitdepth for ALF luma DC.coefficient as in JCTVC-G774). Here, we choose to sent DC only for inter frames coded with the highest quality (lowest QP). And for these frames, luma DC is coded with reduced bitdepth. We observe that the combined solution provides additional coding efficiency gains.
Table 2. AI_HE Results of combined ALF DC technology vs. HM4.0
	All Intra HE

Y

U

V

Class A

0.0%

-0.3%

-0.3%

Class B

-0.1%

-0.4%

-0.5%

Class C

-0.1%

-0.2%

-0.3%

Class D

-0.1%

-0.2%

-0.3%

Class E

-0.1%

-0.8%

-0.7%

Overall

-0.1%

-0.4%

-0.4%

-0.1%

-0.4%

-0.4%

Enc Time[%]

100%

Dec Time[%]

98%

	Low Delay B HE

Y

U

V

Class A

0.0%

0.0%

0.0%

Class B

-0.1%

-0.1%

0.0%

Class C

-0.1%

0.3%

-0.2%

Class D

-0.1%

0.0%

0.9%

Class E

-0.1%

0.0%

0.1%

Overall

-0.1%

0.0%

0.1%

0.0%

0.0%

0.0%

Enc Time[%]

100%

Dec Time[%]

101%

	Random Access HE
Y

U

V

Class A

0.0%

-0.5%

-0.6%

Class B

-0.1%

-0.5%

-0.5%

Class C

-0.1%

-0.3%

-0.3%

Class D

-0.2%

-0.2%

-0.5%

Class E

Overall

-0.1%

-0.4%

-0.5%

-0.1%

-0.4%

-0.5%

Enc Time[%]

100%

Dec Time[%]

101%

	

2.2 Combined DC technology and Luma Center Coefficient Prediction

This section shows result of combined DC technology together with the luma center coefficient prediction technology.
Table 3. Results of combined ALF DC technology and center coefficient prediction vs. HM4.0

		All Intra HE

		Y

	U

	V

	Class A

	0.0%

	-0.3%

	-0.3%

	Class B

	-0.1%

	-0.4%

	-0.5%

	Class C

	-0.1%

	-0.2%

	-0.3%

	Class D

	-0.1%

	-0.2%

	-0.3%

	Class E

	-0.1%

	-0.9%

	-0.7%

	Overall

	-0.1%

	-0.4%

	-0.4%

		-0.1%

	-0.4%

	-0.4%

	Enc Time[%]

	100%

	Dec Time[%]

	99%

	
	Low Delay HE

Y

U

V

Class A

Class B

-0.1%

0.1%

0.2%

Class C

-0.2%

-0.1%

-0.1%

Class D

-0.3%

-0.1%

-0.2%

Class E

-0.2%

-0.1%

0.6%

Overall

-0.2%

0.0%

0.1%

-0.2%

-0.1%

0.1%

Enc Time[%]

100%

Dec Time[%]

99%

	Random Access HE

Y

U

V

Class A

-0.1%

-0.6%

-0.4%

Class B

-0.2%

-0.5%

-0.5%

Class C

-0.2%

-0.4%

-0.4%

Class D

-0.3%

-0.5%

-0.6%

Class E

Overall

-0.2%

-0.5%

-0.5%

-0.2%

-0.5%

-0.5%

Enc Time[%]

99%

Dec Time[%]

102%

	

2.3 Removing the Unnecessary bits from ALF Parameter
Finally, we report the result of removing unnecessary bits on alf_golomb_index_bit and alf_filter_pattern described in section 1.4. This change is evaluated alone vs. HM4.0; as can be seen, reducing these unnecessary bits has little impact to the overall bit rate. Note that in order to not affect evaluating other proposed tools, this small change of removing the unnecessary bits were not turned on in the experimental results of 2.1 and 2.2.

Table 4. Results of Removing unnecessary bits on alf_golomb_index_bit

and alf_filter_pattern bit vs. HM4.0

	 [image: image3.emf]Y U V

Class A 0.0% 0.0% 0.0%

Class B 0.0% 0.0% 0.0%

Class C 0.0% 0.0% 0.0%

Class D 0.0% 0.0% 0.0%

Class E 0.0% 0.0% 0.0%

Overall

0.0% 0.0% 0.0%

0.0% 0.0% 0.0%

All Intra HE

	[image: image4.emf]Y U V

Class A

Class B 0.0% -0.2% -0.1%

Class C 0.0% 0.0% 0.0%

Class D 0.0% 0.1% 0.1%

Class E 0.0% -0.1% 0.6%

Overall

0.0% -0.1% 0.1%

0.0% -0.1% 0.0%

Low delay B HE

	[image: image5.emf]Y U V

Class A 0.0% 0.0% 0.0%

Class B 0.0% 0.0% 0.0%

Class C 0.0% 0.0% 0.0%

Class D 0.0% 0.0% 0.0%

Class E

Overall

0.0% 0.0% 0.0%

0.0% 0.0% 0.0%

Random Access HE

	

3 Conclusion

This contribution reports the combination of JCTVC_G610 and JCTVC-G774. We observe that the combined solution provides additional coding efficiency gains. Moreover, we observe that the simplifications provided by both techniques are complementary.
We propose adoption of the method into HM.

4 Patent rights declaration(s)
Qualcomm and/or SHARP Labs of America may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Please note that the document reports a combination of JCTVC-G610 and JCTVC-G774, and that those documents may also contain patent rights declarations.
5 Reference

[1] JCTVC-G610, “Improvements to ALF,” 7th JCT-VC Meeting, Geneva, Nov. 2011.
[2] JCTVC-G774, “Non-CE8: Modified ALF DC coefficients,” 7th JCT-VC Meeting, Geneva, Nov.
[3] HM4.0, http://hevc.kw.bbc.co.uk/svn/jctvc-hm/
[4] JCTVC-F900, “Common test conditions and software reference configurations,” 6th JCT-VC meeting, Torino, July. 2011.

Page: 9
Date Saved: 2011-11-22

