	[image: image2.png]

[image: image3.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, CH, 21-30 November, 2011
	Document: JCTVC-G495

	Title:
	CE10: Core transform design for HEVC

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	A. Fuldseth, Cisco Systems

G. Bjøntegaard, Cisco Systems

M. Budagavi, Texas Instruments Inc., USA
V. Sze, Texas Instruments Inc., USA
	Tel:
Email:
Tel:
Email

Tel:
Email
Tel:
Email
	+47 92414082
arild.fuldseth@cisco.com

gbjonteg@cisco.com
+1-214-480-1861
madhukar@ti.com
sze@ti.com

	Source:
	Cisco Systems, Texas Instruments Inc

Abstract

This contribution proposes a set of transform matrices for HEVC, covering all transform sizes from 4x4 to 32x32. The transform matrices and the associated transform operations described in this contribution are proposed for the core transform design in HEVC. The proposed transform design has the following properties; 16 bit data representation before and after each transform stage (independent of the internal bit depth), 16 bit multipliers for all internal multiplications, no need for correction of different norms of basis vectors during quantization/dequantization, all transform sizes above 4x4 can reuse arithmetic operations for smaller transform sizes, and implementations using either pure matrix multiplication or a combination of matrix multiplication and butterfly structures are possible. Complexity analysis based on both arithmetic operation counts and performance results for optimized software is provided for all transform sizes, including partial transforms. Finally, hardware complexity analysis is provided.
1 Introduction
In [1] and [2] transform designs facilitating matrix multiplication and 16 bit intermediate data representations were proposed independently by Cisco and TI. These contributions were combined into joint proposals in [3] and [4]. The transform design of [3] was compared to the existing core transforms of HM2.0 and average BD-rate gains of 0.1%-0.6% and 0.8%-2.5% were reported for normal/high QP range and low QP range respectively. In the 5th meeting of the JCT-VC it was decided to adopt the transform design of [3] in the HM software. This contribution proposes the exact same transforms as in [3] and [4] for adoption in the working draft.

The proposed transform design has the following properties.

· Bit width of 16 for all transform buffers. This is true for all values of internal bit depth parameter for the encoder/decoder. Experimental results in [4] shows that increasing the bit depth of the transform buffers to 18 or 20 bit provide less than 0.5% average BD-rate gain.

· 16 bit multipliers for all internal calculations. This is true for all values of the internal bit depth parameter.

· The norms of the basis vectors are sufficiently close so that the same scaling can be used for all transform coefficients during quantization/dequantization. Also, the scaling is the same for all transform sizes, except for right shifts that depend on the transform size. This eliminates the need for large quantization/dequantization matrices.

· Coefficients and basis vectors of the smaller transforms are a subset of coefficients and basis vectors of larger transforms. This allows for re-use of logic for multiply/adds in hardware design.

· The proposed transform design is specified in terms of NxN matrices and also the associated right shift to be used after each transform stage. This allows for more additional flexibility in implementations, such as direct matrix multiplications with SIMD instruction for the innermost loop, or multi-stage butterfly implementations utilizing symmetry properties.

· 8 bit representation of transform coefficients.

· Bit width of accumulators for matrix multiplication (before right shift and storage) does not exceed 32 bit.

· Same symmetry/anti-symmetry properties as the DCT transform.

· The scaled transform coefficients are close to the DCT transform.

· The basis vectors are almost orthogonal.

· The same quantization/dequantization scheme can be used for all transform sizes. Quantization/dequantization is implemented with multipliers and shift operations, where the multipliers depend only on the value of QP and the shifts depend only on the transform size.

2 Description

2.1 Basis vectors

The basis vectors of the 4x4 and 8x8 transforms are shown below. The basis vectors of the 16x16 and 32x32 transforms are shown in Appendix A. We have also designed a 64x64 transform that can be made available in the software for experimental purposes.

