8.4.2.1.1 Derivation process for luma motion vectors for merge mode
This process is only invoked when PredMode is equal to MODE_SKIP or PredMode is equal to MODE_ INTER and merge_flag [xP][yP] is equal to 1, where (xP, yP) specify the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture.
Inputs of this process are

· a luma location (xP, yP) of the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,
· a variable PartIdx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are

–
the luma motion vectors mvL0 and mvL1,

–
the reference indices refIdxL0 and refIdxL1,

–
the prediction list utilization flags predFlagL0 and predFlagL1.
The motion vectors mvL0 and mvL1, the reference indices refIdxL0 and refIdxL1, and the prediction utilization flags predFlagL0 and predFlagL1 are derived as specified by the following ordered steps:

1. The derivation process for merging candidates from neighboring prediction unit partitions in subclause 8.4.2.1.2 is invoked with luma location (xP, yP), the width and the height of the prediction unit nPSW and nPSH and the partition index PartIdx as inputs and the output is assigned to the availability flags availableFlagN, the reference indices refIdxL0N and refIdxL1N, the prediction list utilization flags predFlagL0N and predFlagL1N and the motion vectors mvL0N and mvL1N with N being replaced by A0, A1, B0, B1 or B2.

2. The derivation process of reference indices for temporal merging candidate in subclause 8.4.2.1.3 is invoked with luma location (xP, yP), nPSW, nPSH as the inputs and the output is directly assigned to refIdxLX.

3. The derivation process for temporal luma motion vector prediction in subclause 8.4.2.1.9 is invoked with luma location (xP, yP), refIdxLX as the inputs and with the output being the availability flag availableFlagLXCol and the temporal motion vector mvLXCol. The variables availableFlagCol and predFlagLXCol (with X being 0 or 1, respectively) are derived as specified below.
availableFlagCol = availableFlagL0Col || availableFlagL1Col
(8‑71)

predFlagLXCol = availableFlagLXCol
(8‑72)

4. The merging candidate list, mergeCandList, is constructed as follows.
1. A1, if availableFlagA1 is equal to 1

2. B1, if availableFlagB1 is equal to 1

3. B0, if availableFlagB0 is equal to 1

4. A0, if availableFlagA0 is equal to 1
5. B2, if availableFlagB2 is equal to 1

6. Col, if availableFlagCol is equal to 1

5. When merging candidates have the same motion vectors and the same reference indices, the merging candidates are removed from the list except the merging candidate which has the smallest order in the mergeCandList.

6. The variable numMergeCand and numOrigMergeCand are set to the number of merging candidates in the mergeCandList and the variable maxNumMergeCand is set to 5.

7. When slice_type is equal to B, the following applies.

· The combined candidate availability indicator matrix combCandAvailMap with size (numOrigMergeCand x numOrigMergeCand) is initialized by assigning every element except diagonals 1.
· For every candidate pair M and N in merge list with MCandIdx being the index of candidate M and NCandIdx being the index of candidate N in mergeCandList and where MCandIdx is smaller than NCandIdx, for the following conditions with X being either 0 or 1 indicating List0 or List1, if the following conditions hold

1. predFlagLXM = = 1
2. predFlagLXN = = 1
3. refIdxLXM = = refIdxLXN
4. mvLXM = = mvLXN
then combCandAvailMap is updated as follows
5. if X = = 0, the following assignments are applied
1. combCandAvailMap[MCandIdx][NCandIdx] = 0
2. combCandAvailMap[NCandIdx][k] = 0 with k values ranging from 0 to numOrigMergeCand – 1, inclusive

6. otherwise, the following assignments are applied
1. combCandAvailMap[NCandIdx][MCandIdx] = 0
2. combCandAvailMap[k][NCandIdx] = 0 with k values ranging from 0 to numOrigMergeCand – 1, inclusive

· The derivation process for combined bi-predictive merging candidates specified in subclause 8.4.2.1.4 is invoked with mergeCandList, the reference indices refIdxL0N and refIdxL1N, the prediction list utilization flags predFlagL0N and predFlagL1N, the motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList, numMergeCand, numOrigMergeCand, and maxNumMergeCand and the combined candidate availability indicator matrix combCandAvailMap given as input and the output is assigned to mergeCandList, numMergeCand, the reference indices refIdxL0combCandk and refIdxL1combCandk, the prediction list utilization flags predFlagL0combCandk and predFlagL1combCandk and the motion vectors mvL0combCandk and mvL1combCandk of every new candidate combCandk being added in mergeCandList. The number of candidates being added numCombMergeCand is set equal to (numMergeCand – numOrigMergeCand). When numCombMergeCand is greater than 0, k ranges from 0 to numCombMergeCand − 1, inclusive.
8.4.2.1.4 Derivation process for combined bi-predictive merging candidates

Inputs of this process are

· a merging candidate list mergeCandList,

· reference indices refIdxL0N and refIdxL1N of every candidate N being in mergeCandList,

· prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N being in mergeCandList,
· motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList,

· the number of elements numMergeCand within mergeCandList,
· the number of elements numOrigMergeCand within the mergeCandList after the spatial and temporal merge candidate derivation process,
· the maximum number of elements maxNumMergeCand within the mergeCandList.
· a combined candidate availability indicator matrix combCandAvailMap
Outputs of this process are

· the merging candidate list mergeCandList,
· the number of elements numMergeCand within mergeCandList.
· reference indices refIdxL0combCandk and refIdxL1combCandk of every new candidate combCandk being added in mergeCandList during the invokation of this process,

· prediction list utilization flags predFlagL0combCandk and predFlagL1combCandk of every new candidate combCandk being added in mergeCandList during the invokation of this process,
· motion vectors mvL0combCandk and mvL1combCandk of every new candidate combCandk being added in mergeCandList during the invokation of this process,

The function RefPicOrderCnt(refidx, LX) specifies the value of PicOrderCnt of the picture that is the reference picture RefPicListX[refidx] of the current picture with X being 0 or 1. PicOrderCnt of the reference picture shall be maintained until the picture is marked as “non-existing”. The variable PicOrderCnt specifies the PicOrderCnt of the current picture.

[Ed. (BB): PicOrderCnt(.) needs to be defined. Currently the Decoding process for picture order count is not described]
When numOrigMergeCand is greater than 1 and less than maxNumMergeCand, the variable numInputMergeCand is set to numMergeCand, the variables combIdx and combCnt are set to 0, the variable combStop is set to false and the following steps are repeated until combStop is equal to true.

1. The variables l0CandIdx and l1CandIdx are derived using combIdx as specified in Table 8‑11.

2. The following assignments are made with l0Cand being the candidate at position l0CandIdx and l1Cand being the candidate at position l1CandIdx in the merging candidate list mergeCandList (l0Cand = mergeCandList[l0CandIdx] , l1Cand = mergeCandList[l1CandIdx]).
3. When all of the following conditions are true,

1. predFlagL0l0Cand = = 1

2. predFlagL1l1Cand = = 1

3. RefPicOrderCnt(refIdxL0l0Cand, L0) != RefPicOrderCnt(refIdxL1l1Cand, L1) | | mvL0l0Cand != mvL1l1Cand

4. combCandAvailMap [l0CandIdx][l1CandIdx] = = 1

the following applies.

5. When no candidate in mergeCandList has the same list0 motion vector and reference index as l0Cand and the same list1 motion vector and reference index as l1Cand, the candidate combCandk with k equal to (numMergeCand − numInputMergeCand) is added at the end of mergeCandList (mergeCandList[numMergeCand] = combCandk) and the reference indices, the prediction list utilization flags and the motion vectors of combCandk are dervied as follows and numMergeCand is incremented by 1.

refIdxL0combCandk = refIdxL0l0Cand

(8‑92)
refIdxL1combCandk = refIdxL1l1Cand

(8‑93)
predFlagL0combCandk = 1

(8‑94)
predFlagL1combCandk = 1

(8‑95)
mvL0combCandk[0] = mvL0l0Cand[0]

(8‑96)
mvL0combCandk[1] = mvL0l0Cand[1]

(8‑97)
mvL1combCandk[0] = mvL1l1Cand[0]

(8‑98)
mvL1combCandk[1] = mvL1l1Cand[1]

(8‑99)
numMergeCand = numMergeCand + 1
(8‑100)
6. The variable combCnt is incremented by 1.

4. The variable combIdx is incremented by 1.

5. When combIdx is equal to (numOrigMergeCand * (numOrigMergeCand − 1)) or numMergeCand is equal to maxNumMergeCand or combCnt is equal to 5, combStop is set to true.

Table 8‑11 – Specification of l0CandIdx and l1CandIdx

	combIdx
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	l0CandIdx
	0
	1
	0
	2
	1
	2
	0
	3
	1
	3
	2
	3

	l1CandIdx
	1
	0
	2
	0
	2
	1
	3
	0
	3
	1
	3
	2

8.4.2.1.5 Derivation process for non-scaled bi-predictive merging candidates

Inputs of this process are

· a merging candidate list mergeCandList,

· reference indices refIdxL0N and refIdxL1N of every candidate N being in mergeCandList,

· prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N being in mergeCandList,
· motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList,

· the number of elements numMergeCand within mergeCandList,
· the number of elements numOrigMergeCand within the mergeCandList after the spatial and temporal merge candidate derivation process,
· the maximum number of elements maxNumMergeCand within the mergeCandList.
Outputs of this process are

· the merging candidate list mergeCandList,
· the number of elements numMergeCand within mergeCandList.
· reference indices refIdxL0nscaleCandl and refIdxL10nscaleCandl of every new candidate nscaleCandl being added in mergeCandList during the invokation of this process,

· prediction list utilization flags predFlagL0nscaleCandl and predFlagL10nscaleCandl of every new candidate nscaleCandl being added in mergeCandList during the invokation of this process,
· motion vectors mvL0nscaleCandl and mvL10nscaleCandl of every new candidate nscaleCandl being added in mergeCandList during the invokation of this process,

The function RefPicOrderCnt(refidx, LX) specifies the value of PicOrderCnt of the picture that is the reference picture RefPicListX[refidx] of the current picture with X being 0 or 1. PicOrderCnt of the reference picture shall be maintained until the picture is marked as “non-existing”. The variable PicOrderCnt specifies the PicOrderCnt of the current picture.

[Ed. (BB): PicOrderCnt(.) needs to be defined. Currently the Decoding process for picture order count is not described]
When numOrigMergeCand is greater than 0 and numMergeCand is less than maxNumMergeCand, the variable numInputMergeCand is set to numMergeCand, the variables origIdx and nscaleCnt are set to 0, the variable nscaleStop is set to false and the following steps are repeated until nscaleStop is equal to true.

1. The following assignments are made with origCand being the candidate at position origIdx in the merging candidate list mergeCandList (origCand = mergeCandList[origIdx]).
2. The following is applied one time with X being 0 and Y being 1. When nscaleCnt is less than 1 and numMergeCand is less than maxNumMergeCand, it is applied a second time with X being 1 and Y being 0.

1. When all of the following conditions are true,

· refIdxLXorigCand >= 0

· RefPicOrderCnt(refIdxLXorigCand, LX) != RefPicOrderCnt(refIdxorigCandLX, LY)
· abs(PicOrderCnt − RefPicOrderCnt(refIdxLXorigCand, LX)) = =
abs(PicOrderCnt − RefPicOrderCnt(refIdxLXorigCand, LY))
· refIdxLXorigCand < num_ref_idx_lY_active_minus1 + 1
the following applies.

· When no candidate in mergeCandList has a list0 motion vector equal to listX motion vector of origCand, a list1 motion vector equal to the listX motion vector of origCand multiplied by 1 and list0 and list1 reference indices equal to the listX reference index of origCand, the candidate nscaleCandl with l equal to (numMergeCand − numInputMergeCand)is added at the end of mergeCandList (mergeCandList[numMergeCand] = nscaleCandl) and the reference indices, the prediction list utilization flags and the motion vectors of nscaleCandl are dervied as follows and numMergeCand is incremented by 1.

refIdxL0nscaleCandl = refIdxLXorigCand

(8‑92)
refIdxL1nscaleCandl = refIdxLXorigCand

(8‑93)
predFlagL0nscaleCandl = 1

(8‑94)
predFlagL1nscaleCandl = 1

(8‑95)
mvL0nscaleCandl[0] = mvLXorigCand[0]

(8‑96)
mvL0nscaleCandl[1] = mvLXorigCand[1]

(8‑97)
mvL1nscaleCandl[0] = − mvLXorigCand[0]

(8‑98)
mvL1nscaleCandl[1] = − mvLXorigCand[1]

(8‑99)
numMergeCand = numMergeCand + 1
(8‑100)
· The variable nscaleCnt is incremented by 1.

3. The variable origIdx is incremented by 1.
4. When origIdx is equal to numOrigMergeCand or numMergeCand is equal to maxNumMergeCand or nscaleCnt is equal to 1, nscaleStop is set to true.

8.4.2.1.6 Derivation process for zero motion vector merging candidates

Inputs of this process are

· a merging candidate list mergeCandList,

· reference indices refIdxL0N and refIdxL1N of every candidate N being in mergeCandList,

· prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N being in mergeCandList,
· motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList,

· the number of elements numMergeCand within mergeCandList,
· the maximum number of elements maxNumMergeCand within the mergeCandList.
Outputs of this process are

· the merging candidate list mergeCandList,
· the number of elements numMergeCand within mergeCandList.
· reference indices refIdxL0zeroCandm and refIdxL10zeroCandm of every new candidate zeroCandm being added in mergeCandList during the invokation of this process,

· prediction list utilization flags predFlagL0zeroCandm and predFlagL10zeroCandm of every new candidate zeroCandm being added in mergeCandList during the invokation of this process,
· motion vectors mvL0zeroCandm and mvL10zeroCandm of every new candidate zeroCandm being added in mergeCandList during the invokation of this process,

The variable numRefIdx is derived as follows.

· If slice_type is equal to P, numRefIdx is set to num_ref_idx_l0_active_minus1 + 1

· Otherwise (slice_type is equal to B), numRefIdx is set to min(num_ref_idx_l0_active_minus1 + 1, num_ref_idx_l1_active_minus1 + 1)

When numMergeCand is less than maxNumMergeCand, the variable numInputMergeCand is set to numMergeCand, the variables zeroIdx and zeroCnt are set to 0, the variable zeroStop is set to false and the following steps are repeated until zeroStop is equal to true.

1. For the derivation of the reference indices, the prediction list utilization flags and the motion vectors of the zero motion vector merging candidate, the following applies.

1. If all of the following conditions are true,

· slice_type is equal to P

· no candidate in mergeCandList has a list0 motion vector equal to (0,0) and reference index equal to zeroIdx or (zeroCnt is equal to 2 and zeroIdx is equal to 0),

the candidate zeroCandm with m equal to (numMergeCand − numInputMergeCand) is added at the end of mergeCandList (mergeCandList[numMergeCand] = zeroCandm) and the reference indices, the prediction list utilization flags and the motion vectors of zeroCandm are dervied as follows and numMergeCand is incremented by 1.

refIdxL0zeroCandm = zeroIdx
(8‑110)
refIdxL1zeroCandm = −1
(8‑111)
predFlagL0zeroCandm = 1
(8‑112)
predFlagL1zeroCandm = 0
(8‑113)
mvL0zeroCandm[0] = 0
(8‑114)
mvL0zeroCandm[1] = 0
(8‑115)
mvL1zeroCandm[0] = 0
(8‑116)
mvL1zeroCandm[1] = 0
(8‑117)
numMergeCand = numMergeCand + 1
(8‑118)
2. Otherwise if all of the following conditions are true,

· slice_type is equal to B

· no candidate in mergeCandList has a list0 motion vector equal to (0,0), a list0 reference index equal to zeroIdx, a list1 motion vector equal to (0,0) and a list1 reference index equal to zeroIdx or (zeroCnt is equal to 2 and zeroIdx is equal to 0)

the candidate zeroCandm with m equal to (numMergeCand − numInputMergeCand) is added at the end of mergeCandList (mergeCandList[numMergeCand] = zeroCandm) and the reference indices, the prediction list utilization flags and the motion vectors of zeroCandm are dervied as follows and numMergeCand is incremented by 1.

refIdxL0zeroCandm = zeroIdx
(8‑119)
refIdxL1zeroCandm = zeroIdx
(8‑120)

predFlagL0zeroCandm = 1
(8‑121)
predFlagL1zeroCandm = 1
(8‑122)
mvL0zeroCandm[0] = 0
(8‑123)
mvL0zeroCandm[1] = 0
(8‑124)
mvL1zeroCandm[0] = 0
(8‑125)
mvL1zeroCandm[1] = 0
(8‑126)
numMergeCand = numMergeCand + 1
(8‑127)
2. The variables zeroCnt and zeroIdx are modifed as follows.

3. If zeroIdx is equal to numRefIdx or zeroCnt is equal to 2, zeroIdx is set to 0.

4. Otherwise (zeroIdx is less than and zeroCnt is less than 2), zeroIdx and zeroCnt are incremented by 1.

3. When numMergeCand is equal to maxNumMergeCand, zeroStop is set to true.

