	[image: image3.png]

[image: image4.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, Switzerland, 21-30 November, 2011
	Document: JCTVC-G656
WG11 Number: m22223

	Title:
	Non-CE8 Subtest a: Harmonization of CE8a Tool 2 Shape-dependent BA (SDBA) and Tool 3 Block-based filter adaptation with 8 initial filter classes (HV8)

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Wang (PoLin) Lai
Felix C. A. Fernandes
Il-Koo Kim
	Tel:
Email:
	wlai@sta.samsung.com +1 972 761 7456
ffernandes@sta.samsung.com +1 972 761 7427
ilkoo.kim@samsung.com

	Source:
	Samsung Electronics Co., Ltd.

Abstract

This contribution presents a filter adaptation method which harmonizes CE8a Tool 2 “Shape-dependent Block-based Filter Adaptation (SDBA)” and CE8a Tool 3 “Block-based filter adaptation with 8 initial filter classes (HV8)”. For BA, computation of features along diagonal directions or horizontal/vertical directions is coupled with the filter shape (snowflake or cross), such that there are the same numbers of “classification + shape combinations” to be evaluated at encoder, as compared to HM4.0. For classification, unified and reduced number of initial filter classes to 8 for both BA and RA is achieved by: For BA, directly comparing BA directional features to produce 2 directional classes, each with 4 magnitude levels. For RA, a frame is partitioned into 8 regions corresponding to 8 initial filter classes.

The harmonized method reports 0.1% BD-rate gain for AI, RA, LDB; and 0.2% BD-rate gain for LDP.
1 Introduction

In the 7th JCTVC Meeting at Geneva, CE8a Tool 2 presents “Shape-dependent Block-based Filter Adaptation (SDBA)” [1] , which describes the coupling between feature computation (in diagonal directions or horizontal/vertical directions) and filter shape (snowflake or cross). As cross-checked by Samsung [2], it is reported that SDBA results in the same number of “classification + shape combinations” to be evaluated at encoder, as compared to HM4.0. There is no additional syntax needed. It is realized that CE8a Tool 3 “Filter Adaptation with 8 initial filter classes (HV8)” [3] can be harmonized on top of SDBA, such that the classification results in only 8 initial filter classes, while still achieving improved coding efficiency as compared to HM4.0. The harmonized method is described in Section 2.
2 SDBA using directional features with up to 8 filters
· Encoding process [1]:

· BA classification using diagonal features, with snowflake filter design (Evaluation 1).

· BA classification using horizontal/vertical features, with cross filter design (Evaluation 2).

· Select from 1 and 2 which provides better rate-distortion efficiency, and use the selected shape together with RA to design filters (Evaluation 3).

· Filter adaptation at decoder:

· If the decoded classification method is BA [1]
· If the decoded filter is snowflake shape, BA by computing diagonal features.
· If the decoded filter is cross shape, BA by computing horizontal/vertical features.

· Else (RA) [3]: Partition frame into 8 regions for filter adaptation.

Shaped-dependent BA [1]:
Depending on the filter shapes, BA mode direction computation can be changed accordingly. Cross shape inherently follows vertical/horizontal (BA) direction, while star shape has directionality for either vertical/horizontal or diagonal direction. In SDBA, the BA computation is coupled with filter shape
[image: image1.png]Cross

- X

BA2(diagonal)

-

BA(vertical/horizontal)

For each 4x4 block, directional features are computed at the 8 pixels in the center two horizontal lines. It reduces the vertical line memory requirements from 5 to 4 in HM4.0. Note that the increase in number of additions is minor (1.25 additions/pixel compared to 1 addition/pixel in HM4.0) due to reuse of the computation even though we increase the number points needed for BA mode computation from 4 to 8.

