	[image: image1.png]

[image: image2.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, CH, 21-30 November, 2011
	Document: JCTVC-G709

	Title:
	On partition size information coding in B-slices using CABAC

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Yamamoto Tomoyuki, Kiran Misra, Andrew Segall

5750 Pacific Rim Blvd,

Camas, WA 98607,

USA
	
Tel:
Email:
	
+1 360 817 8451
yamamoto.tomoyuki@sharp.co.jp

misrak@sharplabs.com
asegall@sharplabs.com

	Source:
	Sharp

Abstract

This document describes a technique for CABAC complexity reduction while coding partition size information in B slices. The document proposes the use of bypass coding engine of CABAC to code bins of syntax element pred_type used to distinguish between PartMode (2NxN, 2NxnU, 2NxnD) as well as bins used to distinguish between PartMode (Nx2N, nLx2N, nRx2N). This reduces the number of CABAC contexts in memory and eliminates the associated CABAC context update step. It is asserted that this has negligible impact on compression efficiency. For HM-4.0, high efficiency common test conditions the proposed change shows an average BD bitrate impact of –
(Without class F sequences)

RA_HE Y:0.00% U:0.02% V:0.02%; LB_HE Y:-0.02% U:0.07% V:0.00%.
(With class F sequences)

RA_HE Y:0.00% U:0.01% V:0.00%; LB_HE Y:-0.04% U:0.09% V:-0.04%.
1 Introduction
In the current HM, the CABAC codes syntax elements using either the regular coding engine or the bypass coding engine. The regular coding engine maintains a context in memory and is updated for every bin coded. The bypass coding engine on the other hand assumes an approximately equal probability distribution when coding bins and does not need to maintain a context in memory or perform updates. Therefore using bypass coding engine instead of the regular coding engine results in complexity reduction.

2 Proposed Change
In HM-4.0, the syntax element pred_type along with (log2CUSize, Log2MinCUSize, inter_4x4_enabled_flag, slice_type) is used to derive variables (PredMode, PartMode, IntraSplitFlag). For B-slices, the bins of pred_type which are used to distinguish between PartMode (2NxN, 2NxnU, 2NxnD) are highlighted in red in Table 1. The bins colored in are coded using two CABAC contexts, the context chosen for coding by CABAC’s regular coding engine is determined based on the bin position being coded. Similarly, for B-slices, the bins of pred_type which are used to distinguish between PartMode (Nx2N, nLx2N, nRx2N) are highlighted in green in Table 1. The bins colored in green are coded using two CABAC contexts, the context chosen for coding by CABAC’s regular coding engine is determined based on the bin position being coded. The decoder needs to be maintained in memory the associated CABAC contexts and perform an update of the context after every bin coding.
Table 1 – Binarization for pred_type
	Slice type
	Value of pred_type
	PredMode
	PartMode
	Bin string

	
	
	
	
	cLog2CUSize >
Log2MinCUSize
	cLog2CUSize = = Log2MinCUSize

	
	
	
	
	
	cLog2CUSize = = 3 &&
!inter_4x4_enabled_flag
	cLog2CUSize > 3 | |
inter_4x4_enabled_flag

	B
	0
	MODE_INTER
	PART_2Nx2N
	1
	1
	1

	
	1
	MODE_INTER
	PART_2NxN
	011
	01
	01

	
	2
	MODE_INTER
	PART_Nx2N
	001
	001
	001

	
	4
	MODE_INTER
	PART_2NxnU
	0100
	-
	-

	
	5
	MODE_INTER
	PART_2NxnD
	0101
	-
	-

	
	6
	MODE_INTER
	PART_nLx2N
	00100
	-
	-

	
	7
	MODE_INTER
	PART_nRx2N
	00101
	-
	-

	
	3
	MODE_INTER
	PART_NxN
	-
	-
	0001

	
	4
	MODE_INTRA
	PART_2Nx2N
	000
	000 0
	0000 0

	
	5
	MODE_INTRA
	PART_NxN
	-
	000 1
	0000 1

 It is proposed that the contexts corresponding to bins colored in red and green for syntax element pred_type be coded using the CABAC bypass coding engine thereby circumventing the need to maintain associated contexts in memory and eliminate the associated CABAC context update step. The proposed change results in negligible impact on compression efficiency while reducing complexity.
3 Results

The proposed change was implemented in HM 4.0 [1]. All sequences (including class F) were then code using the configuration files described in JCTVC-F900 [2]. Full results are available in the attached XLS sheets. The rate-distortion summary is as follows:
3.1 Without Class F sequences
	
	Random Access HE

	
	Y
	U
	V

	Class A
	-0.02%
	-0.13%
	-0.16%

	Class B
	-0.02%
	0.02%
	0.03%

	Class C
	0.00%
	0.05%
	-0.01%

	Class D
	0.03%
	0.13%
	0.22%

	Class E
	
	
	

	Overall
	0.00%
	0.02%
	0.02%

	
	0.00%
	0.02%
	0.03%

	Enc Time[%]
	100%

	Dec Time[%]
	100%

	
	
	
	

	
	Low delay B HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	0.00%
	0.05%
	-0.20%

	Class C
	0.00%
	0.11%
	0.09%

	Class D
	-0.01%
	-0.12%
	0.07%

	Class E
	-0.07%
	0.33%
	0.15%

	Overall
	-0.02%
	0.07%
	0.00%

	
	-0.01%
	0.00%
	-0.03%

	Enc Time[%]
	100%

	Dec Time[%]
	100%

3.2 With Class F sequences

	
	Random Access HE

	
	Y
	U
	V

	Class A
	-0.02%
	-0.13%
	-0.16%

	Class B
	-0.02%
	0.02%
	0.03%

	Class C
	0.00%
	0.05%
	-0.01%

	Class D
	0.03%
	0.13%
	0.22%

	Class E
	
	
	

	Class F
	-0.01%
	-0.04%
	-0.09%

	Overall
	0.00%
	0.01%
	0.00%

	
	0.00%
	0.01%
	0.00%

	Enc Time[%]
	100%

	Dec Time[%]
	100%

	
	
	
	

	
	Low delay B HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	0.00%
	0.05%
	-0.20%

	Class C
	0.00%
	0.11%
	0.09%

	Class D
	-0.01%
	-0.12%
	0.07%

	Class E
	-0.07%
	0.33%
	0.15%

	Class F
	-0.14%
	0.17%
	-0.19%

	Overall
	-0.04%
	0.09%
	-0.04%

	
	-0.04%
	0.04%
	-0.05%

	Enc Time[%]
	100%

	Dec Time[%]
	100%

The summary results above confirm that for B-slices using the bypass coding engine to code bins of syntax element pred_type used to distinguish between PartMode (2NxN, 2NxnU, 2NxnD) as well as bins used to distinguish between PartMode (Nx2N, nLx2N, nRx2N) results in negligible impact on compression performance.
4 Conclusion

This document proposed the use of bypass coding engine to code bins of syntax element pred_type, for B-slices, used to distinguish between PartMode (2NxN, 2NxnU, 2NxnD) as well as bins used to distinguish between PartMode (Nx2N, nLx2N, nRx2N). The performance impact was measured by implementing the change in HM-4.0 and was found to be negligible.
We propose adoption of the technique into the HM.

5 Patent rights declaration(s)
Sharp may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
6 References

[1] High efficiency test model (HM) version 4.0 URL: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-4.0/

[2] Frank Bossen, "Common test conditions and software reference configurations," JCTVC-F900/m21452, 6th Meeting: Torino, IT, 14-22 July, 2011.

Page: 2
Date Saved: 2011-11-08

