	[image: image2.png]

[image: image3.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, CH, 21-30 November, 2011
	Document: JCTVC-G768

	Title:
	Reduced contexts for significance map coding of large transform in CABAC

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Yinji Piao
Junghye Min
JeongHoon Park

	Email:

	yj1003.piao@samsung.com
jh643.min@samsung.com
jeonghoon@samsung.com

	Source:
	Samsung Electronics Co., Ltd.

Abstract

This document proposes a modified significance map coding for large transform unit with reduced number of contexts. Context derivation is differentiated in luma and chroma by removing rarely used contexts. This contribution reduces the contexts from 26 to 11 for large transform unit with negligible performance drop in high efficiency configurations. The average BD-rate is 0.04% for AI, 0.01% for RA and 0.04% for LD respectively.
1 Introduction

In current HM4.0, 15 position-based contexts for 4x4 transform block, 16 position-based contexts for 8x8 block and 13 neighborhood based contexts for blocks larger than 8x8 are utilized in significance map coding. With same context derivation rules for luma and chroma, a total of 88 contexts are used in significance map coding for each slice.
Neighborhood based context derivation in large transform takes the causality into account in reverse scan order[1] from the last non-zero coefficient position. Different context sets are applied in different frequency regions (Fig.1.a). 3 contexts are used for the lowest frequency positions, and 5 contexts are used for both relatively low frequency region and remaining region.
Unlike rather widely-distributed significance map patterns of luma, the non-zero coefficients of chroma are usually concentrated in the low frequency area. Therefore contexts in high frequency area are rarely used in most cases. To reduce memory cost while maintaining same performance, hardly used contexts are removed and contexts with similar statistics are grouped together in this contribution. Furthermore, the region partitions for different context sets are also modified to be adaptive to the transform size (Fig.1.b).
Followings are the changes of this contribution:

(1) 1 context for region 0 both in luma and chroma
(2) 3 contexts for region 1 in luma: 0 non-zero coefficients in neighborhood; 1 or 2 non-zero coefficients in neighborhood; more than 3 non-zero coefficients in neighborhood
(3) 3 contexts for region 2 in luma: same derivation rule with (2)

(4) 3 contexts for all position except DC component in chroma: same derivation rule with (2)

(5) Threshold for partition of region1 and region2: thred =Tsize>>2

With above modifications, number of context for significance map coding of large transform is reduced from 26 to 11.

[image: image1.emf]x+y< 5

XIH

FE

B

XIH

FE

B

XIH

FE

B

x+y< thred

XIH

FE

B

XIH

FE

B

Luma/Chroma Luma Chroma

Region 0

Region 1

Region 2

Neighbor

(a) Original (b) Proposed

Fig 1. Contexts for significance map coding of LTU in HM4.0 and proposed
2 Results

The test was implemented on top of HM4.0 s/w under common test condition described in JCTVC-F900 [2]. Summarized results are given in Table I.
Table I. Test results in HM4.0.
	　
	All Intra HE
	Random Access HE
	Low delay B HE

	
	Y
	U
	V
	Y
	U
	V
	Y
	U
	V

	Class A
	0.1
	0.3
	0.4
	-0.1
	0.2
	0.4
	　
	　
	　

	Class B
	0.0
	0.2
	0.2
	0.0
	0.1
	0.3
	0.0
	0.0
	-0.2

	Class C
	0.0
	0.1
	0.1
	0.0
	0.0
	0.1
	0.1
	-0.1
	-0.2

	Class D
	0.0
	0.1
	0.1
	0.1
	0.2
	-0.1
	0.0
	0.0
	0.3

	Class E
	0.1
	0.0
	0.1
	　
	　
	　
	0.1
	-0.3
	-0.4

	Overall
	0.0
	0.2
	0.2
	0.0
	0.1
	0.2
	0.0
	-0.1
	-0.1

	
	0.0
	0.1
	0.2
	0.0
	0.1
	0.2
	0.0
	-0.1
	-0.1

	Enc Time[%]
	101%
	101%
	101%

	Dec Time[%]
	100%
	101%
	99%

3 Conclusions
In this document, modified significance map coding for large transform is presented with reduced number of contexts but no significant performance change. We recommend our proposal to be adopted as a part of the next HM.
4 References

[1] JCT-VC, “CE11: Unified scans for the significance map and coefficient level coding in high efficiency”, JCTVC-F288, 6th JCT-VC Meeting, Torino, IT, 14-22 July, 2011

[2] JCT-VC, “Common test conditions and software reference configurations”, JCTVC-F900, 6th JCT-VC Meeting, Torino, Italy, 14-22 July, 2011

5 Patent rights declaration(s)
Samsung Electronics Co., Ltd. may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
6 Text for Working Draft
9.3.3.1.1.4 Derivation process of ctxIdxInc for the syntax element significant_coeff_flag
Inputs to this process are the color component index cIdx, the current coefficient scan position (xC , yC) and the transform block size log2TrafoSize.

Output of this process is ctxIdxInc.

The variable sigCtx depends on the current position (xC, yC), the transform block size and previsously decoded bins of the syntax element significant_coeff_flag. For the derivation of sigCtx, the following applies.

· If log2TrafoSize is less than or equal to 3, sigCtx is derived as follows.

shift
= log2TrafoSize = = 3 ? 1 : 0
sigCtx = (shift * 15) + ((yC >> shift) << 2) + (xC >> shift)
(9‑55)
· Otherwise if xC + yC is less than 2, sigCtx is derived as follows.

sigCtx = 31 + (yC << 1) + xC

(9‑56)
· Otherwise if xC + yC is equal to 0, sigCtx is derived as follows.

sigCtx = 31

(9‑56)
· Otherwise if xC + yC is less than 5, sigCtx is derived as follows.

· Otherwise if xC + yC is less than 1 << (uiLog2BlkSize-2) and cIdx is equal to 0 , sigCtx is derived as follows.

temp = significant_coeff_flag[xC + 1][yC] + significant_coeff_flag[xC + 2][yC] +

significant_coeff_flag[xC][yC + 1] + significant_coeff_flag[xC + 1][yC + 1] +

significant_coeff_flag[xC][yC + 2]
(9‑57)
sigCtx = 34 + Min(4, temp)
sigCtx = 32 + Min(2, temp)
· Otherwise (xC + yC is greater than 4), sigCtx is derived using previously decoded bins of the syntax element significant_coeff_flag as follows.
· The variable sigCtx is initialized as follows.

· sigCtx = 39

(9‑58)
· When xC is less than (1 << log2TrafoSize) − 1, the following applies.

sigCtx = sigCtx + significant_coeff_flag[xC + 1][yC]
(9‑59)
· When xC and yC are less than (1 << log2TrafoSize) − 1, the following applies.

sigCtx = sigCtx + significant_coeff_flag[xC + 1][yC + 1]
(9‑60)

· When xC is less than (1 << log2TrafoSize) − 2, the following applies.

sigCtx = sigCtx + significant_coeff_flag[xC + 2][yC]
(9‑61)

· When yC is less than (1 << log2TrafoSize) − 1, the following applies.

sigCtx = sigCtx + significant_coeff_flag[xC][yC + 1]
(9‑62)

· When yC is less than (1 << log2TrafoSize) − 2 and sigCtx is less than 43, the following applies.

sigCtx = sigCtx + significant_coeff_flag[xC][yC + 2]
(9‑63)

· Otherwise (xC + yC is greater than 1 << (uiLog2BlkSize-2)-1 or cIdx is greater than 0), sigCtx is derived using previously decoded bins of the syntax element significant_coeff_flag as follows.

· The variable ctxCnt is initialized as follows.

· ctxCnt = 0

(9‑58)
· When xC is less than (1 << log2TrafoSize) − 1, the following applies.

ctxCnt = ctxCnt + significant_coeff_flag[xC + 1][yC]
(9‑59)
· When xC and yC are less than (1 << log2TrafoSize) − 1, the following applies.

ctxCnt = ctxCnt + significant_coeff_flag[xC + 1][yC + 1]
(9‑60)

· When xC is less than (1 << log2TrafoSize) − 2, the following applies.

ctxCnt = ctxCnt + significant_coeff_flag[xC + 2][yC]
(9‑61)

· When yC is less than (1 << log2TrafoSize) − 1, the following applies.

ctxCnt = ctxCnt + significant_coeff_flag[xC][yC + 1]
(9‑62)

· When yC is less than (1 << log2TrafoSize) − 2 and ctxCtx is less than 4, the following applies.

ctxCnt = ctxCnt + significant_coeff_flag[xC][yC + 2]
(9‑63)
· ctxCnt =(ctxCnt + 1) >> 1

· If cIdx is equal to 0
sigCtx = 35 + ctxCnt
· Otherwise (cIdx is greater than 0),
sigCtx = 32 + ctxCnt
The context index increment ctxIdxInc is derived using the color component index cIdx and sigCtx as follows.

· If cIdx is equal to 0, ctxIdxInc is derived as follows.

ctxIdxInc = sigCtx

(9‑64)

· Otherwise (cIdx is greater than 0), ctxIdxInc is derived as follows.

ctxIdxInc = 44 + sigCtx

(9‑65)
[Ed. (BB): The context derivation assumes maximum transform sizes less than or equal to 32x32 for luma and 16x16 for chroma and minimum transform sizes greater than or equal to 4x4.]

Page: 5
Date Saved: 2011-11-28

