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Abstract

This contribution presents a filter adaptation method which harmonizes CE8a Tool 2 “Shape-dependent Block-based Filter Adaptation (SDBA)” and CE8a Tool 3 “Block-based filter adaptation with 8 initial filter classes (HV8)”. For BA, computation of features along diagonal directions or horizontal/vertical directions is coupled with the filter shape (snowflake or cross), such that there are the same numbers of “classification + shape combinations” to be evaluated at encoder, as compared to HM4.0. For classification, unified and reduced number of initial filter classes to 8 for both BA and RA is achieved by: For BA, directly comparing BA directional features to produce 2 directional classes, each with 4 magnitude levels. For RA, a frame is partitioned into 8 regions corresponding to 8 initial filter classes.

The harmonized method reports 0.1% BD-rate gain for AI, RA, LDB; and 0.2% BD-rate gain for LDP.
1 Introduction

In the 7th JCTVC Meeting at Geneva, CE8a Tool 2 presents “Shape-dependent Block-based Filter Adaptation (SDBA)” [1] , which describes the coupling between feature computation (in diagonal directions or horizontal/vertical directions) and filter shape (snowflake or cross). As cross-checked by Samsung [2], it is reported that SDBA results in the same number of “classification + shape combinations” to be evaluated at encoder, as compared to HM4.0. There is no additional syntax needed. It is realized that CE8a Tool 3 “Filter Adaptation with 8 initial filter classes (HV8)” [3] can be harmonized on top of SDBA, such that the classification results in only 8 initial filter classes, while still achieving improved coding efficiency as compared to HM4.0. The harmonized method is described in Section 2.
2 SDBA using directional features with up to 8 filters
· Encoding process [1]:

· BA classification using diagonal features, with snowflake filter design (Evaluation 1).

· BA classification using horizontal/vertical features, with cross filter design (Evaluation 2). 

· Select from 1 and 2 which provides better rate-distortion efficiency, and use the selected shape together with RA to design filters (Evaluation 3). 

· Filter adaptation at decoder:

· If the decoded classification method is BA [1]
· If the decoded filter is snowflake shape, BA by computing diagonal features.
· If the decoded filter is cross shape, BA by computing horizontal/vertical features.

· Else (RA) [3]: Partition frame into 8 regions for filter adaptation. 

Shaped-dependent BA [1]:
Depending on the filter shapes, BA mode direction computation can be changed accordingly. Cross shape inherently follows vertical/horizontal (BA) direction, while star shape has directionality for either vertical/horizontal or diagonal direction. In SDBA, the BA computation is coupled with filter shape
[image: image1.png]Cross

- X

BA2(diagonal)

-

BA(vertical/horizontal)




For each 4x4 block, directional features are computed at the 8 pixels in the center two horizontal lines. It reduces the vertical line memory requirements from 5 to 4 in HM4.0. Note that the increase in number of additions is minor (1.25 additions/pixel compared to 1 addition/pixel in HM4.0) due to reuse of the computation even though we increase the number points needed for BA mode computation from 4 to 8.
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Classification using directional features with 8 initial filter classes (“HV8”) [3]
Assuming BA with vertical/horizontal features, for a 4×4 block B with pixels { X(i,j) | i=0,1,2,3 ; j=0,1,2,3 }, it’s classification label CB = classTab [dir][avgVar] as computed below:
HB = ∑i=1,2 ∑j=0,1,2,3 H(i,j)
VB = ∑i=1,2 ∑j=0,1,2,3 V(i,j)
LB = (HB + VB) >> 3,
where H(i,j) = | X(i,j) <<1 - X(i,j+1) - X(i,j-1) |

      V(i,j) = | X(i,j) <<1 - X(i+1,j) - X(i-1,j) |

                                dir = 1, if VB > HB
                                     0, otherwise                                   
                      avgVar = max{ 15, (LB * 1024) >> (3 + BitDepthY) }                
classTab for classify blocks into 8 classes
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Changes for region-based adaptation (RA):

In order to also accommodate 8-filter design as in BA, RA [4] is also modified to partition a frame into 8 regions, as illustrated below.
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8 RA regions
3 Changes in Working Draft Text

7.3.3.5
Adaptive loop filter parameter syntax

	alf_param() {
	C
	Descriptor

	
adaptive_loop_filter_flag
	2
	u(1)

	
if ( adaptive_loop_filter_flag ) {
	
	

	

alf_region_adaptation_flag
	2
	u(1)

	

alf_length_luma_minus_5_div2 alf_filter_shape
	2
	ue(v1)

	

alf_no_filters_minus1
	2
	ue(v)

	

if (alf_no_filters_minus1 == 1)
	
	

	


alf_start_second_filter
	2
	ue(v)

	

else if (alf_no_filters_minus1 > 1) {
	
	

	


for (i=1; i< 16 8; i++)
	
	

	



alf_filter_pattern[i]
	2
	u(1)

	

}
	
	

	

...

    
	
	


8.6.6.6
Derivation process for filter index array for luma samples

…

…
· When alf_region_adaptation_flag is equal to 1, the following ordered steps apply.

1. The variables xIdx and yIdx are derived as


regionTab[16] = { 0, 1, 4, 5, 15, 2, 3, 6, 14, 11, 10, 7, 13, 12, 9, 8 }
(8‑474)


regionTab[16] = { 0, 3, 4, 7, 0, 3, 4, 7, 1, 2, 5, 6, 1, 2, 5, 6 }
(8‑474)

offset = 1 << (Log2MaxCUSize – 1) 

(8‑474)

xInterval = ( ( ( PicWidthInSamplesL + offset ) >> Log2MaxCUSize ) + 1 ) >> 2
(8‑474)

yInterval = ( ( ( PicHeightInSamplesL + offset ) >> Log2MaxCUSize ) + 1 ) >> 2
(8‑474)

xIdx = Min( 3, Floor( ( xC + x ) / ( xInterval << Log2MaxCUSize ) ) )
(8‑474)

yIdx = Min( 3, Floor( ( yC + y ) / ( yInterval << Log2MaxCUSize ) ) )
(8‑474)

2. The filter index fIdx[ x, y ] with x, y = 0..(nS)-1 is derived as


fIdx[ x ][ y ] = regionTab[ ( yIdx << 2 ) + xIdx ]

(8‑474)

· Otherwise (alf_region_flag is equal to 0), the following ordered steps apply.
3. The variables varTempH[ x ][ y ], varTempV[ x ][ y ] and varTemp1[ x ][ y ] with x, y = 0,2,4,...(nS)-1is derived as


// for filter shape dependent BA mode

if alf_filter_shape is equal to 0,


varTempH[ x ][ y ] = | ( s’’[ xC+x, yC+y ] << 1 ) – s’’[ xC+x-1, yC+y-1 ] – s’’[ xC+x+1, yC+y+1 ] |
(8‑474)
varTempV[ x ][ y ] = | ( s’’[ xC+x, yC+y ] << 1 ) – s’’[ xC+x+1, yC+y-1 ] – s’’[ xC+x-1, yC+y+1 ] |
(8‑474)

otherwise

varTempH[ x ][ y ] = | ( s’’[ xC+x, yC+y ] << 1 ) – s’’[ xC+x-1, yC+y ] – s’’[ xC+x+1, yC+y ] |
(8‑474)

varTempV[ x ][ y ] = | ( s’’[ xC+x, yC+y ] << 1 ) – s’’[ xC+x, yC+y-1 ] – s’’[ xC+x, yC+y+1 ] |
(8‑474)

4. The variables varTemp3[ x, y ], varTempH1[ x, y ] and varTempV1[ x, y ] with x, y = 0..( (nS) – 1 )>>2 are derived as

varTempH1[ x ][ y ] = (i(j varTempH[ (x << 2 ) + i ][ (y << 2) + j ] with i = 0..3, j = 0 1, 2 
(8‑474)

varTempV1[ x ][ y ] = (i(j varTempV[ (x << 2 ) + i ][ (y << 2) + j ] with i = 0..3, j = 0 1, 2 
(8‑474)
 
varTemp3[ x ][ y ] = (varTempH1[ x ][ y ] + varTempV1[ x ][ y ]) >> 2 3
(8‑474)

5. The variable direction is derived as
· If varTempV1[ x >> 2 ][ y >> 2 ] is greater than varTempH1[ x >> 2 ][ y >> 2 ] << 1,


direction = 1
· Otherwise, if varTempH1[ x >> 2 ][ y >> 2 ] is greater than varTempV1[ x >> 2 ][ y >> 2 ] << 1,


direction = 2
· Otherwise,


direction = 0
6. The variable avgvar is derived as

varTab[16] = { 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4 }
(8‑475)


varTab[16] = { 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3 }
(8‑475)

avgVar = Clip3( 0, 15, (varTemp3[ x >> 2 ][ y >> 2 ] * 1024 ) >> (3 + BitDepthY) )
(8‑475)

7. The filter index fIdx[ x, y ] with x, y = 0..(nS)-1 is derived as


fIdx[ x ][ y ] = Clip3( 0, 4 3 , varTab[avgVar] ) + 5 4* direction
(8‑504)
4 Experimental results

With SDBA and the simplifications by HV8: 0.1% BD-rate gain for AI, RA, LDB structures; and 0.2% BD-rate gain for LDP structure. The dec time increases by 1% as compared to HM4.0.
	
	All Intra HE

	
	Y
	U
	V

	Class A
	0.0%
	0.0%
	0.0%

	Class B
	-0.1%
	0.0%
	0.0%

	Class C
	-0.2%
	0.0%
	0.0%

	Class D
	-0.1%
	0.0%
	0.0%

	Class E
	-0.2%
	0.0%
	0.0%

	Overall
	-0.1%
	0.0%
	0.0%

	 
	-0.1%
	0.0%
	0.0%

	Enc Time[%]
	101%

	Dec Time[%]
	102%

	
	
	
	

	
	Random Access HE

	
	Y
	U
	V

	Class A
	-0.1%
	-0.2%
	-0.3%

	Class B
	0.0%
	-0.1%
	-0.1%

	Class C
	-0.1%
	-0.1%
	0.0%

	Class D
	-0.2%
	0.1%
	-0.2%

	Class E
	 
	 
	 

	Overall
	-0.1%
	-0.1%
	-0.2%

	 
	-0.1%
	-0.1%
	-0.1%

	Enc Time[%]
	100%

	Dec Time[%]
	101%

	
	
	
	

	
	Low delay B HE

	
	Y
	U
	V

	Class A
	 
	 
	 

	Class B
	0.0%
	-0.1%
	-0.2%

	Class C
	-0.2%
	0.0%
	-0.1%

	Class D
	-0.2%
	0.4%
	0.2%

	Class E
	-0.3%
	0.0%
	0.3%

	Overall
	-0.1%
	0.1%
	0.0%

	 
	-0.1%
	0.0%
	0.0%

	Enc Time[%]
	100%

	Dec Time[%]
	101%

	
	
	
	

	
	Low delay P HE

	
	Y
	U
	V

	Class A
	 
	 
	 

	Class B
	0.1%
	-0.1%
	0.0%

	Class C
	-0.2%
	-0.1%
	-0.1%

	Class D
	-0.3%
	-0.4%
	-0.4%

	Class E
	-0.3%
	-0.3%
	0.0%

	Overall
	-0.2%
	-0.2%
	-0.1%

	 
	-0.2%
	-0.2%
	-0.2%

	Enc Time[%]
	100%

	Dec Time[%]
	101%
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