[image: image2.emf]
Classification using directional features with 8 initial filter classes (“HV8”) [3]
Assuming BA with vertical/horizontal features, for a 4×4 block B with pixels { X(i,j) | i=0,1,2,3 ; j=0,1,2,3 }, it’s classification label CB = classTab [dir][avgVar] as computed below:
HB = ∑i=1,2 ∑j=0,1,2,3 H(i,j)
VB = ∑i=1,2 ∑j=0,1,2,3 V(i,j)
LB = (HB + VB) >> 3,
where H(i,j) = | X(i,j) <<1 - X(i,j+1) - X(i,j-1) |

 V(i,j) = | X(i,j) <<1 - X(i+1,j) - X(i-1,j) |

 dir = 1, if VB > HB
 0, otherwise
 avgVar = max{ 15, (LB * 1024) >> (3 + BitDepthY) }
classTab for classify blocks into 8 classes
	
	avgVar

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	dir 0
	0
	0
	1
	1
	1
	1
	1
	2
	2
	2
	2
	2
	2
	2
	2
	3

	dir 1
	4
	4
	5
	5
	5
	5
	5
	6
	6
	6
	6
	6
	6
	6
	6
	7

Changes for region-based adaptation (RA):

In order to also accommodate 8-filter design as in BA, RA [4] is also modified to partition a frame into 8 regions, as illustrated below.
	0
	3
	4
	7

	1
	2
	5
	6

8 RA regions
3 Changes in Working Draft Text

7.3.3.5
Adaptive loop filter parameter syntax

	alf_param() {
	C
	Descriptor

	
adaptive_loop_filter_flag
	2
	u(1)

	
if (adaptive_loop_filter_flag) {
	
	

	

alf_region_adaptation_flag
	2
	u(1)

	

alf_length_luma_minus_5_div2 alf_filter_shape
	2
	ue(v1)

	

alf_no_filters_minus1
	2
	ue(v)

	

if (alf_no_filters_minus1 == 1)
	
	

	

alf_start_second_filter
	2
	ue(v)

	

else if (alf_no_filters_minus1 > 1) {
	
	

	

for (i=1; i< 16 8; i++)
	
	

	

alf_filter_pattern[i]
	2
	u(1)

	

}
	
	

	

...

	
	

8.6.6.6
Derivation process for filter index array for luma samples

…

…
· When alf_region_adaptation_flag is equal to 1, the following ordered steps apply.

1. The variables xIdx and yIdx are derived as

regionTab[16] = { 0, 1, 4, 5, 15, 2, 3, 6, 14, 11, 10, 7, 13, 12, 9, 8 }
(8‑474)

regionTab[16] = { 0, 3, 4, 7, 0, 3, 4, 7, 1, 2, 5, 6, 1, 2, 5, 6 }
(8‑474)

offset = 1 << (Log2MaxCUSize – 1)

(8‑474)

xInterval = (((PicWidthInSamplesL + offset) >> Log2MaxCUSize) + 1) >> 2
(8‑474)

yInterval = (((PicHeightInSamplesL + offset) >> Log2MaxCUSize) + 1) >> 2
(8‑474)

xIdx = Min(3, Floor((xC + x) / (xInterval << Log2MaxCUSize)))
(8‑474)

yIdx = Min(3, Floor((yC + y) / (yInterval << Log2MaxCUSize)))
(8‑474)

2. The filter index fIdx[x, y] with x, y = 0..(nS)-1 is derived as

fIdx[x][y] = regionTab[(yIdx << 2) + xIdx]

(8‑474)

· Otherwise (alf_region_flag is equal to 0), the following ordered steps apply.
3. The variables varTempH[x][y], varTempV[x][y] and varTemp1[x][y] with x, y = 0,2,4,...(nS)-1is derived as

// for filter shape dependent BA mode

if alf_filter_shape is equal to 0,

varTempH[x][y] = | (s’’[xC+x, yC+y] << 1) – s’’[xC+x-1, yC+y-1] – s’’[xC+x+1, yC+y+1] |
(8‑474)
varTempV[x][y] = | (s’’[xC+x, yC+y] << 1) – s’’[xC+x+1, yC+y-1] – s’’[xC+x-1, yC+y+1] |
(8‑474)

otherwise

varTempH[x][y] = | (s’’[xC+x, yC+y] << 1) – s’’[xC+x-1, yC+y] – s’’[xC+x+1, yC+y] |
(8‑474)

varTempV[x][y] = | (s’’[xC+x, yC+y] << 1) – s’’[xC+x, yC+y-1] – s’’[xC+x, yC+y+1] |
(8‑474)