4x4 transform:

{64, 64, 64, 64}

{83, 36,-36,-83}

{64,-64,-64, 64}
{36,-83, 83,-36}

8x8 transform:

{64, 64, 64, 64, 64, 64, 64, 64}

{89, 75, 50, 18,-18,-50,-75,-89}

{83, 36,-36,-83,-83,-36, 36, 83}

{75,-18,-89,-50, 50, 89, 18,-75}

{64,-64,-64, 64, 64,-64,-64, 64}

{50,-89, 18, 75,-75,-18, 89,-50}

{36,-83, 83,-36,-36, 83,-83, 36}
{18,-50, 75,-89, 89,-75, 50,-18}

2.2 Intermediate scaling and quantization/dequantization.

In this subsection, intermediate scaling and quantization/dequantization are described in more detail. In addition to specifying the scaling in the dequantization and the inverse transform, we also specify the forward transform and quantizer that we have used for our simulation results.

Definitions

B
= internal bit depth (as specified by InternalBitDepth in the common config files)
N
= transform size

M
= log2(N)

Q
= f(QP%6),
where f(x) = {26214,23302,20560,18396,16384,14564}, x=0,…,5

IQ
= g(QP%6),
where g(x) = {40,45,51,57,64,72}, x=0,…,5

Forward transform

The following applies to the implementation of the forward transform.
· The forward transform is specified as a matrix multiplication in two stages, horizontal and vertical.

· After the first stage, the resulting transform coefficients are scaled as follows

y = (x + offset)>>(M-1+(B-8)),

offset = (1<<(M-2+ (B-8)))

· After the second stage, the resulting transform coefficients are scaled as follows

y = (x + offset)>>(M+6),

offset = (1<<(M+5))
This ensures a bit width of 16 after each transform stage.

Quantization

Quantization can be implemented as follows (RDOQ=off):

level = (coeff*Q + offset)>>(21+QP/6–M–(B-8))
For RDOQ, the scaling and cost function calculations are adjusted accordingly.
Dequantization

The dequantizer is specified as follows

coeffQ
= ((level*IQ << (QP/6)) + offset)>>(M-1+(B-8)), offset = 1<<(M-2+(B-8))

coeffQ = min(32767,max(-32768,coeffQ))

The clipping ensures that the value of the quantized transform coefficients, coeffQ, can be represented with 16 bits. The scaling is chosen so that clipping only occur for extreme input values and/or unreasonable quantizer behaviour.

Inverse transform

The following applies to the implementation of the inverse transform.
· The inverse transform is specified as a matrix multiplication in two stages, horizontal and vertical.

· After the first stage, the resulting transform coefficients are scaled as follows

y = (x + offset)>>7

offset = 1<<(7-1)

This ensures a bit width of 16 after the first inverse transform stage assuming the quantization/dequantization scheme above.

· After the second stage, the resulting transform coefficients are scaled as follows

y = (x + offset)>>(12-(B-8))

offset = 1<<(11-(B-8))

Quantization step size and QP

The quantizer multipliers, f(x) and dequantizer multipliers, g(x) are chosen so that

f(x) * g(x)
[image: image1.wmf]»

 (1<<20),
x = 0,1,…,5

Furthermore, assume that we have an N*N DC block with pixel values equal to X. If this block is input to an orthonormal transformation containing a DC basis vector (e.g. the Discrete Cosine Transform), the value of the DC coefficient is equal to X*N. With the proposed transforms and quantization/ dequantiztion scheme, the same relationship between input pixel values and the value of level applies when QP = 4. In other words, if all pixel values in an NxN block are equal to X, and QP=4, this will result in a DC coefficient with level = X*N after quantization. The range of QP values maps to approximately the same range of quantization step sizes as in HM2.0.
3 Matrix multiplication and partial butterfly

The proposed transforms can be implemented in two ways; matrix multiplications, and partial butterfly.

3.1 Matrix multiplication

With straightforward matrix multiplication, the number of operations for each transform stage is N3 multiplications and N2(N-1) additions. Note however, that matrix multiplication is particularly well suited for SIMD instructions. Assuming a SIMD width of N, the matrix multiplication can be implemented using N2 SIMD instructions.

3.2 Partial butterfly

The basis vectors shown in section 2 and in Appendix A have symmetry properties that are inherited from the DCT transform:

· Even rows with index 0,2,4,… are symmetric with a symmetry point before coefficient no. N/2.

· Odd rows with index 1,3,5,7,… are anti-symmetric with a symmetry point before coefficient no. N/2.

· Even rows with index 0,4,8,… have additional symmetry points before coefficients no. N/4 and 3N/4.

· Even rows with index 2,6,10,… have additional anti-symmetry points before coefficients no. N/4 and 3N/4.

For larger transforms this pattern repeats itself with additional symmetry and anti-symmetry points before coefficients n*N/8, n*N/16 etc.

These symmetry properties allows for using parts of the “butterfly” structures used for fast FFT-like algorithms to reduce the number of multiply/adds (e.g. the Chen algorithm). Thus, we refer to this implementation as partial butterfly.

In the HM software, both methods are supported, matrix multiplications for readability and partial butterfly for speed.

4 Complexity analysis

This section provides a detailed complexity analysis following the guidelines of [5].
4.1 Arithmetic operations

The numbers of arithmetic operations for the 2D inverse transform using partial butterfly implementation are shown in Table 1.

Table 1 Number of arithmetic operations for 2D inverse transforms of various sizes
	Transform size
	Mult,16 bit
	Mult,32 bit
	Mult, total
	Add
	Shift

	4x4
	48
	0
	48
	64
	32

	8x8
	352
	0
	352
	448
	128

	16x16
	2752
	0
	2752
	3200
	512

	32x32
	21888
	0
	21888
	23808
	2048

In [6] and [7] it was shown that the number of arithmetic operations of an NxN inverse transform is reduced significantly if one assumes a partial transform where only the KxK lower frequency sub-block has non-zero values. For instance, the number of multiplications are reduced approximately by a factor of (N/K)2 for the first stage and a factor of (N/K) for the second stage. Table 2 shows the number of arithmetic operations for partial transforms of various sizes. Also, the probabilities of each partial transform size (KxK) as reported in [7] are listed in the last column of Table 2 (high efficiency configuration).
Table 2 Number of arithmetic operations for partial 2D inverse transforms of various sizes
	NxN
	KxK
	Multiplications
	Add
	Shift
	Probability

	8x8
	8x8
	352
	448
	128
	0,47

	8x8
	4x4
	132
	228
	96
	0,53

	16x16
	16x16
	2752
	3200
	512
	0,10

	16x16
	8x8
	1032
	1512
	384
	0,30

	16x16
	4x4
	420
	820
	320
	0,60

	32x32
	32x32
	21888
	23808
	2048
	0,12

	32x32
	16x16
	8208
	10320
	1536
	0,26

	32x32
	8x8
	3400
	5320
	1280
	0,16

	32x32
	4x4
	1476
	3060
	1152
	0,46

By weighting the number of operations with their respective probabilities, one can calculate an average operation count for each transform size NxN. This is shown in Table 3.

Table 3 Average number of arithmetic operations for 2D inverse transforms of various sizes
	NxN
	Multiplications
	Add
	Shift

	4x4
	48,0
	64,0
	32,0

	8x8
	235,4
	331,4
	111,0

	16x16
	836,8
	1265,6
	358,4

	32x32
	3619,6
	7798,0
	1379,8

Dynamic range analysis

The proposed transforms and the associated shifts/clipping are designed to ensure a bit width equal to 16 at all intermediate stages:
Forward transform, first stage
The scaling is adjusted to stay within 16 bit for worst case input signal.

Forward transform, second stage
The scaling is adjusted to stay within 16 bit for worst case input signal.

Dequantizer

The scaling is chosen to stay within 16 bit for worst case input signal without quantization. Additional clipping is adjusted to stay within 16 bit for randomized quantizers.

Inverse transform, first stage
The scaling is chosen to stay within 16 bit for worst case input signal and reasonable quantizers. Alternatively, one can do clipping between the first and the second stage and adjust the shifts by one bit as described in [4]. Results from [4] shows that additional clipping has negligible effect on the BD-rate performance.

4.2 Number of sequential operations

For matrix multiplication implementation, the number of cascaded operators (multipliers/adders) in the longest execution path is 1 multiplication followed by 1 addition for all sizes of inverse transform.

For partial butterfly implementation, the number of cascaded operators (multipliers/adders) in the longest execution path is 1 multiplication followed by log2(N) additions, where N is the size of inverse transform.

4.3 Quantization/dequantization matrices

No quantization/dequantization matrices are needed to adjust for unequal norms. This implies that the size of the quantization/dequantization matrices is equal to 6, one entry for each value of QP%6.

4.4 Hardware analysis
32-point 1D HM4 forward, inverse, and joint forward+inverse transform were implemented in RTL. Table 4 below provides the resulting hardware area estimates (in KGates). Based on the frequency/latency combinations tested, the HM4 joint forward+inverse transform can be implemented at the cost of around 5-10% more area when compared to HM4 forward transform or equivalently at a cost of around 17-20% more when compared to HM4 inverse transform.
Table 4 Hardware area estimates
	
	32-pt HM4 inverse only

	frequency (MHz) \ L
	2
	4
	6
	8

	150
	123
	116
	122
	129

	200
	152
	122
	127
	133

	250
	234
	130
	133
	139

	300
	
	140
	141
	147

	350
	
	165
	150
	155

	400
	
	
	167
	164

	450
	
	
	195
	175

	500
	
	
	
	189

	
	32-pt HM4 forward only

	frequency (MHz) \ L
	2
	4
	6
	8

	150
	126
	129
	135
	141

	200
	167
	139
	141
	147

	250
	
	156
	148
	154

	300
	
	190
	157
	163

	350
	
	
	170
	172

	400
	
	
	192
	182

	450
	
	
	
	195

	500
	
	
	
	216

	
	32-pt HM4 inverse + forward

	frequency (MHz) \ L
	2
	4
	6
	8

	150
	211
	139
	145
	151

	200
	
	146
	150
	156

	250
	
	166
	156
	162

	300
	
	209
	169
	170

	350
	
	
	181
	182

	400
	
	
	202
	192

	450
	
	
	
	206

	500
	
	
	
	226

4.5 Software analysis
An optimized version of the inverse transform (partial butterfly version) was generated by using an automated tool for generating assembly code [8]. The inverse transform was implemented in a standalone test program to estimate the number of clock cycles used for the inverse transform alone. The results for a 3.46 GHz Intel Sandy Bridge processor are shown in Table 5 and Table 6. The tables show results for column-row order as implemented in HM4.0 and also for row-column order providing slightly better performance.

Table 5 Estimated cycle count for partial 2D inverse transforms of various size,
Intel i7 (Sandy Bridge), Windows 7, 64-bit, SSE4 compiler option
	NxN
	KxK
	Column-row order
	Row-column order

	8x8
	8x8
	167
	152

	8x8
	4x4
	108
	78

	16x16
	16x16
	943
	859

	16x16
	8x8
	547
	467

	16x16
	4x4
	304
	233

	32x32
	32x32
	5720
	5322

	32x32
	16x16
	2764
	2442

	32x32
	8x8
	1732
	1405

	32x32
	4x4
	1167
	836

Table 6. Estimated cycle count for 2D inverse transforms of various size,
Intel i7 (Sandy Bridge), Linux, 64-bit, row-column order

	NxN
	KxK
	SSE4 compiler option
	AVX compiler option

	8x8
	8x8
	138
	123

	16x16
	16x16
	836
	708

	32x32
	32x32
	5329
	4556

556piler optionrit. (64-bit)

5 Conclusions

Integer transforms for HEVC have been proposed. The proposed transforms have several implementation benefits compared to the existing transforms, including

· 16 bit data representation before and after each transform stage independent of IBDI settings.

· Only 16 bit multipliers are needed for internal calculations.

· No need for correction of different norms of basis vectors during quantization/dequantization.

· Reusability of smaller transforms in larger transforms.

· Allows both matrix multiplication and partial butterfly structure.

6 References
[1] A. Fuldseth and G. Bjøntegaard, “Unified transform design for HEVC with 16 internal data representation,” JCTVC-D224, Daegu, January, 2011.

[2] M. Sadafale and M. Budagavi, “Matrix multiplication specification for HEVC transforms,” JCTVC-D036, Daegu, January, 2011.

[3] A. Fuldseth, G. Bjøntegaard, M. Sadafale, M. Budagavi, “Transform design for HEVC with 16 bit intermediate data representation,” JCTVC-E243, Geneva, March, 2011.
[4] A. Fuldseth, G. Bjøntegaard, M. Sadafale, M. Budagavi, “Core transform design for HEVC,” JCTVC-F446, Torino, July, 2011.
[5] P. Topiwala, M Budagavi, A. Fuldseth, R. Joshi, I.-K. Kim, “CE10 Core transform design,” JCTVC-F910, Torino, July, 2011.
[6] M Budagavi, “IDCT pruning,” JCTVC-E386, Geneva, March, 2011.

[7] M Budagavi, V. Sze, “IDCT pruning and scan dependent transform order,” JCTVC-F236, Torino, July, 2011.
[8] A. Fuldseth, L. P. Endresen, S. Selnes, V. Arbatov, F. Franchetti, M. Püschel, “SIMD optimization of proposed HEVC core transforms,” JCTVC-F497, Geneva, November, 2011.

7 Patent rights declaration(s)
Cisco and Texas Instruments may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Appendix A

16x16 transform
{64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64}

{90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-90}

{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89}

{87 57 9-43-80-90-70-25 25 70 90 80 43 -9-57-87}

{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83}

{80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80}

{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75}

{70-43-87 9 90 25-80-57 57 80-25-90 -9 87 43-70}

{64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64}

{57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57}

{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50}

{43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43}

{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36}

{25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25}
{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18}
{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9}

32x32 transform
{64 64}

{90 90 88 85 82 78 73 67 61 54 46 38 31 22 13 4 -4-13-22-31-38-46-54-61-67-73-78-82-85-88-90-90}

{90 87 80 70 57 43 25 9 -9-25-43-57-70-80-87-90-90-87-80-70-57-43-25 -9 9 25 43 57 70 80 87 90}

{90 82 67 46 22 -4-31-54-73-85-90-88-78-61-38-13 13 38 61 78 88 90 85 73 54 31 4-22-46-67-82-90}

{89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89 89 75 50 18-18-50-75-89-89-75-50-18 18 50 75 89}

{88 67 31-13-54-82-90-78-46 -4 38 73 90 85 61 22-22-61-85-90-73-38 4 46 78 90 82 54 13-31-67-88}

{87 57 9-43-80-90-70-25 25 70 90 80 43 -9-57-87-87-57 -9 43 80 90 70 25-25-70-90-80-43 9 57 87}

{85 46-13-67-90-73-22 38 82 88 54 -4-61-90-78-31 31 78 90 61 4-54-88-82-38 22 73 90 67 13-46-85}

{83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83 83 36-36-83-83-36 36 83}

{82 22-54-90-61 13 78 85 31-46-90-67 4 73 88 38-38-88-73 -4 67 90 46-31-85-78-13 61 90 54-22-82}

{80 9-70-87-25 57 90 43-43-90-57 25 87 70 -9-80-80 -9 70 87 25-57-90-43 43 90 57-25-87-70 9 80}

{78 -4-82-73 13 85 67-22-88-61 31 90 54-38-90-46 46 90 38-54-90-31 61 88 22-67-85-13 73 82 4-78}

{75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75 75-18-89-50 50 89 18-75-75 18 89 50-50-89-18 75}

{73-31-90-22 78 67-38-90-13 82 61-46-88 -4 85 54-54-85 4 88 46-61-82 13 90 38-67-78 22 90 31-73}

{70-43-87 9 90 25-80-57 57 80-25-90 -9 87 43-70-70 43 87 -9-90-25 80 57-57-80 25 90 9-87-43 70}

{67-54-78 38 85-22-90 4 90 13-88-31 82 46-73-61 61 73-46-82 31 88-13-90 -4 90 22-85-38 78 54-67}

{64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64 64-64-64 64}

{61-73-46 82 31-88-13 90 -4-90 22 85-38-78 54 67-67-54 78 38-85-22 90 4-90 13 88-31-82 46 73-61}

