
	[image: image7.png]

[image: image8.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, CH, 21-30 November, 2011
	Document: JCTVC-G632
WG 11Number :m22199

	Title:
	Non CE 7: On secondary transforms for inter prediction residual

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Ankur Saxena,
Felix C. Fernandes

	Tel:
Email:
	1-9727617761
asaxena@sta.samsung.com,

felix.f@sta.samsung.com.

	Source:
	Samsung Electronics Co., Ltd.

Abstract

Shibahara & Nishi, and Saxena & Fernandes previously have proposed various mode-dependent secondary transform in JCTVC-F224 and JCTVC-F554 respectively for the intra prediction residual. JCTVC-G108 by Saxena et al. presents a unified design for the secondary transforms in JCTVC-F224 and JCTVC-F554. In JCTVC-G281, a boundary based transform DCT/DST scheme is presented for the inter-predicted residues. This contribution builds on top of JCTVC-G281, and proposes to apply secondary transforms or matrices derived from secondary transforms at block sizes 8x8 and higher. Average BD Rate gains of upto 0.4 % are obtained for Low Delay low Complexity setting by applying the proposed transform derived from the secondary transform scheme in JCTVC-G108 on inter predicted residues.
1 Introduction
In HM 4.0, DCT is applied as the transform for inter predicted residues. In JCTVC-G281 [1], a boundary based transform scheme is presented which applies either the DST-Type 7 (or DST Type-4) or retains the conventional DCT based on the strength of the inter-predicted residues. In this proposal, we build on top of [1], and at block sizes 8x8 and higher, propose the use the secondary transforms or matrices derived from secondary transforms.
2 Secondary Transforms on Inter Residues
In [1], alternate primary transforms at sizes 4x4, 8x8 and 16x16 are proposed for the inter prediction residuals. In this proposal, we retain the transform scheme in [1] at size 4x4. However, instead of applying DST Type-7 via full matrix multiplication at sizes 8x8 and 16x16 as in [1], which may have high computational cost, we propose to use secondary transforms, which can be applied following the DCT at block sizes 8x8 and higher, including 32x32.

In this proposal, however, we have applied a matrix derived from a 8x8 secondary transform, and 8x8 DCT as an alternate primary transform for inter residues only at 8x8 blocks. At 16x16 and 32x32 blocks, we only retain DCT, and do not use any other transforms.
2.1 Deriving a Primary Transform from Secondary Transform
Specifically, we denote the secondary transform of size 8 as P from [3], the 8x8 DCT matrix as C8. The primary alternate transform is derived as follows: Q = C8. P.
If P =

 123 32 -14 7 -4 3 -2 2

 -35 120 -24 11 -7 4 -3 2

 -8 -29 -123 17 -8 5 -3 3

 -3 -10 21 125 -13 6 -4 3

 -2 -5 8 -16 -126 11 -5 3

 -1 -3 4 -7 13 127 -9 5

 -1 -2 3 -4 5 -10 -127 8

 -1 -1 2 -2 3 -5 9 128,

then Q = round(C* P /128) =
 28 70 -85 83 -76 63 -47 30

 42 86 -67 13 43 -81 86 -58

 52 78 2 -81 76 0 -75 78

 62 53 66 -65 -51 83 23 -89

 70 13 88 35 -71 -70 44 85

 76 -28 47 89 57 -24 -87 -70

 80 -62 -26 24 68 89 82 48

 82 -82 -80 -72 -62 -48 -34 -16

Note that we “round” Q, since in actual hardware, one needs to carry operations using integers, and not floating point numbers. A flipped version of Q would be Q2 =

 82 -82 -80 -72 -62 -48 -34 -16

 80 -62 -26 24 68 89 82 48

 76 -28 47 89 57 -24 -87 -70

 70 13 88 35 -71 -70 44 85

 62 53 66 -65 -51 83 23 -89

 52 78 2 -81 76 0 -75 78

 42 86 -67 13 43 -81 86 -58

 28 70 -85 83 -76 63 -47 30

which is used instead of DST Type-7 in [1] as an alternate transform in the experiments in this proposal.
2.2 Applying secondary transform via multiple “flips”

We next present the concepts for using a secondary transform, instead of using a “flipped” DST. First, we present the steps for applying a secondary transform (for TU0 in [1]) at encoder and decoder in the conventional way, in which flipping of data is allowed:
Encoder

1. Flip the input data. i.e., for N-point input vector x, with entries xi, i=1..N, define y with elements yi = xN+1-i

2. Take the DCT of y. Denote the output as z.

3. Apply a K-point secondary transform on the first K-elements of z. Let the output be w, where we copy the remaining “N-K” high-frequency elements from z, on which the secondary transform was not applied.
Decoder

Similarly at the decoder, let the input for transform module be v, which is a quantized version of w. Following steps can be performed for taking the inverse transform:

4. Apply inverse secondary transform on the first K-elements of v. Let the output be b (where the “N-K” high frequency coefficients are identical to that of v).
5. Take the inverse DCT of b. Denote the output as d.

6. Flip the data in d. i.e., define f with elements fi = dN+1-i

Then f is the reconstructed values for the pixels x.

For TU1 in [1], the flipping operations need not be required, and DCT followed by secondary transform only needs to be taken at the encoder. At the decoder, one just needs to take inverse secondary transform followed by inverse DCT.

2.3 Applying secondary transform secondary transform without “flips”

Note that flipping operation at the encoder and decoder for TU0 can be expensive in hardware, and we next propose a scheme to “adapt” the secondary transform to avoid the flipping of data. Specifically, let the N-point input vector x with entries x1 to xN in TU0 in [1] needs to be transformed appropriately. Let the 2-d NxN DCT matrix be denoted as C with elements C (i,j), where 1<= (i,j) <= N.

As an example a normalized (by 128*sqrt(2)), the 8x8 DCT is:
 64 89 84 75 64 50 35 18

 64 75 35 -18 -64 -89 -84 -50

 64 50 -35 -89 -64 18 84 75

 64 18 -84 -50 64 75 -35 -89

 64 -18 -84 50 64 -75 -35 89

 64 -50 -35 89 -64 -18 84 -75

 64 -75 35 18 -64 89 -84 50

 64 -89 84 -75 64 -50 35 -18

with basis vectors along columns. Note that for the DCT we have C(i,j) = (-1)(j-1) * C(N+1-i , j), i.e., the odd (first, third…) basis vectors of DCT are symmetric about half-way mark. And the even (second, fourth …) basis vectors are symmetric and have opposite signs. We can utilize this special property of DCT, to appropriately “modulate” the secondary transform as described next.
A flipped version of x is y with elements yi = xN+1-i .
DCT of y is given by zj (j =1..N)

[image: image1.wmf]1

1

1

1

1

1

*(,)

 *(1,)

 *(1,)

 (1)**(,)

N

ji

i

N

Ni

i

N

i

i

N

j

i

i

zyCij

yCNij

xCNij

xCij

=

+-

=

=

-

=

=

=+-

=+-

=-

å

å

å

å

To avoid actual flipping, we can simply take the DCT of x, and then while taking the secondary transform, we can try to incorporate the factor (-1)(j-1) as follows:
Let S(j,k) denote the elements of KxK secondary matrix S.
The secondary transform of z , whose output is denoted by w is as follows:

[image: image2.wmf]1

1

11

1

11

*(,)

 (1).(,).(,)

 {(1)(,)}{.(,)}

K

kj

j

KN

j

i

ji

KN

j

i

ji

wzSjk

xCijSjk

SjkxCij

=

-

==

-

==

=

=-

=-

å

åå

åå

for k =1:K. For K< k <= N,

wk = zk
[image: image3.wmf]1

1

 (1)**(,)

N

k

i

i

xCik

-

=

=-

å

Therefore to summarize, to avoid flipping in Step 1, while taking the secondary transform multiply by:

(-1)(j-1) * S(j,k) instead of S(j,k) for the first K elements. For the remaining elements (K<k<=N), flip the sign of alternate DCT coefficients according to the equation above for wk . Note that flipping the sign only requires a subtract in hardware, and is cheaper than actually flipping the data, which will require either an intermediate buffer (when all the data is flipped in parallel), or a huge latency (when data is flipped in serial using only an intermediate buffer).
Decoder Operations:

According to Steps 4 to 6 in Sec 2.2, we need to take inverse secondary transform, inverse DCT and then flip of the data. Mathematically, for an input v, we can take the inverse secondary transform denoted by P (j,k) as follows:

[image: image4.wmf]1

*(,)

K

kj

j

bvPjk

=

=

å

for 1<= k <=K.

For K < k<=N, bk = (-1)(k-1) * vk , which is direct inverse of what happened at encoder.
Next, the input to inverse DCT module will be: b .The inverse DCT of b is d, and would be given by:

[image: image5.wmf]1

*(,)

N

ji

i

dbMij

=

=

å

where M = C-1 = CT is the inverse DCT matrix. Note that, M (i,j) = (-1)(i-1) * M (i, N+1-j), which can be seen via the following 8x8 example for M8:
M8 =

 64 64 64 64 64 64 64 64

 89 75 50 18 -18 -50 -75 -89

 84 35 -35 -84 -84 -35 35 84

 75 -18 -89 -50 50 89 18 -75

 64 -64 -64 64 64 -64 -64 64

 50 -89 18 75 -75 -18 89 -50

 35 -84 84 -35 -35 84 -84 35

 18 -50 75 -89 89 -75 50 -18

Finally according to step 6, the elements of f and d are flipped. So, we have

[image: image6.wmf]1

1

1

1

1

11

1

11

*(,1)

(1)**(,)

(1)**(,)*(,)

(,)*(1)*(,)*

jNj

N

i

i

N

i

i

i

NK

i

l

il

NK

i

l

il

fd

bMiNj

bMij

vPliMij

MijPliv

+-

=

-

=

-

==

-

==

=

=+-

=-

=-

=-

å

å

åå

åå

This means that while taking the inverse secondary transform, instead of multiplying by elements P(l,i), we should multiply by (-1)i-1 * P (l,i) to avoid flipping at the end.

3 Simulation Results

The test conditions as stipulated in Core Experiment 7 [2] were followed for conducting the experiments. Here the anchor was HM 4.0 with the conventional DCT. The performance of the proposed alternate transform derived from the 8x8 secondary transform in JCTVC-G108 is evaluated for the Random Access and Low Delay low complexity settings. At size 4x4, the DCT/DST Type-7 scheme proposed in [1] is retained, and the proposed transform is used at size 8x8 along with DCT. At sizes 16 and 32, only DCT is used. The simulations were performed in a Linux 64 bit environment.
Table 1 shows the summary of simulation results (average BD-Rates over Class A to E, and encoding/decoding times relative to HM 4.0 anchor) for Random Access LC and Low Delay LC settings when the proposed transform scheme was applied. Detailed results are available in the attached Excel sheets.
Table 1. BD Rate gains when proposed transform scheme is applied on Inter prediction Residue
	
	
	
	
	
	
	
	
	

	
	
	Random Access HE
	Random Access LC
	

	
	
	Y
	U
	V
	Y
	U
	V
	

	
	Class A
	-0.2%
	-0.3%
	-0.2%
	-0.3%
	0.0%
	-0.2%
	

	
	Class B
	-0.2%
	0.1%
	0.1%
	-0.3%
	0.1%
	0.2%
	

	
	Class C
	-0.2%
	-0.1%
	0.0%
	-0.2%
	0.1%
	0.0%
	

	
	Class D
	-0.2%
	0.0%
	0.0%
	-0.3%
	-0.1%
	0.1%
	

	
	Class E
	
	
	
	
	
	
	

	
	Class F
	
	
	
	
	
	
	

	
	Overall
	-0.2%
	-0.1%
	0.0%
	-0.3%
	0.0%
	0.0%
	

	
	
	-0.2%
	-0.1%
	0.0%
	-0.3%
	0.0%
	0.0%
	

	
	Enc Time[%]
	101%
	101%
	

	
	Dec Time[%]
	101%
	100%
	

	
	
	
	
	
	
	
	
	

	
	
	Low delay B HE
	Low delay B LC
	

	
	
	Y
	U
	V
	Y
	U
	V
	

	
	Class A
	
	
	
	
	
	
	

	
	Class B
	-0.3%
	0.0%
	0.1%
	-0.4%
	0.3%
	0.3%
	

	
	Class C
	-0.4%
	-0.2%
	-0.1%
	-0.4%
	0.1%
	-0.2%
	

	
	Class D
	-0.3%
	0.2%
	0.5%
	-0.4%
	0.3%
	0.0%
	

	
	Class E
	-0.3%
	0.5%
	0.8%
	-0.5%
	0.8%
	0.3%
	

	
	Class F
	
	
	
	
	
	
	

	
	Overall
	-0.3%
	0.1%
	0.3%
	-0.4%
	0.3%
	0.1%
	

	
	
	-0.3%
	0.1%
	0.2%
	-0.4%
	0.3%
	0.1%
	

	
	Enc Time[%]
	101%
	100%
	

	
	Dec Time[%]
	101%
	99%
	

	
	
	
	
	
	
	
	
	

From the above experimental results, average BD rate gains of 0.2% and 0.4 % are obtained for Random Access and Low delay Low complexity settings with almost negligible increase in encoding/decoding run-times. Note that, the alternate transform scheme is applied only at block sizes 4x4 and 8x8. Further gains are possible when applying the scheme at blocks 16x16 and 32x32, and we recommend testing it further in a Core Experiment.
4 Conclusions
In this contribution, we have presented a transform scheme for the inter-prediction residual coding instead of the conventional DCT. The proposed scheme does not require any explicit signaling. Simulation results show gains in compression performance as compared to HM 4.0 anchors. We recommend this proposal to be further tested in a Core Experiment.
5 References

1. J. An, X. Zhao, X. Guo, S. Lei, “Non-CE7: Boundary dependent transform for inter predicted residue”, JCTVC-G281, Geneva, Switzerland, Nov 2011.
2. R. Cohen et al., “Description of Core Experiment 7: Additional Transforms”, JCTVC-F907, Torino, IT, July 2011.
3. A. Saxena, Y. Shibahara, F. Fernandes and T. Nishi, “On secondary transforms for intra prediction residual”, JCTVC-G108, Geneva, Switzerland, November 2011.
6 Patent rights declaration(s)
Samsung Electronics Co., Ltd., may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 6
Date Saved: 2011-11-22

_1383410800.unknown

_1383410802.unknown

_1383410803.unknown

_1383410804.unknown

_1383410801.unknown

_1383410799.unknown