4. The variables varTemp3[x, y], varTempH1[x, y] and varTempV1[x, y] with x, y = 0..((nS) – 1)>>2 are derived as

varTempH1[x][y] = (i(j varTempH[(x << 2) + i][(y << 2) + j] with i = 0..3, j = 0 1, 2
(8‑474)

varTempV1[x][y] = (i(j varTempV[(x << 2) + i][(y << 2) + j] with i = 0..3, j = 0 1, 2
(8‑474)

varTemp3[x][y] = (varTempH1[x][y] + varTempV1[x][y]) >> 2 3
(8‑474)

5. The variable direction is derived as
· If varTempV1[x >> 2][y >> 2] is greater than varTempH1[x >> 2][y >> 2] << 1,

direction = 1
· Otherwise, if varTempH1[x >> 2][y >> 2] is greater than varTempV1[x >> 2][y >> 2] << 1,

direction = 2
· Otherwise,

direction = 0
6. The variable avgvar is derived as

varTab[16] = { 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4 }
(8‑475)

varTab[16] = { 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3 }
(8‑475)

avgVar = Clip3(0, 15, (varTemp3[x >> 2][y >> 2] * 1024) >> (3 + BitDepthY))
(8‑475)

7. The filter index fIdx[x, y] with x, y = 0..(nS)-1 is derived as

fIdx[x][y] = Clip3(0, 4 3 , varTab[avgVar]) + 5 4* direction
(8‑504)
4 Experimental results

With SDBA and the simplifications by HV8: 0.1% BD-rate gain for AI, RA, LDB structures; and 0.2% BD-rate gain for LDP structure. The dec time increases by 1% as compared to HM4.0.
	
	All Intra HE

	
	Y
	U
	V

	Class A
	0.0%
	0.0%
	0.0%

	Class B
	-0.1%
	0.0%
	0.0%

	Class C
	-0.2%
	0.0%
	0.0%

	Class D
	-0.1%
	0.0%
	0.0%

	Class E
	-0.2%
	0.0%
	0.0%

	Overall
	-0.1%
	0.0%
	0.0%

	
	-0.1%
	0.0%
	0.0%

	Enc Time[%]
	101%

	Dec Time[%]
	102%

	
	
	
	

	
	Random Access HE

	
	Y
	U
	V

	Class A
	-0.1%
	-0.2%
	-0.3%

	Class B
	0.0%
	-0.1%
	-0.1%

	Class C
	-0.1%
	-0.1%
	0.0%

	Class D
	-0.2%
	0.1%
	-0.2%

	Class E
	
	
	

	Overall
	-0.1%
	-0.1%
	-0.2%

	
	-0.1%
	-0.1%
	-0.1%

	Enc Time[%]
	100%

	Dec Time[%]
	101%

	
	
	
	

	
	Low delay B HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	0.0%
	-0.1%
	-0.2%

	Class C
	-0.2%
	0.0%
	-0.1%

	Class D
	-0.2%
	0.4%
	0.2%

	Class E
	-0.3%
	0.0%
	0.3%

	Overall
	-0.1%
	0.1%
	0.0%

	
	-0.1%
	0.0%
	0.0%

	Enc Time[%]
	100%

	Dec Time[%]
	101%

	
	
	
	

	
	Low delay P HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	0.1%
	-0.1%
	0.0%

	Class C
	-0.2%
	-0.1%
	-0.1%

	Class D
	-0.3%
	-0.4%
	-0.4%

	Class E
	-0.3%
	-0.3%
	0.0%

	Overall
	-0.2%
	-0.2%
	-0.1%

	
	-0.2%
	-0.2%
	-0.2%

	Enc Time[%]
	100%

	Dec Time[%]
	101%

References
[1] “CE8 Subtest a, Tool 2: Directional feature calculation on subset of pixels”, JCTVC-G609, Geneva, Switzerland, Nov. 2011
[2] “CE8 Subtest a: Cross-check of Tool 2 (JCTVC-G609) Directional feature calculation on subset of pixels”, JCTVC-G650, Geneva, Switzerland, Nov. 2011
[3] “CE8 Subtest a, Tool 3: Block-based filter adaptation with 8 initial filter classes (HV8)”, JCTVC-G647, Geneva, Switzerland, Nov. 2011
[4] “CE8 Subtest 2: Adaptation between Pixel-based and Region-based Filter Selection”, JCTVC-E046, Geneva, Switzerland, Mar. 2011
Patent rights declaration(s)

Samsung may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 3
Date Saved: 2011-11-08

_1381652619.vsd
�

�

