	[image: image1.png][image: image2.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, CH, 21-30 November, 2011
	Document: JCTVC-G497

	Title:
	SIMD optimization of proposed HEVC core transforms

	Status:
	Input Document to JCT-VC

	Purpose:
	Information

	Author(s) or
Contact(s):
	A. Fuldseth, Cisco Systems

Lars Petter Endresen, Cisco Systems

Stian Selnes, Cisco Systems

Volodymyr Arbatov, SpiralGen Inc. and Carnegie Mellon University

Markus Püschel, ETH Zurich, Switzerland

Franz Franchetti, SpiralGen Inc. and Carnegie Mellon University
	Tel:
Email:
Tel:
Email:

Tel:
Email:

Tel:
Email:

Tel:
Email:

Tel:
Email:
	+47 92414082
arild.fuldseth@cisco.com

larendre@cisco.com

stiaseln@cisco.com

arbatov@spiralgen.com
arbatov@cmu.edu
+41 44 6327303
pueschel@inf.ethz.ch
412 2688297
franzf@ece.cmu.edu

	Source:
	Cisco Systems, SpiralGen Inc. and Carnegie Mellon University, ETH Zurich

Abstract

This contribution provides results on SIMD optimization of a set of core inverse transforms proposed for HEVC. The optimized source code is generated by an automated program generated system. Results are provided for full transforms of size NxN and for partial transforms where only the (KxK) low frequency sub-block of the transform coefficients is non-zero. Results are provided both for column-row and row-column order of the 2D inverse transform. By combining statistics from HM3.0 bit-streams and cycle counts for the optimized transform implementations, it is found that the estimated CPU load of the inverse transforms when decoding the class B sequences (1080p) using a 3.5 GHz Intel processor is between 0.3% and 5.6%.
1 Introduction

In [1] and [2] transform designs facilitating matrix multiplication and 16 bit intermediate data representations were proposed independently by Cisco and TI. These contributions were combined into a joint proposal in [3], [4] and [5]. In the 5th meeting of the JCT-VC it was decided to adopt the transform design of [3] in the HM software.

This contribution reports on SIMD optimization of the proposed inverse transforms using the Spiral technology. The source code is optimized for Intel Sandy Bridge instruction set architecture, and is evaluated on Intel Clarkdale and Sandy Bridge processors. A description of the Spiral technology is provided in section 2, while a description of the transform optimization is given in Section 3. Finally, performance results are reported in Section 4.
2 Spiral Technology

The software code for the 2-D transform kernels was produced using Spiral. Spiral [6] is a program generation system for transforms and other kernels developed under the lead of Carnegie Mellon University over the past decade in the Spiral project (www.spiral.net). Spiral is now exclusively licensed to Spiralgen Inc. (www.spiralgen.com). Spiral takes as input only a very high level mathematical transform specification, and produces in a sequence of transformation steps extremely optimized source code as output. In particular, these optimizations include the efficient use of the memory hierarchy and available vector instruction sets [7]. These optimizations are performed at a high abstraction level using rewriting systems on a domain-specific language, thus overcoming the known limitations of traditional compilers.

3 Optimizing the inverse transforms

3.1 Column-row ordering
In HM3.0, the following steps are performed to determine the output of the 2D inverse transforms from the dequantized transform coefficients.

· Inverse zig-zag scan

· Transformation of columns

· Transformation of rows
The order above is referred to as column-row ordering.

When generating optimized source code for the two transform stages, it was found that the transformation of columns can be optimized far more efficiently than transformation of rows. Thus, a more efficient implementation providing exactly the same results as above was found to be the following:

· Inverse zig-zag scan

· Transformation of columns

· Transpose

· Transformation of columns

· Transpose
If was found that benefits of transformation of columns over transformation of rows outweighs the penalty of performing a transpose twice.

3.2 Row-column ordering
Alternatively, one can implement row-column ordering as follows.

· Inverse zig-zag scan

· Transpose

· Transformation of columns

· Transpose

· Transformation of columns

Note that this ordering represents a normative change compared to HM3.0, since it does not produce exactly the same result as column-row ordering. The reason for this is the shift after each transform stage. However, one benefit of row-column ordering is that the first transpose can be included in the inverse zig-zag scan at no cost, resulting in the following processing steps.

· Inverse zig-zag scan and transpose

· Transformation of columns

· Transpose

· Transformation of columns

Section 4 provides results both for column-row and row-column ordering.

3.2 Partial transforms

In [4],[5],[8], and [9] it is shown theoretically how the number of operations can be reduced significantly for partial transforms where only the KxK low frequency sub-block is non-zero. This work presents performance results where dedicated source code has been generated for various values of the partial transform size KxK. More specifically, efficient source code has been generated by exploiting the a priori knowledge about some of the input coefficients being zero. It is assumed that the KxK transform coefficients are represented in compact form (i.e. as a 1D array of length K*K).
4 Results

The results for the Intel Clarkdale processor is provided in Table 1 for various combination of the full transform size NxN and the partial transform size KxK. Similar results are provided in Table 2 for the Intel Sandy Bridge processor. The source code was compiled using the Intel compiler version 11.1 and 12.0 for Sandy Bridge and Clarkdale respectively. The estimated cycle counts were obtained by running a large number of inverse transforms (typically >1 000 000 iterations) and then multiplying the elapsed time with the CPU clock frequency. To improve the accuracy of the estimates “Turbo Boost” was disabled in the BIOS menu, preventing the CPU to run temporarily at a clock frequency higher than the nominal CPU clock frequency.

Table 1. Estimated cycle count for partial 2D inverse transforms of various size, Intel Clarkdale

	NxN
	KxK
	Estimated cycle count -
Column-row order
	Estimated cycle count -
Row-column order

	8x8
	8x8
	183
	173

	8x8
	4x4
	102
	83

	16x16
	16x16
	1036
	950

	16x16
	8x8
	631
	539

	16x16
	4x4
	367
	

275

	32x32
	32x32
	7164
	6781

	32x32
	16x16
	3177
	2799

	32x32
	8x8
	1920
	1512

	32x32
	4x4
	1381
	985

 Table 2. Estimated cycle count for partial 2D inverse transforms of various size, Intel Sandy Bridge

	NxN
	KxK
	Estimated cycle count -
Column-row order
	Estimated cycle count -
Row-column order

	8x8
	8x8
	167
	152

	8x8
	4x4
	108
	78

	16x16
	16x16
	943
	859

	16x16
	8x8
	547
	467

	16x16
	4x4
	304
	233

	32x32
	32x32
	5720
	5322

	32x32
	16x16
	2764
	2442

	32x32
	8x8
	1732
	1405

	32x32
	4x4
	1167
	836

To estimate the total number of cycles associated with the inverse transform, statistics for each transform size was collected for one second of 1080p sequences (LD-HE configuration). By multiplying with the estimated cycle counts per transform from Table 2, the total estimated cycle count from the inverse transforms when decoding a 1080p sequence can be estimated. The results are shown in Table 3. Assuming a CPU clock frequency of 3.5 GHz, the estimated number of clock cycles used for the inverse transforms corresponds to between 0.3% and 5.6% CPU load. The results of Table 3 use column-row order as in HM4.0. For row-column order, the numbers would be correspondingly lower.
Table 3. Estimated number of clock cycles used on the inverse transforms (column-row order) when decoding one second of 1080p sequences

	NxN
	4x4
	8x8
	16x16
	32x32
	Transform
	

	KxK
	4x4
	4x4
	8x8
	4x4
	8x8
	16x16
	4x4
	8x8
	16x16
	32x32
	Mega-
	Transform

	
	
	Estimated cycle count per transform (from Table 4)
	cycles
	CPU

	
	
	50

	108
	167
	304
	547
	943
	1167
	1732
	2764
	5720
	per
	load (%)

	Sequence
	QP
	Number of inverse transforms per second (HM3.0, LD-HE configuration, 1 second)
	second
	(3.5 GHz)

	Kimono
	22
	27 438
	45 401
	2 669
	30 142
	23 978
	2 221
	1 390
	8 322
	13 230
	623
	87,3
	2,5

	
	27
	11 589
	24 049
	613
	31 301
	6 391
	493
	2 682
	11 383
	5 348
	149
	55,2
	1,6

	
	32
	5 491
	13 090
	118
	22 249
	1 398
	120
	3 963
	8 387
	1 736
	50
	33,6
	1,0

	
	37
	2 986
	8 437
	15
	14 074
	258
	12
	4 359
	5 470
	395
	7
	21,2
	0,6

	ParkScene
	22
	204 750
	42 876
	38 952
	4 767
	4 860
	6 619
	764
	571
	617
	735
	39,5
	1,1

	
	27
	94 043
	30 898
	11 965
	4 407
	3 336
	2 687
	675
	261
	269
	404
	20,0
	0,6

	
	32
	50 559
	23 568
	3 050
	4 662
	2 613
	1 046
	729
	214
	257
	247
	12,8
	0,4

	
	37
	25 867
	17 114
	477
	5 521
	1 864
	190
	891
	304
	376
	110
	9,3
	0,3

	Cactus
	22
	438 262
	92 173
	117 001
	25 697
	13 083
	29 273
	7 481
	2 505
	2 323
	3 799
	135,2
	3,9

	
	27
	137 356
	69 025
	18 850
	27 754
	8 963
	6 247
	9 275
	3 083
	1 747
	1 353
	65,4
	1,9

	
	32
	67 890
	46 097
	4 850
	22 238
	4 924
	1 862
	8 765
	2 132
	1 328
	492
	40,8
	1,2

	
	37
	35 608
	30 728
	1 116
	18 841
	2 482
	468
	8 427
	1 726
	1 004
	99
	29,0
	0,8

	BasketballDrive
	22
	251 332
	101 721
	61 301
	52 451
	13 457
	28 418
	25 298
	4 717
	4 756
	10 581
	195,3
	5,6

	
	27
	112 260
	79 345
	9 951
	45 184
	8 887
	9 305
	23 286
	4 887
	3 361
	3 717
	109,4
	3,1

	
	32
	57 248
	52 097
	3 124
	36 855
	4 335
	2 850
	18 935
	3 555
	1 977
	1 235
	66,1
	1,9

	
	37
	27 776
	32 645
	1 026
	29 441
	1 801
	851
	14 259
	2 447
	933
	296
	41,0
	1,2

	BQTerrace
	22
	630 406
	18 311
	510 667
	3 128
	1 595
	21 523
	1 652
	356
	589
	2 554
	159,7
	4,6

	
	27
	195 869
	22 031
	66 015
	3 936
	2 480
	12 169
	1 897
	435
	786
	2 712
	57,9
	1,7

	
	32
	74 501
	17 487
	10 159
	4 143
	1 943
	4 325
	1 082
	231
	349
	1 507
	25,0
	0,7

	
	37
	42 765
	14 700
	2 798
	4 076
	1 642
	990
	1 001
	141
	450
	466
	12,6
	0,4

5 Conclusion

Optimized source code for the HM4.0 transforms has been generated using Spiral. It has been shown that row-column ordering has some advantage over column-row ordering if one assumes that a transpose of the transform coefficients can be integrated with the inverse zig-zag scan at no cost. Furthermore, a significant complexity reduction by exploiting a priori knowledge about partial transform size has been documented. Also, it has been shown that the optimized inverse transforms typically contribute 0.5% - 5% to the CPU load when decoding the class B sequences at normal QP range.
6 References
[1] A. Fuldseth and G. Bjøntegaard, “Unified transform design for HEVC with 16 internal data representation,” JCTVC-D224, Daegu, January, 2011.

[2] M. Sadafale and M. Budagavi, “Matrix multiplication specification for HEVC transforms,” JCTVC-D036, Daegu, January, 2011.

[3] A. Fuldseth, G. Bjøntegaard, M. Sadafale, M. Budagavi, “Transform design for HEVC with 16 bit intermediate data representation,” JCTVC-E243, Geneva, March, 2011.
[4] A. Fuldseth, G. Bjøntegaard, M. Sadafale, M. Budagavi, “Core transform design for HEVC,” JCTVC-F446, Torino, July, 2011.
[5] A. Fuldseth, G. Bjøntegaard, M. Budagavi, “Core transform design for HEVC,” JCTVC-G495, Geneva, November, 2011.
[6] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and Nick Rizzolo, SPIRAL: Code Generation for DSP Transforms, Proceedings of the IEEE special issue on "Program Generation, Optimization, and Adaptation," Vol. 93, No. 2, 2005, pp. 232-275.
[7] Franz Franchetti, Yevgen Voronenko and Markus Püschel, A Rewriting System for the Vectorization of Signal Transforms, Proc. High Performance Computing for Computational Science (VECPAR), Lecture Notes in Computer Science, Springer, Vol. 4395, pp. 363-377, 2006.

[8] M Budagavi, “IDCT pruning,” JCTVC-E386, Geneva, March, 2011.
[9] M Budagavi, V. Sze, “IDCT pruning and scan dependent transform order,” JCTVC-F236, Torino, July, 2011.
� Estimate based on 8x8 results

Page: 5
Date Saved: 2011-11-07