{57-80-25 90 -9-87 43 70-70-43 87 9-90 25 80-57-57 80 25-90 9 87-43-70 70 43-87 -9 90-25-80 57}

{54-85 -4 88-46-61 82 13-90 38 67-78-22 90-31-73 73 31-90 22 78-67-38 90-13-82 61 46-88 4 85-54}

{50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50 50-89 18 75-75-18 89-50-50 89-18-75 75 18-89 50}

{46-90 38 54-90 31 61-88 22 67-85 13 73-82 4 78-78 -4 82-73-13 85-67-22 88-61-31 90-54-38 90-46}

{43-90 57 25-87 70 9-80 80 -9-70 87-25-57 90-43-43 90-57-25 87-70 -9 80-80 9 70-87 25 57-90 43}

{38-88 73 -4-67 90-46-31 85-78 13 61-90 54 22-82 82-22-54 90-61-13 78-85 31 46-90 67 4-73 88-38}

{36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36 36-83 83-36-36 83-83 36}

{31-78 90-61 4 54-88 82-38-22 73-90 67-13-46 85-85 46 13-67 90-73 22 38-82 88-54 -4 61-90 78-31}

{25-70 90-80 43 9-57 87-87 57 -9-43 80-90 70-25-25 70-90 80-43 -9 57-87 87-57 9 43-80 90-70 25}

{22-61 85-90 73-38 -4 46-78 90-82 54-13-31 67-88 88-67 31 13-54 82-90 78-46 4 38-73 90-85 61-22}

{18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18 18-50 75-89 89-75 50-18-18 50-75 89-89 75-50 18}

{13-38 61-78 88-90 85-73 54-31 4 22-46 67-82 90-90 82-67 46-22 -4 31-54 73-85 90-88 78-61 38-13}

{ 9-25 43-57 70-80 87-90 90-87 80-70 57-43 25 -9 -9 25-43 57-70 80-87 90-90 87-80 70-57 43-25 9}
{ 4-13 22-31 38-46 54-61 67-73 78-82 85-88 90-90 90-90 88-85 82-78 73-67 61-54 46-38 31-22 13 -4}
Appendix B

This annex provides proposed text changes to the working draft. Only paragraphs that need to be changed are included in this appendix.

8.5.3 Scaling process for transform coefficients
The scaled transform coefficient array dij is derived as follows.
shift = log2(nS) – 1 + trafoPrecisionExt

dij = Clip3(-32768,32767,((cij * LevelScale[qP%6] << (qP/6)) + (1<<(shift-1))>>shift), with i, j = 0..nS-1
8.5.4 Transformation process for scaled transform coefficients
The constructed residual samples are derived as specified in the following ordered steps.
1. Each (horizontal) row of scaled transform coefficients dij (i, j=0..nS-1) is transformed to eij (i, j=0..nS-1) by invoking the one-dimensional transformation process as specified in subclause 8.5.4.1 according to the size of the transform unit nS, with the (nS)x(nS) array d as the input and the output is the (nS)x(nS) array e.
2. The intermediate sample values gij (i,j=0,..nS-1) are derived by
gij = (eij + 64)>>7
3. Each (vertical) column of the resulting matrix eij (i, j=0..nS-1) is transformed to fij (i, j=0..nS-1) by invoking the one-dimensional transformation process as specified in subclause 8.5.4.1 according to the size of the transform unit nS, with the (nS)x(nS) array e as the input and the output is the (nS)x(nS) array f.
4. The residual sample value rij is derived by
rij = (fij + 211-trafoPrecisionExt) >> (12 - trafoPrecisionExt), with i, j=0.. (nS)x(nS)-1
8.5.4.1 Transformation process
Inputs of this process are:

· a variable nS specifying the size of the current transform unit,
· an array of nS samples of the scaled transform coefficients x with elements xi, with i = 0..nS-1.
Output of this process is an array of nS samples of the residual samples y with elements yi, with i = 0..nS.
The nS-point one-dimensional inverse transformation process is defined as following:

yi
=
ci0*x0 + ci1*x1 + … + cinS-1*xnS-1 with i = 0,..,nS-1

Page: 1
Date Saved: 2011-11-08

_1356441897.unknown

